TEMA 6. Sistemas láser en medición de longitudes. 2. Interferómetros para medición de longitudes con desplazamiento.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 6. Sistemas láser en medición de longitudes. 2. Interferómetros para medición de longitudes con desplazamiento."

Transcripción

1 INTRODUCCIÓN A LA METROLOGÍA Curso Académico Rafael Muñoz Bueno Laboratorio de Metrología y Metrotecnia LMM-ETSII-UPM

2 TEMA 6. Sistemas láser en medición de longitudes Índice 1. Concepto de interferometría. 2. Interferómetros para medición de longitudes con desplazamiento. 3. Interferómetros para medición de longitudes sin desplazamiento. 4. Calibración de sistemas interferométricos láser

3 Patrón primario de longitud: El metro, m Definición actual del metro La actual definición del metro fue adoptada en la XVII Conferencia General de Pesas y Medidas, en 1983 como: La longitud del trayecto recorrido por la luz en el vacío durante un tiempo de 1/ s. Esta definición del metro es legal en España tras la entrada en vigor del Real Decreto 1317/1989, de 27 de octubre, publicado en el BOE nº 264, de 3 de noviembre de El Centro Español de Metrología disemina la unidad de longitud desde sus láseres primarios, mediante la calibración de láseres estabilizados por diversos métodos, emitiendo en 633 nm, los cuales son ampliamente utilizados en metrología de longitudes.

4 Interferometría: Conceptos generales (i) La luz es capaz de producir interferencias luminosas, cuando se superponen al menos dos trenes de ondas. La formación de estas franjas de interferencia es consecuencia de la diferencia de fase que existe entre ambos trenes de ondas Interferencia destructiva: En la intersección de dos ondas de igual amplitud y longitud de onda, si ladiferenciadefaseesmúltiploimparde π radianes, los valles de una onda coinciden con las crestas de la otra, resultando una interferencia destructiva, es decir, una onda de amplitud nula, observándose una franja oscura. Interferencia constructiva: Si la diferencia de fase es múltiplo par de π radianes, entonces coinciden tanto los valles como las crestas de ambas ondas, resultando una interferencia constructiva; es decir, una onda de amplitud doble, observándose una franja clara.

5 Interferometría: Conceptos generales (iii) Onda 1 Interferencia destructiva Onda 1+2 Interferencia destructiva Onda 2

6 Interferometría: Conceptos generales (ii) Interferencia constructiva Onda 1 Onda 1+2 Onda 2

7 Interferometría: Conceptos generales (iii) Interferómetro de Michelson Fuente de luz monocromática, λ I 0 Haz recombinado I Espejo Divisor de haz Pantalla Espejo móvil X Franjas de interferencia Cuando los espejos están a la misma distancia del divisor de haz los dos haces están en fase y se produce interferencia constructiva. Si el espejo móvil se desplaza un cuarto de onda, entonces el haz recombinado estará fuera de fase 180º y tendremos interferencia destructiva. Si se alejan los espejos, entonces las diferencias de camino óptico producirá franjas de interferencia 2π I = 2 I cos 2n X λ Si el índice de refracción n se mantiene cte., las variaciones en el camino óptico se debe sólo al desplazamiento del espejo y, si se conoce λ, pueden determinarse con gran exactitud los desplazamientos del espejo móvil, X

8 Interferometría: Conceptos generales (iv) Método interferométrico El método interferométrico de medida de longitudes puede aplicarse en: Mediciones de longitud con desplazamiento: Evaluar el desplazamiento relativo existente entre dos sistemas de franjas. Mediciones de longitud sin desplazamiento: Contar el número de franjas contenidas en una determinada longitud. Este método se lleva a la práctica en aparatos denominados interferómetros.

9 Interferómetros para medición de longitudes con desplazamiento El esquema del interferómetro de Michelson es muy simplista. Existen modificaciones más o menos complejas, en las que varían: El tipo de láser utilizado La complejidad del sistema óptico (en el que haces con diferente polarización y/o frecuencia recorren caminos diferentes). La electrónica y software de detección y tratamiento de las señales de interferencia. Se han desarrollado dos métodos principales de detección según el tipo de láser utilizado: Sistemas homodinos: Emisiones láser en una sola frecuencia Sistemas heterodinos: Láser emite en dos frecuencias más o menos cercanas.

10 Interferómetros para medición de longitudes con desplazamiento Sistemas heterodinos Para sistemas heterodinos se emplean dos métodos para generar haces láser con dos frecuencias distintas: Modulación acusto-óptica: Un láser estabilizado emite un haz de una sola frecuencia,f 1. Posteriormente se le hace pasar por un sistema de modulación acusto-optico (AOM). Se generan así dos haces separados tanto físicamente como en frecuencia, f 1 y f 2. La separación en frecuencias es siempre de algunas decenas de MHz. Efecto Zeeman: Es el propio láser el que emite dos haces de distinta frecuencia (entre cientos de khz y 4 MHz) polarizados linealmente en cuadratura, f 1 y f 2.

11 Interferómetros para medición de longitudes con desplazamiento Principio de medida interferométrico de distancias para un sistema heterodino (i) El batido del haz láser antes de la entrada en el interferómetro, será proporcional a la siguiente señal en función de la diferencia de frecuencias y de fases de los dos haces perpendiculares que lo forman: I r [ 2 π ( f f ) + ( φ ) ] = 2 E E cos t φ Esta primera señal de batido se denomina señal de referencia, I r siendo su frecuencia muy estable e igual a la diferencia de frecuencia de los haces, que es precisamente la generada por el efecto Zeeman en un caso o la de la excitaciónde AOM en el otro. Si a la salida del láser el haz es dividido, de una manera u otra cada haz recorre caminos distintos en el interferómetro, uno hacia el reflector fijo y otra hacia el reflector móvil. Posteriormente se combinan físicamente ambos haces para, después de atravesar un polarizador, detectar su batido en un segundo fotodetector,i m : I r 2 1 [ π ( f f ) t + ( φ φ ) + ( φ φ )] = 2E01E02 cos m r

12 Interferómetros para medición de longitudes con desplazamiento Principio de medida interferométrico de distancias para un sistema heterodino (ii) I r e I m se diferencian únicamente en una fase que es proporcional a la diferencia de caminos que ha recorrido cada haz. Esta segunda señal se denomina señal de medida, siendo su fase y frecuencia instantánea variable durante el desplazamiento del reflector móvil. Cuando el reflector móvil se desplaza, esta diferencia de fase depende del tiempo, generándose un corrimiento Doppler de la frecuencia del segundo haz que es proporcional a la velocidad, v: n f2 φm φr = φ = 2π f dt = 4π vdt = n c 4π 1 Es decir, para determinar el desplazamiento del reflector móvil hay que medir la diferencia de fase entre ambas señales. X 2υ nf = c f 2 La diferencia de fase entre las señales de referencia y medida en los puntos de reposo del espejo móvil será la integral temporal de la variación de frecuencia entre los instantes correspondientes: 2 2 λ = 2 φ 4π n 1 f c 2 X

13 Interferómetros para medición de longitudes con desplazamiento Principio de medida interferométrico de distancias para un sistema heterodino (iii)

14 Interferómetros para medición de longitudes con desplazamiento Sistema interferométrico láser comercial

15 Interferómetros para medición de longitudes con desplazamiento Configuración habitual de sistemas interferométricos Los sistemas interferométricos láser están constituidos: Fuente luminosa de radiación láser He-Ne estabilizada. Efecto Zeeman (f 1 y f 2 perpendiculares). Sensores de temperatura de material. Sensores de temperatura, humedad y presión del ambiente. Componentes ópticos.

16 Interferómetros para medición de longitudes con desplazamiento Sistema interferométrico láser: Configuración medida de longitudes La posición que debe ser determinada es la posición del reflector lineal móvil. El interferómetro lineal está constituido por un divisor de haz y un segundo reflector. El haz desde el láser incide en el divisor de haz y el 50% de la luz va al reflector fijo y el otro 50% al reflector móvil. Los dos haces se recombinan y vuelven al fotodetector. El detector determina la distancia de movimiento mediante el conteo de franjas.

17 Interferómetros para medición de longitudes con desplazamiento Sistema interferométrico láser: Configuración medida de ángulos Puede también realizarse un montaje en configuración de medida de ángulos. Para ello se necesita un reflector angular formado por dos reflectores montados en un único bloque. El haz de referencia es el A1 y el de medida es el A2. Cuando el bloque rota la diferencia de longitud entre (A1 - A2 ) cambia y se puede medir la longitud. Conociendo la separación entre los espejos se pasa a medida de ángulos mediante trigonometría.

18 Interferómetros para medición de longitudes con desplazamiento Sistema interferométrico láser: Fuentes de incertidumbre Los interferómetros láser, como cualquier instrumento de medida, están sujetos a errores si no se emplean correctamente y tienen limitaciones. Las contribuciones a las inexactitudes en la medida se pueden clasificar atendiendo a sus diversos orígenes: Geometría del montaje Condiciones del entorno físico: Variaciones de la velocidad de la luz debido a las variaciones en el índice de refracción del aire. Por ello en cualquier medida de interferometría deben medirse las condiciones ambientales para calcular el factor de compensación de λ Características de la instrumentación Óptica del interferómetro Conocimiento y estabilidad del láser Electrónica de medida

19 Interferómetros para medición de longitudes sin desplazamiento Se utilizan para la determinación precisa de la longitud de bloques patrón. Otros diseños permiten la medición de esferas y de barras de extremos esféricos, situando éstas entre dos planos paralelos constituidos por un bloque patrón y un plano de referencia. Existen diversas configuraciones de interferómetros: de Michelson, de Fizeau, etc. Hasta hace pocos años, se utilizaban lámparas espectrales como fuente de radiación. Hoy día, prácticamente todos utilizan fuentes láser. Interferómetro de Kösters para la medida de bloques patrón

20 Interferómetros para medición de longitudes sin desplazamiento Medida de longitud de BPL mediante interferometría L

21 Interferómetros para medición de longitudes sin desplazamiento Medida de planitud mediante interferómetro de Fizeau

22 CALIBRACIÓN DE SISTEMAS INTERFEROMÉTRICOS LÁSER La calibración de un sistema interferométrico láser que va a ser empleado en el aire consiste en la calibración de los siguientes parámetros: Determinar el valor de la longitud de onda en el vacío del láser (λ 0 ), así como su variación durante varias horas de funcionamiento, lo que da idea de su estabilidad a lo largo del tiempo. Verificar el cálculo del índice de refracción, n. Calibración de sensores de condiciones ambientales. Calibración de sensores de material. Verificación del contador del sistema. Valoración del sistema completo.

23 CALIBRACIÓN DE SISTEMAS INTERFEROMÉTRICOS LÁSER Determinación del valor de λ 0 La determinación de la longitud de onda en el vacío (λ 0 ) se realiza mediante la técnica de batido de frecuencias, la cuál se realiza entre el láser a calibrar y el láser de referencia, siendo este último un láser de He-Ne estabilizado mediante célula de absorción de yodo, emitiendo en 474 THz.

24 CALIBRACIÓN DE SISTEMAS INTERFEROMÉTRICOS LÁSER Determinación del valor de λ 0 Los dos haces, el haz a calibrar y el haz del láser patrón se sitúan de forma que los haces viajen juntos. La señal del fotodetector enviada a un contador permite conocer el valor de la frecuencia interferencia de las dos. La señal de intensidad obtenida en el batido de frecuencias es una señal modulada con la diferencia de frecuencias: f ref - f Conocida la frecuencia del láser patrón queda determinada la frecuencia del láser en calibración. Aplicando el valor de la velocidad de la luz en el vacío se determina la longitud de onda del láser en calibración. λ 0 = c/f

25 CALIBRACIÓN DE SISTEMAS INTERFEROMÉTRICOS LÁSER Determinación de la estabilidad de λ 0 Las mediciones se realizan durante varias horas de funcionamiento y a intervalos de tiempo determinados. 1 t(h) 14 horas

26 Verificación del factor de corrección de la longitud de onda La longitud de onda en el medio es distinta a la longitud de onda en el vacío: NECESIDAD DE COMPENSACIÓN. Los sistemas interferométricos normalmente disponen de un sensor ambiente que proporciona los valores de temperatura, presión y humedad a la unidad de control, la cuál mediante un algoritmo calcula el factor de compensación. Es necesario verificar el factor de compensación proporcionado por el sistema.

27 Verificación del factor de corrección de la longitud de onda La verificación del factor de corrección de λ 0 implica las siguientes actuaciones: Calibrar el sensor de temperatura del sensor ambiente en un laboratorio de temperatura. Comprobaciónque el error es menor que el permitido por el fabricante. Calibrar el sensor de presión del sensor ambiente en el laboratorio de presión. Comprobaciónque el error es menor que el permitido por el fabricante. Verificar la validez del algoritmo empleado. Sensores de material. Se calibrarán en el laboratorio de temperatura proporcionando los resultados de errores e incertidumbres.

28 Verificación del Contador del sistema Dos sistemas interferométricos, uno de ellos empleado como patrón y otro el sistema a calibrar. Deben situarse de forma que empleen el mismo interferómetro y los mismos retrorreflectores. No deberán tenerse en cuenta las condiciones ambientales, pues nos interesa la verificación del contador. Como patrón puede emplearse un contador de franjas o un contador de otro sistema interferométrico recientemente calibrado.

29 Valoración del sistema conjunto Por último, se realiza una valoración del sistema completo de medida, donde se emplearán: El láser a calibrar autocompesado con sus sensores ambiente. El láser de referencia junto con sensores patrones, contador de franjas y empleando la aproximación de la fórmula de Edlén para el cálculo del índice de refracción del aire. Se realizan medidas a varios metros de distancia con ambos sistemas. Se calculará el error del sistema en calibración frente al patrón, y comprobaremos que los valores deben estar dentro del error e incertidumbre calculados.

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.

Más detalles

Interferómetro de Michelson

Interferómetro de Michelson Interferómetro de Michelson Objetivo Medir la longitud de onda de la luz emitida por un laser, determinar la variación del índice de refracción del aire con la presión y evaluar el índice de refracción

Más detalles

CAPITULO 4 MODULACIÓN ÓPTICA

CAPITULO 4 MODULACIÓN ÓPTICA CAPÍTULO 4 Las señales de información no siempre pueden ser transmitidas de manera directa por lo que debemos someterlas a un proceso de cambio que se conoce como modulación para una adecuada transmisión

Más detalles

Práctica 4. Interferencias por división de amplitud

Práctica 4. Interferencias por división de amplitud Interferencias por división de amplitud 1 Práctica 4. Interferencias por división de amplitud 1.- OBJETIVOS - Estudiar una de las propiedades ondulatorias de la luz, la interferencia. - Aplicar los conocimientos

Más detalles

INTERFERENCIA DE ONDAS DE LUZ

INTERFERENCIA DE ONDAS DE LUZ INTERFERENCIA DE ONDAS DE LUZ Objetivo: Material: Deducir la naturaleza de las ondas de luz analizando patrones de interferencia. 1. Interferómetro de precisión. 2. Láser diodo. 3. Plataforma mecánica

Más detalles

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA Selectividad Andalucía 2001: 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama

Más detalles

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

OTRAS APLICACIONES CON FIBRAS ÓPTICAS

OTRAS APLICACIONES CON FIBRAS ÓPTICAS APLICACIONES El campo de aplicación de las fibras ópticas es muy amplio y aumenta día a día. Algunas de las aplicaciones más importantes son: - Telecomunicaciones: En este apartado cabe incluir la red

Más detalles

SOMI XVIII Congreso de Instrumentación Ingeniería Óptica JRA1879

SOMI XVIII Congreso de Instrumentación Ingeniería Óptica JRA1879 SENSOR DE TEMPERATURA UTILIZANDO FIBRA ÓPTICA BIRREFRINGENTE J. Rodríguez-Asomoza, D. Báez-López, A. Valera-Yep. Universidad de las Américas, Puebla (UDLA-P), Departamento de Ingeniería Electrónica. jrasom@mail.udlap.mx,

Más detalles

Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS

Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS SENSORES Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS (Fibras ópticas) Profesores: Enrique Mandado Pérez Antonio Murillo Roldán Tema 5-1 FIBRA ÓPTICA [MAND 09 pag 525] [PERE 04 pag. 451] La

Más detalles

Problemas. La interferencia constructiva se dará cuando se cumpla la ecuación

Problemas. La interferencia constructiva se dará cuando se cumpla la ecuación Problemas 1. Dos rendijas estrechas distantes entre si 1,5 mm se iluminan con la luz amarilla de una lámpara de sodio de 589 nm de longitud de onda. Las franjas de interferencia se observan sobre una pantalla

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

TEMA 9. Equipos de metrología dimensional: Máquinas medidoras por coordenadas.

TEMA 9. Equipos de metrología dimensional: Máquinas medidoras por coordenadas. INTRODUCCIÓN A LA METROLOGÍA Curso Académico 2011-12 12 Rafael Muñoz Bueno Laboratorio de Metrología y Metrotecnia LMM-ETSII-UPM TEMA 9. Equipos de metrología dimensional: Máquinas medidoras por coordenadas.

Más detalles

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos básicos como el osciloscopio y el

Más detalles

Relación Problemas Tema 9: La luz y las ondas electromagnéticas

Relación Problemas Tema 9: La luz y las ondas electromagnéticas Relación Problemas Tema 9: La luz y las ondas electromagnéticas Problemas 1. Una onda electromagnética (o.e.m.) cuya frecuencia es de 10 14 Hz y cuyo campo eléctrico, de 2 V/m de amplitud, está polarizado

Más detalles

BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I

BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I INTRODUCCIÓN Elaborado por: EDGAR DEL HIERRO G. El láser tiene 3 características: la coherencia (misma longitud de onda), la amplitud y la fase. Las

Más detalles

ANÁLISIS DEL ESTADO DE POLARIACIÓN

ANÁLISIS DEL ESTADO DE POLARIACIÓN SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.

Más detalles

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2.

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2. Óptica Velocidad de la luz Medición con pulsos cortos de luz LD Hojas de Física Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz Objetivos

Más detalles

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN PROBLEMAS: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones

Más detalles

SOLUCIONARIO TALLERES EN CLASE: FISICA DE OSCILACIONES, ONDAS Y OPTICA. Universidad Nacional de Colombia Departamento de Física Sede Manizales

SOLUCIONARIO TALLERES EN CLASE: FISICA DE OSCILACIONES, ONDAS Y OPTICA. Universidad Nacional de Colombia Departamento de Física Sede Manizales SOLUCIONARIO TALLERES EN CLASE: FISICA DE OSCILACIONES, ONDAS Y OPTICA Universidad Nacional de Colombia Departamento de Física Sede Manizales SEMESTRE 01/2011 Prof. H. Vivas C. UNIVERSIDAD NACIONAL DE

Más detalles

Espectrometría Infrarroja y calibración del instrumento.

Espectrometría Infrarroja y calibración del instrumento. E T A S & M E T R Ó L O G O S A S O C I A D O S M e t A s & M e t r ó l o g o s A s o c i a d o s LGM-12-02 2015-abril Espectrometría Infrarroja y calibración del instrumento. L a G u í a M e t A s La

Más detalles

Interferencia producida por dos fuentes sincrónicas. Experiencia de Young

Interferencia producida por dos fuentes sincrónicas. Experiencia de Young Interferencia producida por dos fuentes sincrónicas. Experiencia de Young V.Tardillo *, E.Chávez **,C.Arellano *** Labortorio de Física IV Facultad de Ciencias Físicas, Universidad Nacional Mayor de San

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

Tema 2. Propiedades de las ondas.

Tema 2. Propiedades de las ondas. Tema 2. Propiedades de las ondas. El tema de las ondas suele resultar dificultoso porque los fenómenos ondulatorios más comunes lo constituyen el sonido y la luz y en ninguno de ellos es posible visualizar

Más detalles

Práctica 6. Variación de la intensidad de la luz: I) Atenuación de. I) Atenuación de la iluminancia con la distancia

Práctica 6. Variación de la intensidad de la luz: I) Atenuación de. I) Atenuación de la iluminancia con la distancia Práctica 6. Variación de la intensidad de la luz: I) Atenuación de la iluminancia con la distancia; II) Absorción en disoluciones I) Atenuación de la iluminancia con la distancia 1. OBJETIVO Estudio de

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Docente: Carla De Angelis Curso: T.I.A. 5º

Docente: Carla De Angelis Curso: T.I.A. 5º POLARIMETRIA La polarimetría es una técnica que se basa en la medición de la rotación óptica producida sobre un haz de luz linealmente polarizada al pasar por una sustancia ópticamente activa. La actividad

Más detalles

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

CURSO 2006/2007 TEMA 1:

CURSO 2006/2007 TEMA 1: HOJA DE PROBLEMAS ÓPTICA I CURSO 2006/2007 TEMA 1: 1.1.- La anchura de banda del espectro de emisión de una fuente láser es: ν = 30 MHz. Cuál es la duración del pulso luminoso emitido por la fuente? Cuál

Más detalles

Física 2º Bach. Óptica 01/04/09

Física 2º Bach. Óptica 01/04/09 Física 2º Bach. Óptica 0/04/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTO /UNO]. Un objeto O está situado a 30 cm del vértice de un espejo cóncavo, tal y como indica la figura. Se observa

Más detalles

Propagación de la luz en los medios no conductores. Leyes de la reflexión y de la refracción

Propagación de la luz en los medios no conductores. Leyes de la reflexión y de la refracción Capítulo 3 Propagación de la luz en los medios no conductores. Leyes de la reflexión y de la refracción 3.1 Índicederefracción El efecto de la presencia de un dieléctrico lineal, homogéneo e isótropo en

Más detalles

SESIÓN Nº 12: ANALIZADOR DE PENUMBRA.

SESIÓN Nº 12: ANALIZADOR DE PENUMBRA. Sesión nº 12: Analizador de penumbra. SESIÓN Nº 12: ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Luz natural: vector eléctrico vibrando en

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano.

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano. FLUJO LUMINOSO La mayoría de las fuentes de luz emiten energía electromagnética distribuida en múltiples longitudes de onda. Se suministra energía eléctrica a una lámpara, la cual emite radiación. Esta

Más detalles

BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO

BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO Con el título fundamentos de la ultrasonografía pretendemos resumir brevemente las bases físicas y fundamentos técnicos de la ecografía. Los ultrasonidos

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado

Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado La investigación Pregunta de investigación: Es constante la aceleración de un carrito que cae

Más detalles

Calidad en el Montaje y Proceso

Calidad en el Montaje y Proceso IES Rey Pelayo Programación 2014-15 Calidad en el Montaje y Proceso Instalación y Mantenimiento Electromecánico y Conducción de Líneas Formación Profesional de Grado Medio Índice Índice... 1 Introducción...

Más detalles

EJERCICIOS RESUELTOS DE MOVIMIENTO ONDIULATORIO. LA LUZ (ONDAS ) 4º E.S.O.

EJERCICIOS RESUELTOS DE MOVIMIENTO ONDIULATORIO. LA LUZ (ONDAS ) 4º E.S.O. EJERCICIOS RESUELTOS DE MOVIMIENTO ONDIULATORIO. LA LUZ (ONDAS ) 4º E.S.O. La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución. b)

Más detalles

EMISORES y DETECTORES

EMISORES y DETECTORES EMISORES y DETECTORES Los dispositivos utilizados como emisores y detectores de radiación luminosa en los sistemas de comunicaciones ópticas son el láser de semiconductores (diodo láser) y el LED (diodo

Más detalles

MEJORA EN LA EXACTITUD DEL PATRÓN NACIONAL DE ACELERACIÓN ALTERNANTE

MEJORA EN LA EXACTITUD DEL PATRÓN NACIONAL DE ACELERACIÓN ALTERNANTE MEJORA EN LA EXACTITUD DEL PATRÓN NACIONAL DE ACELERACIÓN ALTERNANTE Guillermo Silva Pineda, Sergio R. Rojas Ramírez, Arturo Ruiz Rueda y Noé Vidal Medina Centro Nacional de Metrología, División de Vibraciones

Más detalles

Y ACONDICIONADORES TEMA

Y ACONDICIONADORES TEMA SENSORES Y ACONDICIONADORES TEMA 6 SENSORES CAPACITIVOS Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 6-1 SENSORES CAPACITIVOS Sensores basados en la variación de

Más detalles

Generador ultrasónico. Esquema general

Generador ultrasónico. Esquema general Ultrasonidos Los ultrasonidos son aquellas ondas sonoras cuya frecuencia es superior al margen de audición humano, es decir, 20 KHz aproximadamente. Las frecuencias utilizadas en la práctica pueden llegar,

Más detalles

FÍSICA LAB. 8. la polarización. Comprender la técnica de análisis por espectroscopia. Visualización de los

FÍSICA LAB. 8. la polarización. Comprender la técnica de análisis por espectroscopia. Visualización de los FÍSICA LAB. 8 ÓPTICA FÍSICA Objetivos: Comprender y visualizar los espectros de difracción e interferencia y el fenómeno de la polarización. Comprender la técnica de análisis por espectroscopia. Visualización

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en

Más detalles

Interferómetro de Fizzeau Física III

Interferómetro de Fizzeau Física III Interferómetro de Fizzeau Física III Universidad Nacional de Mar del Plata Facultad de Ingeniería Fecha de Entrega: Jueves 20 de noviembre de 2014 Alumnos: Avalos Ribas, Ramiro Cardoso, Federico Furno,

Más detalles

Cuantificación en 3D de forma y deformación en objetos usando técnicas ópticas no-destructivas

Cuantificación en 3D de forma y deformación en objetos usando técnicas ópticas no-destructivas Cuantificación en 3D de forma y deformación en objetos usando técnicas ópticas no-destructivas Fernando Mendoza Santoyo y Carlos Pérez López Centro de Investigaciones en Optica, A.C. Loma del Bosque 115

Más detalles

Qué es un espectrofotómetro?

Qué es un espectrofotómetro? Qué es un espectrofotómetro? Un espectrofotómetro es un instrumento usado en el análisis químico que sirve para medir, en función de la longitud de onda, la relación entre valores de una misma magnitud

Más detalles

Problemas. Las ondas de desplazamiento y de presión asociadas a una onda sonora vienen dadas por la ecuación

Problemas. Las ondas de desplazamiento y de presión asociadas a una onda sonora vienen dadas por la ecuación Problemas. A una frecuencia de 4 Hz, el sonido más débil que se puede escuchar corresponde a una amplitud de presión de 8x -5 Nm -. Encontrar la correspondiente amplitud de desplazamiento. (Densidad del

Más detalles

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES 1. Objetivos docentes Familiarizarse con las propiedades ópticas de refracción y reflexión de materiales transparentes. 2.

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s):

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s): CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA Laboratorio de equilibrio y cinética Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Conocer y aplicar los fundamentos

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Tema 6: Ondas Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Propiedad del sistema velocidad de propagación Tiempo 1 Tiempo 2 Tiempo 3 Posición espacial Onda periódica: El valor

Más detalles

Técnicas de alta resolución y óptica adaptativa

Técnicas de alta resolución y óptica adaptativa Capítulo 3 Técnicas de alta resolución y óptica adaptativa 3.1 Introducción Bajo el nombre de técnicas de alta resolución se suele denominar el conjunto de estrategias que permite superar el límite de

Más detalles

Química Biológica I TP 1: ESPECTROFOTOMETRIA

Química Biológica I TP 1: ESPECTROFOTOMETRIA Química Biológica I TP 1: ESPECTROFOTOMETRIA OBJETIVOS: - Reforzar el aprendizaje del uso del espectrofotómetro. - Realizar espectro de absorción de sustancias puras: soluciones de dicromato de potasio.

Más detalles

CONSIDERACIONES EN LA ESTIMACIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN Y MEDICIÓN CON MEDIDORES DE ESPESORES POR ULTRASONIDO

CONSIDERACIONES EN LA ESTIMACIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN Y MEDICIÓN CON MEDIDORES DE ESPESORES POR ULTRASONIDO Simposio de Metrología 7 al 9 de Octubre de 00 CONSIDERACIONES EN LA ESTIMACIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN Y MEDICIÓN CON MEDIDORES DE ESPESORES POR ULTRASONIDO Colín Castellanos, Carlos y Viliesid

Más detalles

SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ

SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ A. Cuenca y A. Pulzara Universidad Nacional de Colombia, Sede Manizales, A. A. 127 e-mail: apulzara@nevado.manizales.unal.edu.co. RESUMEN Para

Más detalles

CAPÍTULO 3 Programación en LabVIEW

CAPÍTULO 3 Programación en LabVIEW CAPÍTULO 3 Programación en LabVIEW 3.1 Conexión física de los elementos Para capturar todas las señales provenientes de los sensores se utilizó una tarjeta de adquisición de datos de National Instruments,

Más detalles

2001 J Opción 2 5. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto)

2001 J Opción 2 5. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto) Página 1 1999 J 1. Al pulsar una cuerda de guitarra, inicialmente en reposo, ésta vibra de tal modo que cada uno de sus puntos comienza a moverse en torno a su posición inicial según la dirección perpendicular

Más detalles

Principios básicos de Absorciometría

Principios básicos de Absorciometría Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo

Más detalles

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz Entre la la física física conceptual aplicada MétodoIDEA Ondas 4º de eso Féli A. Gutiérrez Múzquiz Contenidos 1. CARACTERÍSTICAS DE LAS O DAS 2. I TERFERE CIAS...... 3 6 3. O DAS ESTACIO ARIAS.. 2 1. CARACTERÍSTICAS

Más detalles

Trabajo Académicamente Dirigido Curso 2009-2010. Láser de helio-neón. Departamento de Física Aplicada

Trabajo Académicamente Dirigido Curso 2009-2010. Láser de helio-neón. Departamento de Física Aplicada Trabajo Académicamente Dirigido Curso 2009-2010 Láser de helio-neón Departamento de Física Aplicada Realizado por Cristian Lavieja Belanche Dirigido por Sebastián Jarabo Lallana Índice de contenidos Introducción...

Más detalles

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller CODIGO: LABPR-005 FECHA: / / INSTRUCTOR: Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller I. Objetivo: Determinacion de las características de un tubo Geiger Muller (GM) y determinacion

Más detalles

RELATIVIDAD EN LA FÍSICA

RELATIVIDAD EN LA FÍSICA Capítulo 8 RELATIVIDAD EN LA FÍSICA CLÁSICA 1 8.1 Transformaciones de Galileo y Mecánica Sea S un sistema de referencia en el que se verifican las leyes de la Mecánica Clásica. Estos sistemas se denominan

Más detalles

Equipos de medición. Intervalos de calibración e interpretación de Certificados de Calibración

Equipos de medición. Intervalos de calibración e interpretación de Certificados de Calibración Equipos de medición. Intervalos de calibración e interpretación de Certificados de Calibración Equipos de Medición. Intervalos de calibración e interpretación de Certificados de Calibración Disertante:

Más detalles

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo Láser Semiconductor Relacionando con la teoría de láser: Al medio activo lo provee la juntura P-N altamente contaminada. Esta juntura está formada por materiales N y P degenerados por su alta contaminación.

Más detalles

MEMORIAS SOMI XV TEL-16

MEMORIAS SOMI XV TEL-16 TECNICA INTERFEROMETRICA HETERODINA CON FIBRA OPTICA PARA LA CARACTERIZACIÓN DE PROPIEDADES ESPECTRALES EN LASERES DE SEMICONDUCTOR E. Pacheco, J. Mendieta, H. Soto Centro de Investigación Científica y

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

Int. Cl.: 74 Agente: Carpintero López, Francisco

Int. Cl.: 74 Agente: Carpintero López, Francisco 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 27 19 1 Int. Cl.: G01N 21/17 (06.01) A61B /00 (06.01) 12 TRADUCCIÓN DE PATENTE EUROPEA T3 86 Número de solicitud europea: 009.

Más detalles

COMPLEMENTOS BLOQUE 5: ÓPTICA

COMPLEMENTOS BLOQUE 5: ÓPTICA COMPLEMENTOS BLOQUE 5: ÓPTICA 1. ESPEJISMOS Otro fenómeno relacionado con la reflexión total es el de los espejismos. Se deben al hecho de que durante el verano o en aquellos lugares donde la temperatura

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010)

C. Trallero-Giner CINVESTAV-DF (2010) Dispersión Raman en Sólidos I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales C. Trallero-Giner CINVESTAV-DF (2010) III. Aplicaciones

Más detalles

MINI ENSAYO DE FÍSICA Nº 4

MINI ENSAYO DE FÍSICA Nº 4 MINI ENSAYO DE FÍSICA Nº 4 TEMA: ONDAS Y ÓPTICA 1. Con respecto a las ondas mecánicas, cuál de las siguientes afirmaciones es correcta? A) Las tres afirmaciones siguientes son verdaderas. B) Si se refractan

Más detalles

Caracterización de un diodo Láser

Caracterización de un diodo Láser Práctica 6 Caracterización de un diodo Láser OBJETIVO Obtener la curva característica del diodo Láser Observar el efecto de la temperatura sobre este dispositivo Obtener el patrón de irradiancia del ILD.

Más detalles

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros Bases Físicas del Ultrasonido Dr. Arturo Contreras Cisneros Introducción El ultrasonido se introdujo en la medicina a principios de 1960, como método de diagnóstico por imagen Durante la década de los

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

APLICACIONES DE LOS ESPEJOS PLANOS:

APLICACIONES DE LOS ESPEJOS PLANOS: ESPEJOS ANGULARES. Cuando entre dos espejos planos que forman un ángulo y entre ellos se coloca un objeto, se tiene cierto número de imágenes, cuyo número depende del ángulo que forman los espejos. Se

Más detalles

= 10 sin 2π (500 t 0,5 x)

= 10 sin 2π (500 t 0,5 x) UNIDD ctividades de final de unidad Ejercicios básicos. La frecuencia del sonido que se obtiene con un diapasón es 440 Hz. Si la velocidad del sonido en el aire es 40 m s, calcula la longitud de onda correspondiente

Más detalles

SENSORES DE DISTANCIA POR ULTRASONIDOS

SENSORES DE DISTANCIA POR ULTRASONIDOS SENSORES DE DISTANCIA POR ULTRASONIDOS 1. Funcionamiento básico de los Ultrasonidos 2. Problemas con los Ultrasonidos 3. Algunas Configuraciones en Microrrobots empleando Ultrasonidos 4. Ejemplo práctico

Más detalles

Tercera Sesión de Conversación (CHAT): Aplicación de Sensores Remotos Satelitales de Microondas

Tercera Sesión de Conversación (CHAT): Aplicación de Sensores Remotos Satelitales de Microondas Tercera Sesión de Conversación (CHAT): Aplicación de Sensores Remotos Satelitales de Microondas Introducción Actualmente el desarrollo de sensores satelitales de microondas o radar está orientado a generar

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

NIVEL DE ILUMINACION EN AREAS DE TRABAJO

NIVEL DE ILUMINACION EN AREAS DE TRABAJO NIVEL DE ILUMINACION EN AREAS DE TRABAJO 1 CENTRO NACIONAL DE CONDICIONES DE TRABAJO - España Introducción Dentro de las actividades que realiza el hombre a lo largo de su vida, una de las que ocupa la

Más detalles

PAAU (LOXSE) Setembro 2002

PAAU (LOXSE) Setembro 2002 PAAU (LOXSE) Setembro 00 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica

Más detalles

Funcionamiento y tipos de Cronómetros. Ing. Francisco J. Jiménez Tapia Centro Nacional de Metrología fjimenez@cenam.mx

Funcionamiento y tipos de Cronómetros. Ing. Francisco J. Jiménez Tapia Centro Nacional de Metrología fjimenez@cenam.mx Funcionamiento y tipos de Cronómetros Ing. Francisco J. Jiménez Tapia Centro Nacional de Metrología fjimenez@cenam.mx CONTENIDO 1. Introducción 2. Definiciones 3. Tipos de cronómetros 4. Teoría básica

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

FS-12 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Ondas

FS-12 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Ondas FS-12 Ciencias Plan Común Física 2009 Ondas Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza. Como cualquier

Más detalles

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario

Más detalles

Óptica Física y Geométrica

Óptica Física y Geométrica Óptica Física y Geométrica INDICE Diversas teorías acerca de la luz 1 Propagación de las ondas electromagnéticas 3 Ondas electromagnéticas. La luz. 3 Índice de refracción de la luz 4 Reflexión de la luz

Más detalles

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras Seminario de Electrónica 1º GM Técnico T Instalaciones de Telecomunicaciones Infraestructuras Comunes de Telecomunicación n en Viviendas y Edificios Satélite de RTV Generalidades La emisión y recepción

Más detalles

Medición de la fuerza

Medición de la fuerza Medición de la fuerza LAS FUERZAS PROBLEMÁTICA VECTORIAL En la mecánica clásica, una fuerza se define como una acción susceptible de modificar la cantidad de movimiento de un punto material. De ello resulta

Más detalles

FUNDAMENTOS DE FIBRA ÓPTICA

FUNDAMENTOS DE FIBRA ÓPTICA FUNDAMENTOS DE FIBRA ÓPTICA Composición Una fibra óptica consiste en dos regiones concéntricas. La región interna es un filamento transparente llamado núcleo, cuyo diámetro suele estar comprendido entre

Más detalles

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO 1. Un haz de luz monocromática de longitud de onda en el vacío 450 nm incide sobre un metal cuya longitud de onda umbral, para

Más detalles

Mediciones fotométricas de la condición de la iluminación

Mediciones fotométricas de la condición de la iluminación Mediciones fotométricas de la condición de la iluminación Ing. Luis Diego Marín Naranjo M.Sc. Catedrático Escuela Ingeniería Eléctrica Universidad de Costa Rica Coordinador LAFTLA Laboratorio de Fotónica

Más detalles

El espectro electromagnético y los colores

El espectro electromagnético y los colores Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

2. Propiedades de una onda. Información importante. 1. Ondas. Preuniversitario Solidario

2. Propiedades de una onda. Información importante. 1. Ondas. Preuniversitario Solidario 2. Propiedades de una onda 1. Ondas Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos de: Clasificación de ondas

Más detalles