Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA"

Transcripción

1 Alquile o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda Una aplicación del método de pogamación dinámica a vaiable dicotómica Maisol Rodíguez Chatuc UdeSA 4 CNEPE - 28 y 29 de mayo de 2009

2 Motivación Uno de los aspectos distintivos la cisis actual es que se oiginó en el mecado hipotecaio estadounidense. La invesión en activos inmuebles tiene asgos paticulaes poque los activos inmuebles tienen un uso como vivienda. Paa compende cietos fenómenos que están en el núcleo de la llamada bubuja inmobiliaia es necesaio conta con explicaciones aceca de las vaiables que influyen en la decisión de pedi una hipoteca. En el tabajo, mediante un modelo de búsqueda sencillo al estilo McCall (1970) se plantea la decisión individual ente pedi una hipoteca paa compa una vivienda y alquila dicha vivienda. Así se puede obtene una expesión que defina (implícitamente) la tasa de inteés paa la cual el individuo está indifeente ente pedi una hipoteca o alquila y además se puede conoce su sensibilidad ante cambios en el valo del alquile y en la distibución de pobabilidad que incementen el iesgo manteniendo la media constante (mean- peseving speads).

3 Beve epaso de la liteatua La liteatua sobe elección de tenencia del hoga (housing tenue choice) es elativamente abundante (especialmente la que se aplica a EE.UU) y se inicia a comienzos de la década del 80 Los pimeos estudios que sugieon son empíicos (Kain y Quigley, 1972 y Li,1977) y estudian los pincipales deteminantes de se dueño del hoga en algunas egiones de EE.UU. A inicios de la década del ochenta suge una liteatua teóica que enfatiza en los costos de uso (use costs) de se dueño vesus los de alquila (Hendeson y Ioannides, 1983) tomando en cuenta las leyes impositivas y consideando a la decisión de compa de un inmueble tanto como una decisión de consumo como una decisión de potafolio.

4 La liteatua más eciente puede dividise en dos gandes enfoques aquélla que usa un maco de equilibio simple paa analiza los factoes que afectan la elección de tenencia del hoga (Sinai y Souleles, 2005), y aquélla que destaca cómo compa o alquila la popiedad impactan en las decisiones de consumo y de potafolio de los individuos, en un maco de equilibio pacial (Yao y Zhang, 2005 y Van Hemet, 2006). Hay tabajos que desaollan explícitamente el contato de hipoteca (Gossman y Laoque, 1990, Campbell y Cocco, 2003). En la mayoía de estos tabajos se esuelve un poblema intetempoal de hoizonte finito paa enconta el consumo del bien inmueble y la invesión óptima bajo la pesencia de un contato de hipoteca.

5 El modelo - supuestos t=0,1,2 (años) Los agentes eciben al inicio de cada peiodo una dotación fija nomalizada a 1 del único bien de la economía, pefectamente divisible. No existe tecnología de almacenamiento. En el instante de tiempo inicial una pesona sin hoga tiene que decidi ente dos opciones: Pedi una hipoteca y paga una tasa de inteés <1, fija anual a pepetuidad. Esta decisión es ievesible: una vez que el individuo es dueño no puede pasa a se inquilino. Supuesto simplificado: no se equiee el pago de un adelanto (downpayment) paa ecibi la hipoteca. Alquila una popiedad po un peiodo de un año (hasta el comienzo de t=1) pagando un alquile fijo 0<R<1 anualmente. La tasa pevaleciente en t=0 es, la cual es la ealización de ~, vaiable aleatoia con función de pobabilidad acumulada F() continua y sopote compacto [ 0,]. Con 0 < 1 El timing en el que se desaollan los acontecimientos es el siguiente: al comienzo del peiodo un individuo sin hoga obseva la tasa de inteés pevaleciente en el mecado y el valo del alquile y en base a eso decide si quiee se dueño, pagando la tasa a pepetuidad o si quiee se inquilino y paga R po un año, y a comienzos del año siguiente pode volve a elegi ente se dueño y alquila.

6 Los agentes maximizan la utilidad espeada a lo lago de toda su vida descontada po el facto 0 <β < 1 E t t (,i ) = E β [ c u( i )] 0 β u ct t 0 t + t=0 t=0 t ( ) ( ) u c t,i t = c t + u i t es continuamente difeenciable al menos una vez especto a ct, estictamente ceciente y cóncava; y donde ct es igual al ingeso disponible de cada peiodo, es deci, a la dotación menos el pago de inteeses o de alquile (según sea el caso); y donde i t es una vaiable dicotómica (dummy) que epesenta el estado del individuo (igual a 1 si es dueño, igual a 0 si es inquilino). Suponemos que u( 1) > u( 0) 0, lo cual efleja la desutilidad que genea mudase. Lo anteio detemina que: i t = 1 c t = 1- t i t = 0 c t = 1-R

7 Función de valo La ecuación de Bellman asociada a la decisión individual es : ( ) V,i ( 1- ) + u( 1) ; ( 1- R ) + u ( 0 ) + β V ( ',i' ) f ( ' ) d = max β ' 1 0 (1) Si pide hipoteca Si alquila Donde V(,i) puede se pensada como una función de utilidad indiecta. Es deci, el individuo elige el cuso de acción que le binde una mayo utilidad a lo lago de toda su vida. En el caso de pedi la hipoteca deiva utilidad en todos los peiodos del ingeso disponible (1-) y del hecho de se dueño. Dado que la decisión de se dueño es ievesible, esto se descuenta po 1- En el caso de decidise po alquila, deiva utilidad en el pime peiodo del ingeso disponible (1-R) y del hecho de se inquilino (ecodemos que ésta última puede se nula). En el segundo peiodo, vuelve a la situación inicial, es deci, puede elegi ente alquila y pedi hipoteca, po lo tanto deiva una utilidad (espeada) de ahí en más igual a la espeanza de la función de valo descontada. β

8 Existencia y unicidad de la función de valo Paa que el poblema planteado tenga sentido, es necesaio demosta que la función de valo definida en (1) existe y es única. Una de las dificultades que imponen los modelos de búsqueda es que la vaiable de decisión no es convexa. La metodología paa demosta la existencia y unicidad consiste en este caso en: 1. Mosta que la ecuación de Bellman esbozada puede pensase como un mapa T, que mapea un espacio de Banach en sí mismo. 2. Mosta que T es una contacción 3. Usa el Teoema del mapa contactivo que bajo estas condiciones gaantiza que el punto fijo existe y es único.

9 Pime paso Sea B(,i) el espacio de funciones acotadas en e i y continuas en, paa todo h(,i) B(,i) se define: Th (,i) ( 1- ) + u( 1) ; ( 1- R ) + u ( 0 ) + β h ( ',i' ) f ( ' ) d = max β ' 1 0 ( ) es el máximo ente dos funciones de e i que son acotadas y continuas en, po lo tanto: Th,i T:B w B w ( ) ( )

10 Segundo paso Condiciones de Blackwell Monotonicidad Si h entonces [ 0,] i { 0,1} 1 h2, Th [ 0,] i { 0,1} 1 Th2, Descuento T( h + a)(,i) Th(,i) + βa h B(,i), a 0, [ 0,], i { 0,1} Se puede mosta que ambas se cumplen. Entonces T es una contacción

11 Tece paso T es una contacción que mapea el espacio B(,i) en sí mismo, el cual es un espacio de Banach. Po ende puede aplicase el Teoema del mapa contactivo, que gaantiza que, bajo estas condiciones, Th(,i) tiene un único punto fijo, V(,i) B,i ( ) tal que TV(,i)= V(,i) Lo anteio implica que la función de valo es única y que es acotada y continua en.

12 Popiedades de la función de valo La función de valo es débilmente dececiente en. 1+ u(1) 1-β Th(,i) Ω β 1+u (1)

13 Existe un único [ 0,] tal que: ( 1- ) + u( 1) 1 β = 0 ( 1-R) +u( 0) +β V( ',i' ) f( ' ) d' La función de valo tiene la siguiente foma: ( ) V,i ( 1- ) + u( 1) Ω 1 β si = (2) si

14 La función de política óptima tiene la siguiente foma: ( ) g pedi hipoteca = alquila si si Si la ealización de la vaiable aleatoia al inicio del peiodo, esulta meno a un valo umbal que denominamos tasa de inteés de eseva, paa el individuo es óptimo pedi una hipoteca, en caso contaio, si esulta meno a, es óptimo alquila po un peiodo y volve a enfentase a la misma decisión en el peiodo siguiente (segui buscando). Po último, si es igual a la tasa de inteés de eseva el individuo está indifeente ente ambos cusos de acción. ~

15 Popiedades de la tasa de inteés de eseva 1. Respuesta de la tasa de inteés de eseva ante cambios en el valo del alquile Si bien no seá posible enconta una expesión explícita de la tasa de inteés de eseva sí podemos llega a una definición implícita que pueda se deivada especto a R La tasa de inteés de eseva queda definida po [ u( 1) - ] u( 0) [ R] = ( ' ) f( ' ) d' β 1 β 0 (3)

16 El lado izquiedo de (3) es el costo de opotunidad (en téminos de utilidad) de segui alquilando una vez más cuando se puede pedi una hipoteca pagando la tasa. El lado deecho epesenta el beneficio espeado de alquila un año más en téminos del valo pesente espeado asociado a que al individuo se le ofezca una tasa de inteés <. En suma, si el agente actúa óptimamente el costo de alquila un año más se iguala al beneficio de esta misma acción.

17 Una vez obtenida la expesión que caacteiza a la tasa de eseva la queemos ve cómo se modifica especto a R. Paa ello definimos el lado deecho de (3) como h(). Puede demostase que es ceciente y estictamente convexa. A su vez, definiemos a j() como el lado izquiedo de (3). j() es dececiente especto a

18 Cuando aumenta R, aumenta la tasa de inteés de eseva β 1-β [ ( )] -E h ( ) u ( 1) -u( 0) + R j( )

19 2. Efectos de mean-peseving speads Se analiza qué ocuiía con la decisión óptima del individuo si la distibución de tasas de inteés se vuelve más iesgosa (incementa su vaianza). Usaemos la definición de Rothschild y Stiglitz (1970, 1971) de meanpeseving spead: un aumento en la vaianza de la distibución de pobabilidad que no modifica su media.

20 Patiendo de (3) y aplicando el método de integación po pates al lado deecho se obtiene ( ) ( ) ' Definiendo g = F ' d, podemos establece 0 algunas popiedades de esta función: ( 0) = 0 [ u( 1) - ] u( 0) g ( ) > 0 g ( ) = 1 β [ R] = [( ' ) F( ' )] + F( ' ) 0 β d' 1 0 = g g ' ( ) = F( ) > 0 g'' ( ) f( ) > 0

21 (i) (ii) Qué sucedeía ante un aumento en el iesgo que mantenga constante la media de la distibución? Paa esponde esto geneaemos una nueva distibución, a pati de F( ' ) que cumpla con las siguientes condiciones: 0 0 ' ' ' [ F ( ) F( )] d 0 1 = ' ' ' [ F ( ) F( )] d 0 1 ( ) ; ambas distibuciones tienen la misma media con 0 Es deci, F ' 1 es obtenida a pati de un poceso que conseva la media de la distibución peo taslada la pobabilidad hacia las colas de la distibución, incementando su vaianza o iesgo. La condición (ii) equivale po la foma en que fue definida g( )- a: ' ' ' ' F1 ( ) d F ( ) d 0 g 1 0 ( ) ( ) g F 1 ( ' )

22 Un aumento del iesgo hace cae la tasa de inteés de eseva β g ( ) 1-β β 1-β u ( 1) -u( 0) + R j( )

23 Po ende, el efecto de un aumento de estas caacteísticas en el iesgo, es incementa g(), tasladándola en diección nooeste y educiendo la tasa de inteés de eseva del individuo. Una mayo vaianza de la tasa de inteés (que no modifique su media) tiene dos efectos: Po un lado, hace más pobable que el individuo pefiea segui buscando en vistas a obtene una ofeta excepcionalmente baja de tasa de inteés. Po oto, un aumento del iesgo incementa la posibilidad de ecibi ofetas excepcionalmente altas de tasa de inteés. Sin embago, como vemos en el gáfico, el pime efecto pedomina, debido a que las ofetas demasiado caas, pueden echazase. Es deci que, un aumento en el iesgo de la distibución, tendeía a polonga el tiempo de alquile (o de búsqueda ).

24 Conclusiones El modelo pesentado pemite caacteiza a gandes asgos la decisión aceca de la tenencia individual de una vivienda. En paticula, se puede obtene una expesión implícita de la tasa de inteés de eseva y analiza cómo vaía ésta ante cambios en el costo de opotunidad de pedi una hipoteca (es deci, de alquila) y ante cambios en la distibución de pobabilidad que mantengan la media constante e incementen el iesgo. Un aumento del costo de alquila, como ea de espea, incementa la tasa de inteés de eseva del individuo, haciendo más pobable que éste decida pedi una hipoteca. Po su pate, un incemento en el iesgo de la distibución de la tasa de inteés (que no modifique la tasa de inteés media), al volve más pobable el hecho de ecibi ofetas de tasa de inteés demasiado altas, hace cae la tasa de inteés de eseva, poque al individuo le esulta óptimo -en una mayo cantidad de situacionesespea a que apaezca una ofeta menos costosa.

25 Seía inteesante, paa investigaciones futuas, incopoa al modelo algunas modificaciones que lo hagan más ealista, como la opción ente elegi tasa fija o vaiable, o el pago de un downpayment como condición paa pedi la hipoteca, o la posibilidad de hace default. También seía útil estudia qué popoción de la población está endeudada en estado estacionaio. El análisis de estos aspectos esultaía fundamental paa tene un mejo conocimiento de cómo funciona el mecado inmobiliaio, especialmente teniendo en cuenta que la actual cisis financiea intenacional tuvo su oigen en el mecado hipotecaio noteameicano

26 MUCHAS GRACIAS! Comentaios a

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio TÉCNICAS DE COMERCIO EXTERIOR Tema 7: El Mecado de divisas y la cobetua del iesgo de cambio 7..- Intoducción al mecado de cambios. Convetibilidad : Existe un mecado libe que define su pecio. Resticciones

Más detalles

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones)

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones) Tema 2 (Pate II) Financiación n extena (Acciones y Obligaciones) 2.1. La financiación extena y el sistema financieo 2.2. Emisión de activos financieos negociables 2.3. Las acciones y su valoación 2.4.

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

9. Costo de capital y decisiones de financiamiento IN56A

9. Costo de capital y decisiones de financiamiento IN56A 9. Costo de capital y decisiones de financiamiento IN56A Otoño 2009 Gonzalo Matuana F. Objetivo en finanzas copoativas l objetivo de cualquie geente en una empesa debe se siempe maximiza el valo de la

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

8.1 Conceptos e identidades fundamentales. Tipo de cambio

8.1 Conceptos e identidades fundamentales. Tipo de cambio Capítulo 8 Modelo de equilibio inteno y exteno: Mundell-Fleming Hasta aquí solo se ha descito el equilibio inteno, mas no el exteno. Po equilibio exteno entendeemos el equilibio de la balanza de pagos.

Más detalles

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM)

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) Julián Moal TEMA 3.-AS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) 3.1.-as funciones del sistema bancaio 3.2.-os intemediaios bancaios en la economía 3.3.-El Banco Cental y el Sistema bancaio Bibliogafía

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans 1 Cómo funcionan los dispositivos que utilizan enegía espacial? Una explicación a pati de la Teoía de Einstein-Catan-Evans Host Eckadt Munich, Alemania Alpha Institute fo Advanced Study (www.aias.us) Resumen

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

GRAFICANDO EN COORDENADAS POLARES

GRAFICANDO EN COORDENADAS POLARES GRAFICANDO EN COORDENADAS POLARES Maía Guadalupe Amado Moeno, Ángel Gacía Velázquez Instituto Tecnológico de Meicali, Baja Califonia, Méico lupitaamado@hotmail.com, angel.g0@hotmail.com RESUMEN El tabajo

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

Capitulo 1. Carga y Campo eléctricos.

Capitulo 1. Carga y Campo eléctricos. Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN CAPÍTULO 3 EL MODELO KENESIANO 3.1 INTRODUCCIÓN Antes de la Gan Depesión muchos economistas consideaban al desempleo como un poblema pasajeo y de meno impotancia asociado con las fluctuaciones nomales

Más detalles

I MAGNITUDES Y MEDIDAS

I MAGNITUDES Y MEDIDAS I MAGNITUDES Y MEDIDAS 1. MAGNITUDES Se llama magnitud a cualquie caacteística de un cuepo que se puede medi y expesa como una cantidad. Así, son magnitudes la altua de un cuepo, la tempeatua, y no son

Más detalles

DE ECONOMÍA DEPARTAMENTO. Félix Jiménez

DE ECONOMÍA DEPARTAMENTO. Félix Jiménez DPARTAMNTO D CONOMÍA PONTIFICIA UNIVRSIDAD CATÓLICA DL PRÚ DPARTAMNTO D CONOMÍA PONTIFICIA UNIVRSIDAD CATÓLICA DL PRÚ DOCUMNTO D TRABAJO N 296 LMNTOS D TORÍA POLÍTICA MACROCONÓMICA PARA UNA CONOMIÁ ABIRTA.

Más detalles

UNIVERSIDAD DE ZARAGOZA

UNIVERSIDAD DE ZARAGOZA Reflectometía en el dominio del tiempo UNIERIDAD DE ZARAGOZA FACUTAD DE CIENCIA DEPARTAMENTO DE FIICA APICADA AREA DE EECTROMAGNETIMO CARACTERIZACIÓN DIEÉCTRICA POR T. D. R. DE UNA MEZCA REINA EPOXY TITANATO

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

Colección Estudios Económicos 14-08 Serie Economía Regional CÁTEDRA Fedea Caja Madrid

Colección Estudios Económicos 14-08 Serie Economía Regional CÁTEDRA Fedea Caja Madrid SOBRE EL REPARTO DE LA FINANCIACIÓN SANITARIA Angel de la Fuente Instituto de Análisis Económico, CSIC Maía Gundín Univesidad Pompeu Faba Colección Estudios Económicos 14-08 Seie Economía Regional CÁTEDRA

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

PORTAFOLIOS ÓPTIMOS PARA LOS NUEVOS SISTEMAS DE PENSIONES DE PAÍSES EMERGENTES. Por. Eduardo Walker

PORTAFOLIOS ÓPTIMOS PARA LOS NUEVOS SISTEMAS DE PENSIONES DE PAÍSES EMERGENTES. Por. Eduardo Walker ORTAFOLIOS ÓTIMOS ARA LOS NUEVOS SISTEMAS DE ENSIONES DE AÍSES EMERGENTES o Eduado Walke ofeso Titula Escuela de Administación ontificia Univesidad Católica de Chile Octube de 3 Este es un documento paa

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Determinación de precios para servicios en Internet Enfoques basados en teoría económica *

Determinación de precios para servicios en Internet Enfoques basados en teoría económica * Deteminación de pecios paa sevicios en Intenet Enfoques basados en teoía económica * Juan Manuel Laosa Univesidad Nacional del Su jlaosa@{ciba.edu.a; yahoo.com} * Pimea vesión: julio 2000. Esta vesión:

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013 Compensión conceptual y el uso de tecnología Césa Cistóbal Escalante Veónica Vagas Alejo Univesidad de Quintana Roo Julio 203 Qué significa tene conocimiento de un concepto? Conoce su definición? Conoce

Más detalles

La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso.

La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso. II. RANSFERENCIA DE CALOR POR CONDUCCIÓN II.1. MECANISMO La tansmisión de calo po conducción puede ealizase en cualquiea de los tes estados de la mateia: sólido líquido y gaseoso. Paa explica el mecanismo

Más detalles

E A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Universidad de Valencia

E A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Universidad de Valencia E Númeo 45 (vol. XV), 2007, págs. 155 a 182 A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Univesidad de Valencia ROBERTO PEREIRA MOREIRA Univesidad

Más detalles

Raimundo Giménez González * Junio de 2000

Raimundo Giménez González * Junio de 2000 INTERRELACIÓN DINÁMICA EN EL INTRADÍA ENTRE MERCADOS SPOT DE VALORES: UNA APLICACIÓN VAR SOBRE LA TRANSMISIÓN DE RENTABILIDAD MINUTO A MINUTO ENTRE LA BOLSA NORTEAMERICANA Y EL MERCADO CONTINUO ESPAÑOL

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Facultad de iencias Económicas onvocatoia de Junio Pimea Semana Mateial Auxilia: alculadoa financiea MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 2 de Mayo de 202 hoas Duación: 2 hoas. Péstamos a) Teoía:

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Article Planes mínimos obligatorios en mercados de seguros de salud segmentados

Article Planes mínimos obligatorios en mercados de seguros de salud segmentados econsto www.econsto.eu De Open-Access-Publikationsseve de ZBW Leibniz-Inomationszentum Witschat The Open Access Publication Seve o the ZBW Leibniz Inomation Cente o Economics Beteta, Edmundo; Willington,

Más detalles

El modelo de Merton como medida alternativa de valuación de riesgo de default

El modelo de Merton como medida alternativa de valuación de riesgo de default El modelo de Meton como medida altenativa de valuación de iesgo de default Auto: Estella Peotti i (epeotti@bc.com.a) Diecto: Gabiela Facciano, FRM Maestía en Administación de Negocios ESEADE Escuela Supeio

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

ANÁLISIS DE UN PLAN DE PENSIONES DE EMPLEO SEGÚN DIFERENTES MÉTODOS ACTUARIALES DE COSTES

ANÁLISIS DE UN PLAN DE PENSIONES DE EMPLEO SEGÚN DIFERENTES MÉTODOS ACTUARIALES DE COSTES Análisis de un Plan de Pensiones de Empleo según difeentes Métodos Actuaiales de Costes ANÁLISIS DE UN PLAN DE PENSIONES DE EMPLEO SEGÚN DIFERENTES MÉTODOS ACTUARIALES DE COSTES Peláez Femoso, Fancisco

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

tivo de Cambios en las Cuotas Arancelarias: el caso de las expor

tivo de Cambios en las Cuotas Arancelarias: el caso de las expor Análisis Cuantitati tivo de Cambios en las Cuotas Aancelaias: el caso de las expo xpotaciones de Cane Vacuna a la UE* Matín Cicowiez y Calos Galpeín Resumen Las cuotas aancelaias son un instumento de uso

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP.

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP. PLICCION DE LS VENTJS COMPRTIVS RELTIVS LS OPERCIONES SWP. Tinidad Sancho Fenando Espinosa Catedática de Escuela Univesitaia de Economía Financiea Contabilidad. Pofeso inteino. Depatamento de Matemática

Más detalles

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO V CONTENIDO PROLOGO I PRTE I FUNDMENTOS DE L MECÁNIC PR L INGENIERÍ Y DINÁMIC DE L PRTÍCUL EN MOVIMIENTO PLNO 1. Fundamentos de la Mecánica paa la Ingenieía. 1.1 Intoducción. 1 1. Conceptos básicos. 1.3

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

ALGUNAS MEDIDAS DE DISPERSIÓN ESPACIAL APLICADAS AL ESTUDIO DE LOS FLUJOS MIGRATORIOS REGIONALES EN ESPAÑA (1986-2003)

ALGUNAS MEDIDAS DE DISPERSIÓN ESPACIAL APLICADAS AL ESTUDIO DE LOS FLUJOS MIGRATORIOS REGIONALES EN ESPAÑA (1986-2003) XXX REUNIÓN DE ESTUDIOS REGIONALES ALGUNAS MEDIDAS DE DISPERSIÓN ESPACIAL APLICADAS AL ESTUDIO DE LOS FLUJOS MIGRATORIOS REGIONALES EN ESPAÑA (1986-2003) GUIJARRO GARVI, Mata Depatamento de Economía Univesidad

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

Supuestos del Modelo Hecksher-Ohlin-Samuelson

Supuestos del Modelo Hecksher-Ohlin-Samuelson Supuestos del Modelo Heckshe-Ohlin-Samuelson 1. Modelo 2x2x2 2 naciones ( y ) 2 poductos ( y ) 2 factoes de poducción (K y L) 2. La misma tecnología de poducción en ambas naciones 3. Un poducto es L-intensivo

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS

COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DIANA GINETH RAMÍREZ RIOS UNIVERSIDAD DEL NORTE Diciembe de 2008 i COOPERACIÓN EN LA CADENA DE SUMINISTRO DE LA ENERGÍA ELÉCTRICA

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004 2do. Cuatimeste de 2004 Elementos de Bases de Datos Dpto.Ciencias e Ingenieía de la Computación Univesidad Nacional del Su Lic. Maía Mecedes Vittuini [mvittui@cs.uns.edu.a] Clase 6 1e. Cuatimeste de 2004

Más detalles

Planes Mínimos Obligatorios en Mercados de Seguros de Salud Segmentados Mandatory Basic Health Insurance in Segmented Markets

Planes Mínimos Obligatorios en Mercados de Seguros de Salud Segmentados Mandatory Basic Health Insurance in Segmented Markets Planes Estudios mínimos de Economía. obligatoios Vol. 36 -/ Nº Edmundo 2, Diciembe Beteta, 2009. Manuel Págs. Willington 217-241 217 Planes Mínimos Obligatoios en Mecados de Seguos de Salud Segmentados

Más detalles

TEMA 5 : ANIMACIÓN 3D

TEMA 5 : ANIMACIÓN 3D Dpto. Infomática Univesitat de València Ampliación de Infomática Gáfica TEMA 5 : ANIMACIÓN 3D Podemos considea que una animación descibe el cambio de una imagen a lo lago del tiempo, con el suficiente

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009 1 DEÑO E MPLEMENACÓN DE UN COMPENADOR EÁCO DE POENCA REACA (D-ACOM); BAADO EN UN CONERDOR RFÁCO CON MODULACÓN NUODAL DE ANCHO DE PULO (PWM), CONROLADO POR UN PROCEADOR DGAL DE EÑALE (DP M30C000) ícto Lituma

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

UNIDAD IV: CAMPO MAGNETICO

UNIDAD IV: CAMPO MAGNETICO UNNE Facultad de Ingenieía UNIDAD IV: CAMPO MAGNETICO Antecedentes. Inducción magnética. Líneas de inducción. Flujo magnético. Unidades. Fuezas magnéticas sobe una caga y una coiente eléctica. Momento

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Operaciones financieras de financiación, inversión y cobertura de riesgos.

Operaciones financieras de financiación, inversión y cobertura de riesgos. Opeaciones financieas de financiación, invesión y cobetua de iesgos. Tinidad Sancho, Maite Mámol UNIVERSIDAD DE BARCELONA 23/0/203 2 Tinidad Sancho Insa, Mª Teesa Mámol INDICE.. Sistemas y mecados financieos

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes ANALISIS DE RIESGO E INCERTIDUMBRE Análisis Deteministico V/S Análisis de Riesgo e Incetidumbe Valoes Únicos y Conocidos Valoes Vaiables y Desconocidos ANALISIS DETERMINISTICO Pecio Cantidad Invesión EVALUACION

Más detalles

Magnetismo solar: un poco de teoría

Magnetismo solar: un poco de teoría 1 Magnetismo sola: un poco de teoía La actividad magnética del Sol ha ataído a los astónomos duante al menos años: pimeo, la apaiencia y vaiabilidad de las manchas, más tade, su estuctua, las potubeancias,

Más detalles

CULTURA DE EJECUCIÓN: Gestión del capital humano

CULTURA DE EJECUCIÓN: Gestión del capital humano CULTURA DE EJECUCIÓN Es uno de los pilaes fundamentales paa la implementación de la estategia Es un tema de toda la oganización Contol egula Actuación de las pesonas CULTURA DE EJECUCIÓN: Gestión del capital

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

6 PROPORCIONALIDAD DIRECTA E INVERSA

6 PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA EJERCICIOS PROPUESTOS. Completa la siguiente tabla paa que las magnitudes A y B sean diectamente popocionales. La azón de popocionalidad es: 0,25 A 3 0 23, 2 B 2,,75

Más detalles