APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS"

Transcripción

1 APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco Resume Ua de las asigaturas que se imparte e la EUITI de Bilbao relacioada co la Calidad es el Cotrol de Calidad de Procesos y Productos Químicos. E el programa de dicha asigatura se icluye el estudio de los diferetes herramietas utilizadas e el seguimieto de procesos idustriales etre las que destaca los Gráficos de Cotrol. Dada la importacia y variedad de las metodologías utilizadas para el cotrol de calidad, e este trabajo se platea como objetivos que los alumos de Igeiería Idustrial adquiera uos coocimietos previos iiciales sobre esta materia, debi do a la importacia creciete que ha adquirido la aplicació de esta herramieta e cualquier tipo de proceso idustrial. Como fase iicial se realiza u estudio teórico sobre las diferetes metodologías empleadas para el cotrol de calidad de procesos de forma que los alumos valore la importacia de que u proceso determiado pueda pararse a tiempo si los resultados obteidos cae fuera de ciertos límites o bie que el proceso prosiga si fucioa detro de estos límites. Como complemeto a los coocimietos teóricos se ha icorporado ua serie de prácticas e las que se icluye el uso del ordeador 1. INTRODUCCIÓN E las operacioes que se lleva a cabo e los procesos idustriales se debe llevar a cabo u adecuado y eficaz cotrol de calidad que garatice la satisfacció de los posibles clietes o usuarios de los productos fiales obteidos. E el caso de productos químicos adquiere gra importacia la calidad de las medidas aalíticas y cualquier evaluació de los errores de medida se debe teer e cueta el proceso aalítico global, icluyedo las etapas de muestreo. Si u laboratorio ofrece resultados aalíticos de ua calidad aceptable para sus clietes y fucioa bie e las pruebas de suficiecia u homologació, resulta obvio que los resultados obteidos deberá mostrar ua cosistecia elevada e el tiempo y la comprobació de dicha cosistecia se realiza mediate los métodos de cotrol de calidad, por este motivo se ha diseñado ua serie de prácticas de laboratorio e las cuales se realiza el aálisis estadístico de los resultados obteidos. 2. MÉTODOS DE CONTROL DE CALIDAD 1

2 Los métodos de cotrol de calidad tiee ua eorme importacia e el seguimieto de los procesos idustriales ya que, será ecesario deteer u determiado proceso si los resultados del mismo cae fuera de ciertos límites, y e caso cotrario, resultaría efasto la paralizació de u determiado proceso que fucioe correctamete. Resulta evidete que e los procesos de fabricació o se obtiee dos productos idéticos existiedo tres clases de variacioes e la producció por pieza obteida [1]: Variació e la pieza misma. Ua misma pieza u objeto puede presetar variacioes tales como achura diferete e cada extremo, rugosidad distita e su superficie, etc. Variació de ua pieza a la otra. Las piezas o productos obteidos e u determiado lote puede presetar diferetes variacioes (dimesioes, porosidad,..) Variació de ua hora a otra. Los productos obteidos e los lotes fabricados a distitas horas del día preseta variacioes, debido a múltiples causas (cambio de operario, desgaste de herramieta, etc.) La variació es algo coherete a todo proceso, debido a diferetes causas: equipo, materiales, etoro y operario, existiedo tambié variacioes e las tareas de ispecció etre las que se icluye u ispector, equipo de ispecció y el etoro. Los métodos de cotrol de calidad so igualmete importates e los laboratorios, la comprobació de la cosistecia de los resultados aalíticos es complicada por la existecia de errores aleatorios, de modo que se ha desarrollado diferetes técicas estadísticas de cotrol de calidad para demostrar la existecia de tedecias depedietes del tiempo e los resultados asociadas a errores aleatorios. Si por ejemplo, u laboratorio emplea u determiado método de aálisis, la eficacia de dicho método se ha de comprobar a itervalos regulares de tiempo co u úmero reducido de aálisis repetidos realizados a u material de referecia estádar certificado por ua autoridad reguladora. De maera alterativa se podrá usar u estádar itero de cotrol de calidad de composició coocida y estable. Ambos estádares será itroducidos al azar detro de la secuecia de materiales aalizados por el laboratorio Cotrol estadístico de procesos La variació es algo coherete a todo proceso, debido a diferetes causas: equipo, materiales, etoro y operario, existiedo tambié variacioes e las tareas de ispecció etre las que se icluye u ispector, equipo de ispecció y el etoro. Siempre que estas fuetes de variació fluctúa de maera atural, se producirá u patró estable de diversas causas fortuitas ó causas aleatorias de la variació. Dichas causas aleatorias so ievitables y so muy umerosas y e geeral, so poco detectables. Cuado e u proceso sólo está presetes causas fortuitas, se cosidera que el proceso se 2

3 ecuetra e estado de cotrol estadístico siedo dicho proceso estable y predecible. Aquellas causas de la variació cuya magitud es grade se las deomia causas atribuibles y so fácilmete idetificables. Si e u proceso está presetes causas atribuibles de variació, ésta resultará excesiva superado a la variació atural esperada por lo que dicho proceso estará fuera de cotrol Gráficos de Cotrol Los gráficos de cotrol, tambié deomiados diagramas de Shewhart so métodos de aálisis y represetació de datos que sirve para idicar cuado las variacioes que se registra e la calidad o rebasa el límite aceptable por el azar. Se trata de u registro gráfico de la calidad de ua característica e particular, dicho registro muestra si u proceso está o o estable. La variable que se elija para figurar e los gráficos de cotrol deberá ser ua característica de la calidad medible y expresable mediate úmeros. Se puede utilizar diagramas de Shewhart para valores medios, para ragos y para desviacioes típicas. Los gráficos X-barra muestra los promedios detro de cada subgrupo o itervalo de tiempo; los gráficos R represeta los ragos de los subgrupos; por último, los gráficos S represeta la desviació típica detro de cada subgrupo. Los gráficos X-barra suele iterpretarse juto co u gráfico R o co uo S Diagrama de Shewhart para valores medios Se escogerá muestras de u subgrupo cuya media xpodrá utilizarse para proporcioar ua estimació de la medida de la població µ y la desviació estádar de la muestra s proporcioa ua estimació de la desviació estádar de la població σ. E cotrol de calidad, la desviació estádar de la població se deomia capacidad del proceso. La líea cetral del diagrama de Shewhart para valores medios viee dada por la siguiete expresió [2] : µ = µ = 2σ x± 3σ x± (1) (2) Dode (1) se utiliza para límites de cofiaza del 95% y (2) para límites de cofiaza del 99.7%. Los límites de cotrol del diagrama de Shewhart correspode a las siguietes expresioes: σ UCL X = µ + 3 (3) 3

4 LCL X σ = µ 3 (4) Siedo UCL X = límite de cotrol superior y LCL X = límite de cotrol iferior del diagrama de cotrol para valores medios Diagrama de Shewhart para ragos Hay dos posibles explicacioes al hecho de que u diagrama de cotrol sugiera que u proceso está fuera de cotrol: o bie que la media del proceso haya cambiado (diagrama de Shewhart para valores medios) o bie que ha cambiado la variabilidad del proceso (aumetado o dismiuyedo). La variabilidad de u proceso se puede visualizar mediate el diagrama de cotrol para ragos. E estos diagramas, la líea cetral correspode a la fórmula: R = σ.d 1 Los límites de cotrol superior e iferior del diagrama de Shewhart para ragos se determia a partir de las siguietes expresioes: (5) UCL R = R a 2 1 (6) LCL R = R a 1 (7) Siedo UCL R = límite de cotrol superior y LCL R = límite de cotrol iferior del diagrama de cotrol para ragos. 3. MÉTODO EXPERIMENTAL Se ha realizado el diseño de ua serie de clases prácticas de laboratorio. Los resultados obteidos e los experimetos se somete a u aálisis estadístico. El diseño de la práctica ha sido estructurado e los siguietes apartados: 1. Selecció de materia prima 2. Estudio y selecció del muestreo 3. Realizació de tomas de muestra por distitos putos 4. Acodicioamieto de las muestras 5. Determiació de la humedad de las muestras 6. Costrucció de gráficos de cotrol 3.1. Selecció de materia prima 4

5 Como paso previo a la selecció del material se defie el lote de muestra cosistete e u residuo ligocelulósico costituido por residuo de cosecha. U lote se defie como el producto obteido de ua misma cosecha, al mismo estado de madurez, de la misma especie y variedad y del mismo campo cosechado co meos de 24 horas de itervalo (Normas FEDNA, 1999) Estudio y selecció del muestreo Para que la muestra sea represetativa debe procederse e dos tiempos. E primer lugar se prepara ua muestra global formada por muchas muestras idividuales y recogidas e distitos lugares de la paca de paja que se desea aalizar. Geeralmete, el peso de cada ua de las muestras idividuales es tato mayor cuato meos uiforme sea el material Realizació de tomas de muestra por distitos putos El úmero y tamaño de porcioes de muestra a tomar del lote iicial vedrá defiidos por u error máximo aceptable para la etapa de toma de muestra. E uestro caso se ha tomado 25 muestras de u lote siguiedo las recomedacioes de la America Forage ad Grasslad Coucil. Elimiado: 3.4. Acodicioamieto de las muestras Ua vez realizada las tomas de muestra de cada lote se pr ocede a cortar la paja co ua tijera co el fi de obteer u tamaño de 1-2 cm de logitud y se itroduce e ua bolsa de plástico y se precita depositádola e u lugar seco hasta su tratamieto Determiació de la humedad de las muestras Se deomia humedad a la catidad de agua libre y combiada que tiee ua muestra siguiedo el método oficial de aálisis (AOAC. 1990) Procedimieto Auque e la práctica es ecesario reuir u míimo de 25 subgrupos de datos las horas de prácticas dispoibles so escasas por lo que se ha estimado la realizació de 5 subgrupos de datos cada uo de ellos compuesto de 5 muestras determiádose la humedad de cada muestra. Para la determiació de la humedad, se tara vaso de precipitado (M1) y se añade a cotiuació 10 g de la muestra húmeda (M 2 ), la muestra debe ser lo más homogéea posible. Se sitúa el recipiete destapado e la estufa a 105 ºC durate u día. Por último el sustrato se efría a vacío e u desecador durate 2 horas, pesádolo muy rápidamete (M 3 ). Se repite la operació hasta peso costate e itervalos de caletamieto de 4 horas como máximo. El aálisis debe realizarse por triplicado. La determiació de la humedad de las muestras se calcula a partir de la siguiete expresió: M ( % Humedad = ( M ) 2 3 M M ) 100 Elimiado: Al igual que el resto de los pricipios utritivos, las ceizas se calcula e % sobre materia seca (MS). El complemeto a 100 % se Elimiado: El coteido de humedad de ua muestra se determia por la pérdida de peso que experimeta al desecarse e estufa a ua temperatura etre 103 y 105ºC (AOAC e ISO 2, respectivamete) hasta

6 (8) El porcetaje restate hasta el 100% se deomia materia seca (MS) Elimiado: Resultados Los resultados obteidos e la determiació de la humedad se muestra e la tabla 1: Nº de muestra Valores de las muestras Tabla 1. Humedad de las muestras Los gráficos de cotrol de variables y atributos se represeta e las figuras 1 y 2 respectivamete 22,7 Gráfico de cotrol: HUMEDAD 21,6 20,5 HUMEDAD 19,3 LCS = 22,5712 Media 18,2 Día 1 Día 2 Día 3 Día 4 Día 5 Promedio = 20,4600 LCI = 18,3488 Nivel sigma: 3 Figura 1,- Diagrama de Shewhart para valores medios, 6

7 Gráfico de cotrol: HUMEDAD HUMEDAD Amplitud 2 0 Día 1 Día 2 Día 3 Día 4 Día 5 LCS = 7,7391 Promedio = 3,6600 LCI =,0000 Nivel sigma: 3 Figura 2, - Diagrama de Shewhart para el rago Coclusioes Tras la realizació de la práctica descrita e este trabajo se pretede que los alumos de Igeiería Técica matriculados e la especialidad Química Idustrial adquiera los coocimietos previos ecesarios que les sirva de itroducció a las técicas estadísticas mediate el uso del SPSS. Referecias [1] H, Besterfield, Cotrol de Calidad, Pretice Hall, 1994 [2] N, Miller, C. Miller, Estadística y Quimiometría para Química Aalítica, Pretice Hall, 2002 [3] C, Pérez, Técicas Estadísticas co SPSS, Pretice Hall,

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

CONTROL ESTADÍSTICO DE PROCESOS

CONTROL ESTADÍSTICO DE PROCESOS CONTROL ESTADÍSTICO DE PROCESOS. APUNTES DE CLASE Profesor: Arturo Ruiz-Falcó Rojas Madrid, Marzo 6 ------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Herramientas de Control de Procesos

Herramientas de Control de Procesos Autor del presete maual: Edgardo Ojeda Barcos Profesor de Cotrol de Calidad y Estadística Iacap Uiversidad Tecológica de Chile Liceciado e Orgaizació Idustrial Uiversidad Argetia de La Empresa Postgrado

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV Iforme sobre el Cálculo de Errores de Muestreo Ecuesta sobre Codicioes de Vida - ECV EUSKAL ESTATISTIKA ERAKUNDA INDICE. Itroducció...3 2. Método de expasió de Taylor...3 3. Cálculo de errores....4 3.

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

Apuntes De Análisis Numérico.

Apuntes De Análisis Numérico. Aputes De. Prof. Alberto Agarita. Departameto De Ciecias Básicas, Uidades Tecológicas de Satader. y P 1 (x) P 2 (x) P 3 (x) P i (x) P (x) P(x) I 1 I 2 I 3 I x 1 x 2 x 3 x 4 x 1 x x P(x) = P 1 (x) P 2 (x)

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Método del producto. Diagrama de árbol.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Método del producto. Diagrama de árbol. 8966 _ 6-.qxd 7/6/8 9: Págia 87 Combiatoria INTRODUCCIÓN La combiatoria estudia las distitas formas de agrupar y ordear los elemetos de u cojuto, segú uas ormas establecidas. E esta uidad se aprede a formar

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2 Estadística o Paramétrica ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ Autores: Jua Fracisco Moge Ivars (jmoje@uoc.edu), Ágel A. Jua Pérez (ajuap@uoc.edu) ESQUEMA DE CONTENIDOS Estadística o Paramétrica

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA Tema 3- Parte I Etapas del Modelo de Markowitz I. DETERMINACIÓN DEL CONJUNTO DE POSIBILIDADES DE INVERSIÓN - Se

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

ANÁLISIS DE VARIANZA

ANÁLISIS DE VARIANZA ANÁLISIS DE VARIANZA Se supoe el caso de u fabricate y tres cosumidores de latas cuyo fodo tega al meos 0.25 libras de recubrimieto de estaño. Mediate u tratamieto químico, se puede medir el peso de este

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. 3. Movilizació social y resposabilidad de los medios de comuicació co la Primera

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9. II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS MUESTRAS Y ESTIMACIONES EN LA ESO Itroducció Cómo debe seleccioarse la muestra para que sea represetativa de

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

CAPÍTULO III: TABLAS DE MORTALIDAD. En 1662, John Graunt publicó sus Observations upon the Bills of Mortality trabajo que

CAPÍTULO III: TABLAS DE MORTALIDAD. En 1662, John Graunt publicó sus Observations upon the Bills of Mortality trabajo que CAPÍTUO III: TABAS DE MORTAIDAD 3.1 Tablas de Mortalidad: Atecedetes Históricos E 1662, Joh Graut publicó sus Observatios upo the Bills of Mortality trabajo que ha sido posteriormete recoocido como el

Más detalles

Práctica 5 ESTUDIO DE LOS PUENTES DE HIDRÓGENO POR ESPECTROSCOPÍA INFRARROJA

Práctica 5 ESTUDIO DE LOS PUENTES DE HIDRÓGENO POR ESPECTROSCOPÍA INFRARROJA Práctica 5 ESTUDIO DE LOS PUENTES DE IDRÓGENO POR ESPECTROSCOPÍA INFRARROJA 1. Objetivo Estudiar los puetes de hidrógeo que se forma e (1) alcohol becílico y (2) feol e fució de la cocetració de alcohol

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA UNIVESIDD CENTL DE VENEZUEL ESCUEL DE QUIMIC FCULTD DE CIENCIS INSTUMENTL NLITICO GUI DE COMTOGFÍ Caracas 2008 Tabla de Coteido DEFINICIONES IMPOTNTES...3 Cromatografía...3 Clasificació de los Métodos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO

MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO DOCUMENTO TÉCNICO N 64 Versió 0.1 MUESTREO ESTADÍSTICO PARA LA AUDITORÍA INTERNA DE GOBIERNO CONCEPTOS GENERALES MINISTERIO SECRETARÍA GENERAL DE LA PRESIDENCIA Este documeto es parte de ua serie de guías

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL EDU101 SOFTWARE INVENFOR 1.0 SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL Autor: 1 Ig. Ricardo Iouye Rodríguez Co-Autores: 2 MSc. Caridad Salazar Alea 3 Ig. Jua J. Ramos Herádez

Más detalles