SISTEMA DE CONTROL DE TEMPERATURA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMA DE CONTROL DE TEMPERATURA"

Transcripción

1 Práctica 2 SISTEMA DE CONTROL DE TEMPERATURA 2.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se aplica la señal de control y aquel en el que la salida reacciona a dicha señal (Sistema de Control de Procesos PT326 de FeedBack Ltd., ver Fig.2.1). Se estudian aspectos relacionados con el modelado de este tipo de sistemas utilizando modelos lineales reducidos, así como distintas estrategias sencillas de control de estos sistemas: control proporcional y control Todo-Nada. Figura 2.1: PT326 Sistema de control de procesos 1

2 2 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA Los aspectos básicos que debe desarrollar el alumno en el laboratorio son los siguientes: 1. Estudio de los tiempos de retardo asociados a estos sistemas, así como las constantes de tiempo de su dinámica. 2. Estudio de un esquema de control Todo-Nada. 3. Estudio de un esquema de control proporcional. 4. Análisis de la respuesta del sistema a perturbaciones. 5. Análisis de la respuesta frecuencial de sistemas con grandes retardos. 2.2 Requerimientos de la práctica Para la realización de la práctica se requiere el siguiente equipo: 1. Sistema de control de procesos PT326 (ver Fig.2.1). 2. Osciloscopio. 3. Generador de ondas. 4. Dos sondas para osciloscopio y diversos cables. La práctica no requiere de montajes complicados ya que en el propio módulo PT326 está integrado el equipo de control, faltando sólo el equipo de medida. Nota: Para poner en marcha el sistema,se debe poner a on el interruptor colocado en uno de los laterales. Además el interruptor wattmeter/heater debe estar en heater (ver Fig.2.2). No se debe tocar el sensor de medida, pues es muy frágil y se parte con facilidad. Figura 2.2: Lateral del PT326. El interruptor wattmeter/heater debe estar en heater

3 Laboratorio de Control de Procesos Industriales 06/ PT326 Sistema de Control de Procesos. El sistema de control de procesos objeto de esta práctica (Fig.2.3) se muestra esquemáticamente en la Fig Figura 2.3: Sistema de control de procesos PT326. Figura 2.4: Esquema del sistema PT326 En dicho sistema se pueden destacar los siguientes elementos: Proceso: Este término genérico se utiliza para describir un cambio físico, químico, conversión de energía, etc. A un proceso se le pueden asignar una serie de variables como pueden ser la presión, temperatura o velocidad de un fluido, ritmo al que se produce

4 4 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA una reacción química, nivel de líquido en un tanque, etc. En el caso que nos ocupa la temperatura del aire que circula por el tubo de proceso es la variable del proceso a controlar. Dicha temperatura es elevada a un valor deseado dentro de la gama de la temperatura ambiente hasta 60 o C. Elemento detector: Un termistor esférico acoplado al extremo de una sonda se encuentra al final del tubo del proceso. Sirve para obtener una medida de la temperatura a la que se encuentra el aire a la salida del tubo. Como se ha indicado, dicho termistor no debe tocarse bajo ninguna circunstancia ya que es sumamente frágil. Valor medido T o : Es la señal de salida del elemento medidor correspondiente a la variable del proceso a controlar : La temperatura al final del tubo. Valor fijado T i : Este es el valor de la referencia a la que se fija el control automático, es decir, es el valor deseado de la temperatura. Este valor se puede ajustar bien mediante un potenciómetro, bien mediante la aplicación de una tensión exterior comprendida entre 0 y 10 V. introducida por el puerto D. Desviación T : Es la diferencia entre el valor fijado y el valor medido T = T i T o. Perturbación del valor fijado: Accionando el interruptor P perturbación interna del valor fijado (set value disturbance), se aplica internamente un cambio en escalón sobre el valor fijado. Es decir, a la referencia se le suma una señal en escalón. Elemento comparador: Se utiliza un amplificador sumador para comparar el valor medido a partir del amplificador puente con el valor fijado. En este equipo las señales están dispuestas de forma que sean de signo opuesto, de modo que la salida del amplificador sumador representa la desviación. Esta desviación puede medirse con un osciloscopio a través del puerto B. Elemento controlador: Se aplica una señal proporcional a la desviación al elemento controlador, que genera a continuación una señal de control para ser transmitida a la unidad correctora. En este equipo el elemento controlador puede ser conmutado (mediante el conmutador C2) para dar bien control continuo (C2 arriba) o bien control todo-nada (C2 abajo). La salida de control puede ser supervisada mediante el casquillo C del panel frontal. Control continuo: El tipo de control continuo depende de la posición del conmutador C1. 1. Interno (C1 arriba). Permite únicamente una acción proporcional. La ganancia se ajusta utilizando un potenciómetro. Dicha ganancia viene dada en tantos por ciento. El valor de la ganancia es la inversa del valor que marque el potenciómetro multiplicado por 100 (banda proporcional). 2. Externo (C1 abajo). El ajuste de banda proporcional puede ser desconectado del circuito y en su lugar puede conectarse un Simulador de Control de Proceso PCS327. Este permite utilizar acción PI, PD y PID. Control Todo-Nada: Cuando el elemento controlador está conmutado para acción de dos pasos o encendido-apagado. Este tipo de control consiste en que la señal de control sólo puede tomar dos valores. La conmutación de la señal de control se realiza

5 Laboratorio de Control de Procesos Industriales 06/07 5 fundamentalmente al cambiar el error de signo. Los parámetros más significativos de este control son la potencia calórica máxima y el solape (overlap), que son definidos a continuación: Potencia calórica máxima. Este ajuste permite fijar la potencia aplicada al calefactor durante los periodos de encendido entre 15 y 80 vatios. Solape. Con un solape nulo la señal de salida controladora hace que la potencia aplicada al calefactor alterne entre niveles máximo y mínimo a medida que la condición controlada cae por debajo o sube por encima del valor deseado. Con un solape dado, la señal de salida controladora hace que la potencia aplicada al calefactor alterne entre niveles máximo y mínimo a medida que la condición controlada cae por debajo de un límite inferior (valor deseado - solape) o sube por encima de un límite superior (valor deseado + solape). El valor de solape está entre0y4v. Elemento motor: En cualquier proceso este elemento produce una salida que puede tomar la forma de potencia eléctrica, desplazamiento mecánico, etc. El nivel de la señal de salida se ajusta en respuesta a una señal procedente del elemento controlador. En este equipo el elemento motor es una fuente de alimentación variable que proporciona una salida eléctrica entre 15 y 80 vatios según determine la señal controladora. Elemento actuador: Afecta directamente a la condición controlada. En este equipo el elemento corrector es una rejilla de alambre calentada eléctricamente, a la que se aplica la salida del elemento motor. El calor es transferido desde la rejilla a la corriente de aire, siendo el ritmo de la transferencia de calor dependiente de la temperatura del calefactor, de la velocidad de la corriente de aire, etc. Referencia Control Proceso Salida Medida Figura 2.5: Esquema de control

6 6 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA 2.4 Análisis dinámico del sistema Retardo por distancia y velocidad de propagación En algunos sistemas físicos existe un retraso importante entre la acción y la respuesta del sistema. En el caso que nos ocupa, se dispone de un tubo en el que en uno de los extremos se coloca una fuente de aire caliente (gobernada por una excitación eléctrica) y en el otro extremo un elemento de medida. Por observación directa se identifica cada parte en el montaje notando que sobre el ventilador hay un pequeña trampilla, cuya función es la de dejar entrar más o menos aire al tubo. Por tanto, cuanto más abierta esté la trampilla más aire entrará para ser calentado y menor será la temperatura del aire de salida (supuesta una fuente de calor constante). Es intuitivo que el sensor debe reflejar los cambios en la señal de excitación. Debido a la longitud del tubo y a que la velocidad de propagación del aire caliente en el medio no es infinita, se produce un retraso en la respuesta del sistema a la variación de la señal eléctrica que calienta la rejilla al principio del tubo. Caso práctico 1. Situar la banda proporcional a 100% (equivale a ganancia 1 y es como si no existiera). 2. Ajustar set value hasta que en el visor se vean temperaturas próximas a 30 o. En la práctica este valor es sólo orientativo, se trata de tener un valor distinto al del ambiente. 3. Abrir la trampilla que hay sobre el motor unos 40 o. 4. En la clavija de external disturbance (conector D en la Fig. 2.4) introducir utilizando el generador de funciones una onda cuadrada de 2 V. de pico a pico y de frecuencia lo más lenta posible (se busca una entrada lo más parecida a un escalón). 5. Seleccionar control continuo con los conmutadores C1 y C2 arriba. 6. Conectar un canal del osciloscopio al generador y el otro al terminal Y del módulo. A continuación se verá que la forma de onda de la salida tiende a alcanzar a la entrada (Fig. 2.6). El retraso por distancia y velocidad viene representado por DT. Si se repite el experimento para distintos ángulos de apertura (40 o, 120 o y 160 o ), se obtiene aproximadamente el resultado que se muestra en la tabla: Apertura Retraso (s) 40 o o o 0.14

7 Laboratorio de Control de Procesos Industriales 06/07 7 V Salida Referencia t DT τ Figura 2.6: Retrasos en el sistema En los resultados se debe tener en cuenta que la salida está invertida respecto a la entrada Función de transferencia del sistema La respuesta del detector a una entrada en escalón en la potencia del aire caliente tiene dos retrasos (por distancia y velocidad, que dan lugar al retardo DT que aparece en la Fig. 2.7), que no tienen efecto en la forma de la señal, pero también hay un retraso, llamado de transferencia, que sí afecta a la forma de onda de la señal en el detector. Esto es debido a lo que se podría llamar inercia del aire a ser calentado (o enfriado), lo que daría lugar a una respuesta con forma aproximadamente exponencial como en la Fig.2.7. El proceso es en realidad más complejo (sistema de parámetros distribuidos), lo que da pie a una forma de onda a la salida distinta, fruto de la combinación de varias exponenciales correspondientes a distintas constantes de tiempo asociadas a las distintas dinámicas que entran en juego. En el caso en que una de dichas constante de tiempo sea muy dominante, la respuesta se parecerá más a la exponencial (simplificación de modelado). Asimismo, el sistema presentará una determinada ganancia, de modo que se podrá aproximar por un sistema de primer orden con una constante de tiempo y ganancia estática características: G PT326 K 1+τs e DTs (2.1) Caso práctico Llegado este punto, y con los ajustes del equipo realizados en el apartado anterior (apertura de 40 o ), se excita con una onda cuadrada de 2 V. pico a pico y de baja frecuencia, obteniendo

8 8 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA V DT τ t Figura 2.7: Retraso de transferencia laformadelaseñal de salida, a la vez que se toman los valores de retraso, tensión de pico y sobreoscilación. La respuesta es parecida a la ya indicada en la Fig. 2.6, donde el retraso por transferencia viene indicado por τ. Es común en estos casos realizar una simplificación consistente en modelar este tipo de respuesta por la de un sistema de primer orden con un retardo, despreciando de esta forma las dinámicas asociadas a constantes de tiempo menores (dinámica mucho más rápida). Para una señal cuadrada de entrada de 2 V. pp y frecuencia 0.2 Hz, el valor final de la señal de salida medido es cercano a 1.7 V pp. Por lo tanto, el 63% de este valor es V., que se alcanza a los 0.5 s (constante de tiempo τ). La ganancia estática del proceso será K = =0.85. Repitiendo el estudio para una apertura de 120 o el valor pico a pico obtenido es de 0.9 V. (K =0.45) y la constante de tiempo de 0.4 s.

9 Laboratorio de Control de Procesos Industriales 06/ Esquemas básicos de control En este apartado se van a aplicar distintos esquemas de control de la temperatura de salida del aire. En concreto se realizará un control todo-nada y un control proporcional. Para configurar el dispositivo para realizar estos tipos de control se cierra el bucle uniendo los terminales X e Y mediante un cable, conectando así el amplificador con el elemento de medida. De este modo se consigue la realimentación de la variable de salida Control todo-nada. En este apartado se va a realizar un control sobre la cantidad de calor que entra al tubo. Se procederá de dos formas: 1. Control todo-nada: Es decir, fijado un nivel deseado de temperatura, controla la fuente de calor, encendiéndola y apagándola según el signo del error de seguimiento. V Ref Señal de salida Valor deseado u max u min Señal de control t Figura 2.8: Control Todo-Nada Caso práctico Desconectar el tren de pulsos aplicado para la identificación si aún no se había hecho. Establecer un set point a una temperatura superior a la ambiente. Por ejemplo, poner set value a50 o C. Cerrar el bucle de control uniendo los terminales X e Y. Evitar la banda proporcional. Para ello unir los terminales A y B, y situar el conmutador C1 abajo. Seleccionar control en dos niveles (two step control en el montaje con C2 abajo). Tomar overlap como 0. Ángulo de apertura de 20o. Conectar las sondas del osciloscopio a la salida Y (señal medida), y C (señal de control).

10 10 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA Conviene tomar nota de las formas de onda a la salida, de los valores de amplitud pico a pico, y de la frecuencia de oscilación de la señal medida. Si se lleva a cabo la experiencia, se puede estimar la frecuencia de un ciclo completo de conmutación, que resulta ser de 0.74 Hz. La amplitud de la onda de salida es 4 V. pp, siendo la señal de control de 10 V. pp (señal cuadrada de la Fig. 2.8). 2. Overlap : Se permite a la señal correspondiente a la medida, que oscile entre dos valores, máximo y mínimo, fijados por el usuario. Así, se denomina overlap al rango de valores en los que puede oscilar la señal medida. V Ref Señal de salida Valor deseado Overlap u max u min Señal de control t Figura 2.9: Control Todo-Nada con Overlap Caso práctico Manteniendo la configuración utilizada en el caso anterior (control todo-nada sin overlap) analizar la respuesta del sistema para distintos valores de overlap en el rango 0-4. Conviene tomar nota de las formas de onda a la salida, de los valores de amplitud pico a pico, y de la frecuencia de oscilación de la señal medida para los distintos valores de overlap Control proporcional Se entiende como error la diferencia entre la señal de referencia y el valor medido, que en el montaje se puede apreciar directamente en los niveles situados en el frontal del equipo (ver Fig.2.10) El visor debe utilizarse sólo cualitativamente, ya que el error realmente producido se mide en el puerto B en forma de tensión. Se puede realizar una correlación entre la medida que da el visor en el frontal y la tensión medida a la salida del sistema, de modo que se pueden relacionar linealmente la temperatura del aire con la tensión medida a la salida:

11 Laboratorio de Control de Procesos Industriales 06/ º C º C Error Figura 2.10: Diferencia entre señal medida y valor deseado Temperatura ( o C) Tensión (V) de modo que se puede obtener: T =2.5V En un controlador con acción proporcional, la señal de control es directamente proporcional al error, y éstas se relacionan entre sí por la ganancia del controlador (inversa de la banda proporcional en el montaje). Caso práctico Cerrar el bucle de control uniendo los terminales X e Y. Comprobar que los terminales A y BNOESTÉN UNIDOS para poder aplicar la banda proporcional. Seleccionar control continuo (conmutadores C1 y C2 arriba). Apertura a 40 o. Situar set value a50 o C. Variando la banda proporcional desde 200% hasta 40%, se puede tomar nota de los errores y crear una tabla en la que se tenga error (en régimen permanente) frente a banda proporcional.

12 12 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA Es interesante recordar que: ganancia = 100 Banda Proporcional Midiendo el error en régimen permanente para distintas ganancias y para un ángulo de apertura de 40 o, se puede obtener una tabla como la siguiente: Banda prop. (%) e.r.p. (V.) e.r.p. ( o C) Para un ángulo de apertura de 20 o, se puede obtener una tabla similar, pudiendo aparecer oscilaciones con valores altos de la ganancia: Banda prop. (%) e.r.p. (V.) e.r.p. ( o C) Respuesta del sistema a perturbaciones Para analizar la respuesta del sistema ante perturbaciones, éstas se pueden introducir de dos maneras: 1. Variando bruscamente la cantidad de aire caliente que entra al tubo mientras se mantiene una referencia constante. 2. Variando bruscamente la señal de nivel deseado (modificación de la referencia). Caso práctico Cerrar el bucle de control uniendo los terminales X e Y.

13 Laboratorio de Control de Procesos Industriales 06/07 13 Comprobar que los terminales A y BNOestén unidos. Seleccionar control continuo (conmutadores C1 y C2 arriba). Ajustar set value a50 o C. Apertura a 40 o. La práctica consta de dos partes: 1. Variar bruscamente el grado de apertura de la rejilla de 40 o a60 o, buscando una variación de aire que entra en el tubo. Entonces tomar nota del error en régimen permanente y repetir la prueba para diversos valores de la banda proporcional entre 200% y 40%. Se puede comprobar que al abrir la rejilla la temperatura de salida baja, pudiendo compensarse este efecto aumentando la ganancia del control proporcional. Realizando el experimento se puede obtener una tabla como la siguiente: Banda prop. (%) Apertura ( o ) e.r.p. (V.) e.r.p. ( o C) Situar un generador de onda cuadrada en D, de 2 V. pp, y con frecuencia suficientemente baja. Para bandas proporcionales de 50% y 100% tomar nota de valores de pico y de periododelaseñal de salida y del error. Si se excita con un escalón y se analiza el transitorio de la señal, tanto de la medida como del error (referencia menos medida), cualitativamente estos tomarán la forma que se ve en la Fig Ante esta respuesta, se mide la sobreoscilaciónyelperíodo. Para una banda proporcional del 50% la sobreoscilación de la señal medida es 0.6 V. Repitiendo el proceso para una banda proporcional del 30% se obtiene una sobreoscilación en la medida de 0.8 V. Se puede ver que aumentando la ganancia, la sobreoscilación aumenta.

14 14 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA V SO Perturbacion Salida t Figura 2.11: Transitorio Frente a una Perturbación Interna 2.7 Respuesta en frecuencia de sistemas con grandes retardos Este apartado tiene como objetivo analizar la respuesta en frecuencia de un sistema con un gran retardo, para interpretar cómo afecta este hecho a la respuesta en frecuencia, esto es, no hay modificación en la curva de magnitud pero afecta considerablemente al desfase. Se recomienda asegurarse de que la medida del sensor no está invertida, para que no afecte al desfase. Caso práctico 1. Quitar el puente entre X e Y (bucle abierto). 2. Unir los terminales A y B, y situar el conmutador C1 abajo para evitar la banda proporcional. 3. Seleccionar control continuo (conmutador C2 arriba). 4. Ajustar set value a35 o C como punto de trabajo. 5. Rejilla a 40 o. 6. Conectar una onda senoidal a D de 2 V. de amplitud y frecuencia 0.1Hz. 7. Situar las sondas del osciloscopio en C e Y (entrada y salida, respectivamente, del sistema estudiado). 8. En este punto medir la amplitud de las señales de entrada y salida y su desfase. Repetir, variando la frecuencia hasta 3 Hz y obtener así un diagrama de Bode. Por ejemplo, para unos ensayos realizados en el sistema se obtiene la siguiente tabla:

15 Laboratorio de Control de Procesos Industriales 06/07 15 Frecuencia (rad/s) Desfase ( o ) Ganancia De aquí se puede dibujar el diagrama de Bode del sistema (Fig.2.12): 0 5 magnitud (db) frecuencia (rad/s) fase (grados) frecuencia (rad/s) Figura 2.12: Bode del Sistema Como se observa, la pendiente de la curva de módulo cae aproximadamente a 20 db/década en la zona representada, de modo que si se modelara por un sistema lineal correspondería a un sistema de primer orden. Sin embargo, la fase cae hasta los 300 o, y no hasta los 90 o como sería de esperar. Este hecho es característico de sistemas de fase no-mínima (sistemas con retardos o ceros en el semiplano derecho). 2.8 Cuestiones sobre la práctica 1. Qué problemas pueden aparecer cuando se coloca la referencia en una temperatura muy alta en el control todo-nada? 2. Cuál es la relación cualitativa entre el overlap y la frecuencia de la señal de control? 3. Por qué para temperaturas muy altas de referencia la proporción entre los tiempos de on-off es también muy alta en el control todo-nada con overlap?

16 16 PRÁCTICA 2. SISTEMA DE CONTROL DE TEMPERATURA 4. Cuál es la influencia de la banda proporcional en el control todo-nada? Y en el control todo-nada con overlap?

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 5 SISTEMA DE CONTROL DE TEMPERATURA 5.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 5 Tema: OSCILOSCOPIO MEDICIÓN DE TIEMPO, FRECUENCIA Y FASE Introducción El osciloscopio es uno de los instrumentos de medida más

Más detalles

Diseño en el dominio de la frecuencia

Diseño en el dominio de la frecuencia Diseño en el dominio de la frecuencia Tema 7 1 Índice Respuesta frecuencial en bucle cerrado Red de adelanto de fase Red de atraso de fase Compensación de adelanto-atraso 2 Respuesta frecuencial en Bucle

Más detalles

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA 1. SISTEMA A IDENTIFICAR El sistema a identificar es el conjunto motor eléctrico-freno conocido de otras

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

CONTROL ANALÓGICO DE UN SERVOMECANISMO

CONTROL ANALÓGICO DE UN SERVOMECANISMO Práctica 3 CONTROL ANALÓGICO DE UN SERVOMECANISMO 3. Introducción El objetivo fundamental de esta práctica es la aplicación de una serie de conceptos generales de la Teoría del Control Automático a un

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

PARÁMETROS DEL TRANSISTOR

PARÁMETROS DEL TRANSISTOR 13 PARÁMETROS DEL TRANSISTOR 0.- INTRODUCCIÓN (2) 1.- SONDA DETECTORA (4) 2.- MEDIDA DE LA ft (5) 2.1 Realización práctica (7) 3.- PARÁMETRO DE TRANSFERENCIA INVERSA (10) 3.1 Realización práctica (10)

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

BLOQUE "C" Sistemas automáticos

BLOQUE C Sistemas automáticos 1.- Describir los principales componentes del sistema de control en lazo cerrado constituido por una persona que conduce un automóvil y explicar su funcionamiento. Indicar al menos tres causas que puedan

Más detalles

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos En esta práctica se estudiará el comportamiento dinámico de los emisores y receptores ópticos y el comportamiento de la fibra

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

6. Amplificadores con transistores

6. Amplificadores con transistores 6. Amplificadores con transistores Objetivos: Obtención, mediante simulación y con los equipos del laboratorio, de las carácterísticas de entrada y salida de un transistor bipolar. Obtención de los modelos

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para

Más detalles

CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control

CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control SISTEMAS DE CONTROL CONTROLADORES Introducción Un controlador es un dispositivo capaz de corregir desviaciones producidas en la variable de salida de un sistema, como consecuencia de perturbaciones internas

Más detalles

Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD

Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD Práctica B.3: Diseño y verificación de un termómetro digital con visualizador LCD En la presente práctica se va a estudiar el funcionamiento de un termómetro digital de precisión, basado en un sensor RTD

Más detalles

Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V

Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V Diseñado para su uso en los automóviles Amplificador de audio de potencia en un CI proporciona más 50 W a partir de una batería de 12V El amplificador de salida integrado descrito en este artículo consta

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICOS. Sistemas Automáticos 1

SISTEMAS DE CONTROL AUTOMÁTICOS. Sistemas Automáticos 1 SISTEMAS DE CONTROL AUTOMÁTICOS Sistemas Automáticos 1 Lazo abierto Señal de referencia o punto de consigna Energía PREACCIONADOR ACTUADOR PLANTA Señal de salida Ejemplo: Proceso de lavado. Electricidad

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

Simulación de sistemas con Simulink

Simulación de sistemas con Simulink Curso: 2006/2007 Asignatura: Automatización de Procesos Industriales. Grupo: IOI Simulación de sistemas con Simulink 1.1 INTRODUCCIÓN A SIMULINK...2 1.1.1 CREACIÓN DE UN MODELO...3 1.2 SIMULACIÓN DE UN

Más detalles

Y ACONDICIONADORES TEMA

Y ACONDICIONADORES TEMA SENSORES Y ACONDICIONADORES TEMA 6 SENSORES CAPACITIVOS Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 6-1 SENSORES CAPACITIVOS Sensores basados en la variación de

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico?

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico? QUÉ ES UN OSCILOSCOPIO? El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra señales eléctricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa

Más detalles

PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN DE FILTROS.

PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN DE FILTROS. PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN 1 Objetivo. DE FILTROS. Realizar medidas de componentes pasivos. Diseño y caracterización de filtros activos y pasivos

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A )

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Objetivo: La presente guía pretende dar

Más detalles

Determinación experimental de la respuesta en frecuencia

Determinación experimental de la respuesta en frecuencia Determinación experimental de la respuesta en frecuencia Análisis Dinámico de Sistemas (Teleco) Área de Ingeniería de Sistemas y Automática Escuela Politécnica Superior de Ingeniería Gijón Universidad

Más detalles

CONCEPTOS BÁSICOS, TERMINOLOGÍA Y TÉCNICAS PARA EL CONTROL DE PROCESOS

CONCEPTOS BÁSICOS, TERMINOLOGÍA Y TÉCNICAS PARA EL CONTROL DE PROCESOS Colegio Salesiano de Concepción Escuela Industrial San José Departamento de Electrónica CONCEPTOS BÁSICOS, TERMINOLOGÍA Y TÉCNICAS PARA EL CONTROL DE PROCESOS Preparado por: Cristhian Beltrán Provoste

Más detalles

MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL

MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL 2 MAQUINAS Y EQUIPOS FRIGORIFICOS SUMARIO GENERAL 1. La automatización de un sistema frigorífico...5 2. Los Termostatos...6 2.1 Características de los termostatos...7 2.1.1 Diferencial...8 2.1.2 Gama de

Más detalles

SIMBOLOGÍA Y DIAGRAMAS DE INSTRUMENTACIÓN: NORMAS ISA SEMANA 3

SIMBOLOGÍA Y DIAGRAMAS DE INSTRUMENTACIÓN: NORMAS ISA SEMANA 3 SIMBOLOGÍA Y DIAGRAMAS DE INSTRUMENTACIÓN: NORMAS ISA SEMANA 3 NORMAS En instrumentación y control, se emplea un sistema especial de símbolos con el objeto de transmitir de una forma más fácil y específica

Más detalles

Atenuación = 10 log 10 db 1.10. Amplificación = 10 log 10

Atenuación = 10 log 10 db 1.10. Amplificación = 10 log 10 cable es más largo, se insertan uno o más amplificadores, también llamados repetidores a intervalos a lo largo del cable a fin de restablecer la señal recibida a su nivel original. La atenuación de la

Más detalles

Termistores NTC (Coeficiente Temperatura Negativo):

Termistores NTC (Coeficiente Temperatura Negativo): a) Señala las analogías y las diferencias entre ambos ciclos de funcionamiento. Analogías: los dos transductores basan su funcionamiento en la detección de la proximidad de un objeto. Diferencias: el transductor

Más detalles

Ensayos comparativos de una nueva gama de difusores para la empresa Airflow

Ensayos comparativos de una nueva gama de difusores para la empresa Airflow Ensayos comparativos de una nueva gama de difusores para la empresa Airflow A. Aliseda y P. Martínez-Legazpi Área de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos Universidad Carlos

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles

PLANTA PILOTO EDUCACIONAL PARA EL CONTROL DE NIVEL, CAUDAL Y TEMPERATURA RESUMEN DE ELEMENTOS Y SEÑALES

PLANTA PILOTO EDUCACIONAL PARA EL CONTROL DE NIVEL, CAUDAL Y TEMPERATURA RESUMEN DE ELEMENTOS Y SEÑALES PLANTA PILOTO EDUCACIONAL PARA EL CONTROL DE NIVEL, CAUDAL Y TEMPERATURA RESUMEN DE S Y SEÑALES PLANTA PILOTO EDUCACIONAL PÁG. 2 DE 11 1. GENERAL DE LA INSTALACIÓN. La planta piloto dispone de tres depósitos

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL

TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL TRANSFORMADOR DIFERENCIAL DE VARIACION LINEAL TRANSDUCTORES DE POSICION Para determinar una posición lineal o angular se requiere medir la longitud de un segmento, o bien un ángulo comprendido entre dos

Más detalles

Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO.

Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO. Práctica 4: EL OSCILOSCOPIO ALUMNO:... GRUPO PRÁCTICAS... OBSERVACIÓN DE MAGNITUDES VARIABLES CON EL TIEMPO MEDIANTE UN OSCILOSCOPIO. Esta práctica persigue dos objetivos: alcanzar una comprensión adecuada

Más detalles

Comunicaciones (5º año) Definición: Se denomina así a un amplificador que cumple dos condiciones:

Comunicaciones (5º año) Definición: Se denomina así a un amplificador que cumple dos condiciones: Amplificadores de RF Comunicaciones (5º año) - De pequeña señal de RF Amp. ó de señal débil de FI De RF - De potencia o de (sintonizados) gran señal Amplificadores de señal débil Definición: Se denomina

Más detalles

LIBRERÍA DE SENSORES PARA SIMULACION CON PSPICE

LIBRERÍA DE SENSORES PARA SIMULACION CON PSPICE LIBRERÍA DE SENSORES PARA SIMULACION CON PSPICE Asun Pérez Pascual 1, Trini Sansaloni Balaguer 2, Marga Costa 3 Dpto Ingeniería Electrónica. Escuela Politécnica Superior de Gandía. Universidad Politécnica

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA

UNIVERSIDAD NACIONAL DE COLOMBIA UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE MINAS CALIBRACIÓN Y USO DEL OSCILOSCOPIO CURSO DOCENTE : LABORATORIO CIRCUITOS ELÉCTRICOS : PABLO A. SEPÚLVEDA OSPINA OBJETIVOS: Comprender la utilidad, el

Más detalles

Problemas de Control e Instrumentación de Procesos Químicos 4º curso de Ingeniería Química

Problemas de Control e Instrumentación de Procesos Químicos 4º curso de Ingeniería Química Problemas de Control e Instrumentación de Procesos Químicos 4º curso de Ingeniería Química Problema 3 En la Fig. se pude ver un proceso al que entra una corriente manipulable A y otra corriente no manipulable.

Más detalles

LABORATORIO 08 E.M.A. CIRCUITO RC SERIE UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS ELECTRICIDAD Y MAGNETISMO CICLO: AÑO:

LABORATORIO 08 E.M.A. CIRCUITO RC SERIE UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS ELECTRICIDAD Y MAGNETISMO CICLO: AÑO: UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS ELECTRICIDAD Y MAGNETISMO CICLO: AÑO: E.M.A. LABORATORIO 08 CIRCUITO RC SERIE FUNDAMENTO TEÓRICO OBJETIVOS DEL LABORATORIO Describir el funcionamiento

Más detalles

CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES. Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los

CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES. Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los CAPÍTULO 2 SISTEMA ELECTROACÚSTICO 2.1 ANTECEDENTES Como hemos mencionado anteriormente, la finalidad de este trabajo no es que los hipoacúsicos escuchen perfectamente, sino que todos los afectados por

Más detalles

Anexo 3.1 Respuesta en Frecuencia: Filtros

Anexo 3.1 Respuesta en Frecuencia: Filtros ELC-333 Teoría de Control Anexo 3. : Filtros Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm . Filtros Se denomina filtro a un circuito sensible a la frecuencia

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será

Más detalles

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad 1 PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA 5.1. Capacidad Es la propiedad que poseen los circuitos eléctricos que tiende a evitar los cambios de tensión. Cuando se aplica

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

CALIDAD DE LA ENERGIA ELECTRICA

CALIDAD DE LA ENERGIA ELECTRICA CALIDAD DE LA ENERGIA ELECTRICA ARMONICAS FENOMENO PERTURBADOR Alguna vez ha sido testigo de la presencia de distorsión armónica, cortes en el suministro de electricidad, oscilaciones de la tensión, caídas

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR PRATIA - 15 ARGA Y DESARGA DE UN ONDENSADOR I - Finalidades 1.- Estudiar las características de carga y descarga de un circuito R y la temporización implicada en el fenómeno. 2.- Estudiar la constante

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

TEMA 8 Reguladores e interruptores estáticos de alterna

TEMA 8 Reguladores e interruptores estáticos de alterna TEMA 8 : Reguladores e interruptores estáticos de alterna. TEMA 8 Reguladores e interruptores estáticos de alterna Índice 8.1.- Introducción.... 1 8.2.- Interruptores estáticos de corriente alterna...

Más detalles

Detector de Metales. Esteves Castro Jesús López Pineda Gersson Mendoza Meza Jonathan Pérez Gaspar Augusto Sensores y actuadores

Detector de Metales. Esteves Castro Jesús López Pineda Gersson Mendoza Meza Jonathan Pérez Gaspar Augusto Sensores y actuadores Universidad Veracruzana! Sensores inductivos Instrumentación Electrónica Esteves Castro Jesús López Pineda Gersson Mendoza Meza Jonathan Pérez Gaspar Augusto Sensores y actuadores Detector de Metales Jalapa

Más detalles

Conclusiones, aportaciones y sugerencias para futuros trabajos

Conclusiones, aportaciones y sugerencias para futuros trabajos Capítulo 7 Conclusiones, aportaciones y sugerencias para futuros trabajos En este último capítulo se va a realizar una recapitulación de las conclusiones extraídas en cada uno de los capítulos del presente

Más detalles

Capítulo 4. Energía y Potencia

Capítulo 4. Energía y Potencia Capítulo 4 Energía y Potencia 4.1 ntroducción 4.2 Energía de la corriente eléctrica. Ley de Joule 4.3 Generador 4.4 Receptor 4.5 Diferencia de potencial entre dos puntos de un circuito 4.6 Ecuación del

Más detalles

NOTA TÉCNICA UNITRONICS Como Trabaja la Función PID

NOTA TÉCNICA UNITRONICS Como Trabaja la Función PID NOTA TÉCNICA UNITRONICS Como Trabaja la Función PID Contenido: Familia: Autor: Se explica como trabaja la función PID de los OPLCs Unitronics, mirando este sistema de lazo cerrado desde una vista general.

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

El generador de señales:

El generador de señales: Pàgina 1 de 8 PRÁCTICA 1 : CONCEPTOS BÁSICOS DE ELECTRÓNICA Y ÓPTICA Para poder medir las magnitudes eléctricas y ópticas necesitamos algún tipo de detector y conversor de señal. Vamos a utilizar los materiales

Más detalles

Calidad de Suministro Eléctrico

Calidad de Suministro Eléctrico Calidad de Suministro Eléctrico MEGACAL INSTRUMENTS IBÉRICA Área de Potencia y Energía Avda. de la Vega, 1 - Edificio VEGANOVA 3 - Planta 2ª - Oficina 6 28108 Alcobendas (Madrid) Tf: +34 91 571 00 24;

Más detalles

INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA

INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA INTRODUCCIÓN: PROBLEMAS DE IDENTIFICACIÓN DE VARIABLES SIGNIFICATIVAS, DIAGRAMAS DE BLOQUES Y NOTACIÓN ISA 1) Examen Septiembre 03-04. Sea el tanque con agitador representado en la figura: Fluido frío

Más detalles

RADIOFRECUENCIA (Recopilación de Internet)

RADIOFRECUENCIA (Recopilación de Internet) RADIOFRECUENCIA (Recopilación de Internet) Prof : Bolaños D. Introducción (Modulación - Canales - Bandas ) Que es una antena Funcionamiento de una antena Características de las antenas: ganancia - directividad

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

ACELERÓMETROS Y SENSORES DE VIBRACIÓN

ACELERÓMETROS Y SENSORES DE VIBRACIÓN ACELERÓMETROS Y SENSORES DE VIBRACIÓN Introducción Vibración es el movimiento oscilatorio de un cuerpo respecto a su posición de equilibrio y, en consecuencia puede caracterizarse mediante tres magnitudes

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

INSTRUMENTOS MECÁNICOS Características y funcionamiento

INSTRUMENTOS MECÁNICOS Características y funcionamiento INSTRUMENTOS MECÁNICOS Características y funcionamiento Estos indicadores basan su funcionamiento en la conversión directa, por medios mecánicos, de un determinado efecto físico, en un movimiento que servirá

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

www.alltronicsperu.com

www.alltronicsperu.com TOKY Electrical. Co. Ltda. CONTROLADORES DE TEMPERATURA Series TE Fundamentos Básicos del control de Temperatura Que es una termocupla. Las termocuplas son los sensores de temperatura más comúnmente utilizado

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

Introducción al osciloscopio

Introducción al osciloscopio Introducción al osciloscopio 29 de abril de 2009 Objetivos Aprender el funcionamiento y el manejo básico de un osciloscopio. Material Figura 1: Montaje de la práctica de introducción al osciloscopio. 1

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

Sistema de alarma de 4 zonas. Sistema de protección de 4 zonas NC con retardos de E/S. José Miguel Castillo Castillo

Sistema de alarma de 4 zonas. Sistema de protección de 4 zonas NC con retardos de E/S. José Miguel Castillo Castillo Sistema de alarma de 4 zonas. Sistema de protección de 4 zonas NC con retardos de E/S. José Miguel Castillo Castillo Sistema de alarma de 4 zonas INTRODUCCIÓN. En el mercado existen infinidad de productos

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

Fundamentos de importancia del Trabajo, Energía y Potencia en física

Fundamentos de importancia del Trabajo, Energía y Potencia en física Fundamentos de importancia del Trabajo, Energía y Potencia en física INTRODUCCIÓN En el campo de la Física no se habla de trabajo simplemente, sino de Trabajo Mecánico y se dice que una fuerza realiza

Más detalles

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM J. Angel Moreno, Felipe L. Hernández División de Mediciones Electromagnéticas km 4,5 Carr. a los Cués,

Más detalles

Automatismos eléctricos

Automatismos eléctricos Automatismos eléctricos Circuito de Mando: representa el circuito auxiliar de control. Compuesto de : Contactos auxiliares de mando y protección Circuitos y componentes de regulación y control Equipos

Más detalles

Y ACONDICIONADORES TEMA 2 CARACTERÍSTICAS DE ENTRADA Y SALIDA

Y ACONDICIONADORES TEMA 2 CARACTERÍSTICAS DE ENTRADA Y SALIDA SENSORES Y ACONDICIONADORES TEMA 2 CARACTERÍSTICAS DE ENTRADA Y SALIDA Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 2-1 SENSOR IDEAL Y REAL Sensor ideal Elemento

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología 2. Auriculares. Descripción. AURICULARES Son transductores electroacústicos que, al igual

Más detalles

Página 1 de 16. Utilización del Osciloscopio para electromecanicos

Página 1 de 16. Utilización del Osciloscopio para electromecanicos Página 1 de 16 Utilización del Osciloscopio para electromecanicos Los multímetros digitales son un instrumento totalmente eficaz para la comprobación estática de circuitos y para casos en que los cambios

Más detalles

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO OBJETIVOS: Comprender la utilidad, el principio de operación y el uso correcto del osciloscopio. ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento

Más detalles

Actividad V.53 Transiciones de fases Calor latente de transformación

Actividad V.53 Transiciones de fases Calor latente de transformación Actividad V.53 Transiciones de fases Calor latente de transformación Objetivo Estudio de transiciones de fase líquido vapor y sólido líquido. Medición de los calores latentes de evaporación y de fusión

Más detalles

SISTEMAS AUTOMÁTICOS DE CONTROL

SISTEMAS AUTOMÁTICOS DE CONTROL SISTEMAS AUTOMÁTICOS DE CONTROL Son aquellos sistemas formados por componentes físicos, conectados de tal manera que puedan comandar, dirigir o regular a si mismo o a otro sistema CONCEPTOS REALACIONADOS

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento Poner a tierra Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio. Colocar a tierra el Osciloscopio Por

Más detalles

VOLTIMETRO VECTORIAL

VOLTIMETRO VECTORIAL VOLTIMETRO VECTORIAL El voltímetro vectorial HP 8405 tiene un voltímetro y un fasímetro que permiten medir la amplitud y la relación de fase entre 2 componentes fundamentales de una tensión de RF. El rango

Más detalles

comprobaciones de gestión del motor

comprobaciones de gestión del motor 6 comprobaciones de gestión del motor 6. COMPROBACIONES DE GESTIÓN DEL MOTOR 6.1. Precauciones 6.2. Verificación de los distintos elementos del sistema 6.2.1. Control visual 6.2.2. Fusibles y relés 6.2.3.

Más detalles

PRÁCTICA: CANAL HIDRODINÁMICO

PRÁCTICA: CANAL HIDRODINÁMICO PRÁCTICA: CANAL HIDRODINÁMICO htttp://www3.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado para esta práctica es un Canal Hidrodinámico para ensayo de una presa

Más detalles

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra

Más detalles

CONTROL AUTOMATICO DE TEMPERATURA

CONTROL AUTOMATICO DE TEMPERATURA CONTROL AUTOMATICO DE TEMPERATURA Oscar Montoya y Alberto Franco En este artículo presentamos un circuito de control automático de temperatura, el cual, como es obvio, permite controlar la temperatura

Más detalles

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- Amplificadores operacionales Amplificador de alta ganancia, que tiene una impedancia de entrada muy alta (por lo general mega-ohms) y una impedancia

Más detalles

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición

Más detalles

KGE8000 MANUAL DE INSTRUCCIONES

KGE8000 MANUAL DE INSTRUCCIONES KGE8000 MANUAL DE INSTRUCCIONES 1. COMPONENTES Componentes de la unidad: a. Motor Diesel b. Alternador c. Depósito de combustible, batería. 2. CONDICIONES AMBIENTALES DEL GENERADOR El generador funcionará

Más detalles

CONCEPTOS ELECTRÓNICOS EN LA MEDIDA DE LA ACELERACIÓN Y LA VIBRACIÓN

CONCEPTOS ELECTRÓNICOS EN LA MEDIDA DE LA ACELERACIÓN Y LA VIBRACIÓN TRABAJO FINAL DEL CURSO 2009-2010 DE EXPERTO UNIVERSITARIO EN MANTENIMIENTO DE MEDIOS E INSTALACIONES INDUSTRIALES ESCUELA POLITÉCNICA DE SEVILLA UNIVERSIDAD DE SEVILLA CONCEPTOS ELECTRÓNICOS EN LA MEDIDA

Más detalles

Equipo de Energía Eólica EEE

Equipo de Energía Eólica EEE Equipo de Energía Eólica EEE Equipamiento Didáctico Técnico Productos Gama de productos Equipos 5.- Energía Consola electrónica DIAGRAMA DEL PROCESO Y DISPOSICIÓN DE LOS ELEMENTOS DEL EQUIPO ISO 9000:

Más detalles