METROS CÚBICOS O LITROS?

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "METROS CÚBICOS O LITROS?"

Transcripción

1 METROS CÚBICOS O LITROS? 10 Comprende qué son las unidades de volumen (litros y decímetros cúbicos). En Presentación de Contenidos, para explicar las unidades de volumen se explica la diferencia entre m, m 2 y m 3. En Ejercicios resuelven problemas de volumen. En Aplico juegan a representar medidas juntando piezas. Imagina que un día en tu casa tocan a la puerta, abres y te encuentras con un señor desarreglado, encima con una bata de doctor y te dice que se dedica a inventar cosas, te pide le prestes dinero y que cuando sea millonario te lo recompensará porque él está seguro que lo que él construye será importantísimo para el desarrollo de la humanidad. Entonces le preguntas: Y qué inventos tiene? y te responde: - He inventado un aparato que te dice cuántos kilómetros cuadrados pesas, también he inventado un dispositivo en el que pones 1 kilo de agua y se convierte en 4m de soda y tengo un reloj que a los dos litros de que lo activas suena su alarma!. Serías capaz de creerle? Todos sabemos que el metro es la unidad que mide longitudes (largo, ancho y alto), que los líquidos se miden en litros y que el tiempo se mide en minutos. Cuando hablamos del metro suele haber confusión entre m (metro), m 2 (metro cuadrado) y m 3 (metro cúbico). Si no entendemos para qué sirve cada uno podríamos terminar creyéndole al científico loco de la historia. Cuándo usamos m, m 2 y m 3? m: Con el metro medimos longitudes; la longitud tiene sólo una dimensión, quiere decir que es lineal y por tanto sólo tiene largo, no tiene ni ancho ni alto. Por ejemplo, si medimos una cuerda medimos su longitud (la longitud se expresa en metros). Por ejemplo, cuando medimos el perímetro de algo (el contorno), obtenemos la suma de las longitudes de las líneas (o lados) que rodean a una figura geométrica; por ello, el perímetro se expresa en metros. Los múltiplos del metro (decámetro, hectómetro, kilómetro) se ocupan para medir líneas (o rectas) muy grandes y los submúltiplos del metro (centímetro, decímetro, milímetro) se usan para medir líneas (o rectas) muy pequeñas.

2 m 2 : Con el metro cuadrado medimos superficies. Una superficie es bidimensional, esto quiere decir que tiene largo y ancho más no tiene alto, por tanto sirve para medir figuras planas. Por ejemplo, al medir la pizarra medimos su superficie (que también llamamos área). Área o longitud se expresa en metros cuadrados; los múltiplos del m 2 (decámetro cuadrado, hectómetro cuadrado, kilómetro cuadrado) sirven para medir la superficie de cosas grandes y los submúltiplos del m 2 (centímetro cuadrado, decímetro cuadrado, milímetro cuadrado) sirven para medir superficies muy pequeñas. m 3 : Con el metro cúbico medimos el espacio ocupado por un cuerpo. El espacio ocupado por un cuerpo es tridimensional, quiere decir que tiene largo, ancho y alto. Por tanto sirve para medir cuerpos geométricos. Si medimos el cubo de basura mediremos el espacio que ocupa a lo cual llamamos volumen. El espacio que ocupa un cuerpo o volumen se expresa en metros cúbicos, en sus múltiplos (decámetro cúbico, hectómetro cúbico, kilómetro cúbico) o submúltiplos (centímetro cúbico, decímetro cúbico, milímetro cúbico). El volumen en metros cúbicos (m 3 ) o en litros (L)? Ya decíamos que el volumen es igual al espacio ocupado por un cuerpo, otra definición se refiere al volumen como la capacidad de un cuerpo de contener algo. Las dos definiciones son equivalentes, sin embargo, la unidad de medida se utiliza de acuerdo a su contexto. Cuando hablamos del espacio que ocupa un cuerpo se utiliza metros cúbicos (m 3 ). Cuando hablamos de la capacidad que tiene un cuerpo de contener se utiliza litros (L). Así como el metro cúbico tiene múltiplos y submúltiplos, el litro también los tiene. Observa que en la siguiente tabla las igualdades de izquierda a derecha aumentan multiplicando por mil.

3 A cuántos litros equivale un metro cúbico? Las definiciones de volumen y los múltiplos y submúltiplos del metro cúbico y el litro también pueden confundirnos como el científico loco. Con las vistas anteriores lo más obvio sería pensar que un litro es el equivalente a un metro cúbico. La realidad es que la equivalencia es: 1dm 3 = 1 L Si 1 m 3 es igual a 1000 dm 3 1m 3 = 1000 L Supongamos que tenemos un cubo (su base es una figura de 4 lados) con las siguientes longitudes. 1 m de ancho. 1 metro de largo. 1 metro de alto. La fórmula para obtener el volumen de un prisma rectangular es: V = (ancho del sólido)(largo del sólido)(alto del sólido)

4 Un cubo al tener las mismas longitudes en sus lados se reduce a: V= l 3 Sustituimos y obtenemos el resultado. V = (1m)(1m)(1m) V = (1m) 3 V = 1m 3 Recordemos que un decímetro es la décima parte, por tanto si un metro lo dividimos entre 10 obtenemos diez decímetros. Si un 1m 3 cúbico los dividimos entre mil obtenemos 1000 dm 3. De acuerdo a las equivalencias. Si un dm 3 es igual a 1 L, 1000 dm 3 son (aplicamos una regla de tres):

5 Hagamos un ejemplo. Para las tiendas de comestibles de un centro comercial se ha colocado un nuevo tanque de gas para evitar el desabasto. El depósito está totalmente vacío y necesitamos llenarlo hasta el límite. Cuántos litros de gas necesitamos? 1) La fórmula para obtener el volumen de un prisma cuadrangular es: V = (ancho del sólido)(largo del sólido)(alto del sólido) 2) Sustituimos y solucionamos. V = (8 m)(8 m)(20 m) V = 3200 m 3 2) Utilizamos la equivalencia para obtener los litros (utilizamos una regla de tres).. Resuelve los siguientes problemas: a) Cuál es la capacidad en litros de un tambo de 1.2m de radio y 2.5m de altura? V = r 2 h V = (3.1416) (1.2)2(2.5) V = 11.31m 3 V = 11,310 lt b) Calcula en litros la capacidad de una cisterna de 5.3m de largo, 2.8m de ancho y 3.5m de profundidad? V = (largo)(ancho)(profundidad) V = (5.3m) (2.8m) (3.5m) V = m 3 V = 51,940 lt

6 c) Cuáles son las dimensiones de una alberca a la que le caben 3 125,000 litros si de profundidad tiene 2.5m y el largo es el doble del ancho? V = 3 125,000 litros V = 3,125 m 3 (largo) (ancho) (profundidad) = V (2x) (x) (2.5) = 3,125 (2x) (x) = (2x) (x) = 1,250 2x 2 = 1,250 x 2 = x 2 = 625 = x = 25 Largo = 50 m Ancho = 25 m Profundidad = 2.5 m Trabajo Individual. DSC_0006 Con las piezas que cuentan juegan a representar diferentes medidas de volumen.. Trabajo individual. 5 minutos para el armado. Modelo Terminado

7 DSC_0001 Alumno 01 X2 X2 DSC_0004 DSC_0003 Alumno 2 DSC_0004 DSC_0003 DSC_0005 Observa que tu modelo incluye. 3 cubos. 1 cubo incompleto. 20 ejes amarillos.

8 DSC_0001 Cada cubo equivale a 1 dm 3 ; si un decímetro cúbico es el equivalente a 1L, cada cubo equivale a un litro. Tendrán varios desafíos que requieren inteligencia y destreza. Cómo se utiliza el modelo? 1) El desafío dice: Con el modelo representen 3 dm 3. 2) Deben ser creativos: utilizando todas las piezas que tienen pueden obtener resultados similares a estos, todo depende de la creatividad del equipo. DSC_0002 Observa que las representaciones que se piden en los desafíos siempre deben estar unidas para hablar de un solo volumen. 3) Dibuja el resultado. 4) Responde a las preguntas. Desafío 1: Con el modelo representen 5 litros (recuerda que los cubos deben estar unidos). a) Dibuja el resultado.

9 b) Cuántos decímetros cúbicos equivalen a 5 litros? 5 dm 3. c) Cuál es el volumen en cm 3? 5,000 cm 3. Desafío 2: Con el modelo representen 7 dm 3. a) Dibuja el resultado. b) Cuántos litros equivalen a 7 dm 3? 7 L. c) Si 1 dm es la décima parte de un metro Cuál es perímetro de la base de tu modelo? Respuesta libre de acuerdo al armado. La respuesta debe ir orientada al siguiente criterio. Si un decímetro es la décima parte de un metro cada arista de un decímetro mide 10 cm. La respuesta depende del modelo armado y es el resultado de sumar las aristas de la base. Para lo siguientes desafíos deben unirse dos o más equipos, conviene no indicarlo y esperar que ellos encuentren la solución. Desafío 3: Representa el volumen que ocupa una pecera de 10 litros. a) Dibuja el resultado. b) En qué unidad de medida se da él área de la base de la pecera? m2 o cualquiera de sus múltiplos o submúltiplos. Desafío 4: Un garrafón de agua mide 19 dm 3 de volumen. Represéntalo con tu modelo. a) Dibuja el resultado.

10 b) Cuántos decalitros caben en un garrafón de agua? 1.9 dl.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos. Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

MATEMÁTICA. TRABAJO PRÁCTICO: Funciones de proporcionalidad

MATEMÁTICA. TRABAJO PRÁCTICO: Funciones de proporcionalidad ILSE-2º Año- Nombre y apellido: MATEMÁTICA TRABAJO PRÁCTICO: Funciones de proporcionalidad 1) En una librería decidieron aumentar todos los precios el 9%. a) Completar la lista de precios con los nuevos

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Guía del docente. Guía para el docente Geometría Volumen de un cuerpo por rotación y traslación

Guía del docente. Guía para el docente Geometría Volumen de un cuerpo por rotación y traslación Guía del docente Descripción curricular: - Nivel: 4. Medio - Subsector: Matemática - Unidad temática: - Palabras claves: traslación, rotación, generación de cuerpos, volumen, esfera, cilindro, cono, prisma,

Más detalles

Respuestas a los ejercicios y problemas

Respuestas a los ejercicios y problemas s a los ejercicios y problemas Unidad I. La medición y sus instrumentos Tema 2. Medidas de longitud y sus conversiones 4. En qué utilizará la escuadra don Andrés al construir el juguetero de la señora

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

Lección 15: Unidades de volumen y capacidad del Sistema Métrico Decimal

Lección 15: Unidades de volumen y capacidad del Sistema Métrico Decimal LECCIÓN 15 Lección 15: Unidades de volumen y capacidad del Sistema Métrico Decimal Unidades de volumen del Sistema Métrico Decimal Las unidades de volumen del Sistema Métrico Decimal se basan, como las

Más detalles

GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire

GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire EDICIONES MANITAS CREATIVAS LTDA. GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire Alejandro Ortiz Gómez INDICE 1. Las regletas matemáticas...2 2. Uso de las

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

1.2. PROPIEDADES DE LA MATERIA.

1.2. PROPIEDADES DE LA MATERIA. 1.2. PROPIEDADES DE LA MATERIA. Toda la materia tiene unas propiedades que nos permiten distinguirla de las cosas inmateriales. Se las llama propiedades generales. Otras propiedades nos permiten diferenciar

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces.

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. Conteo 10 1 Diagrama de Árbol Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. En este tema lo principal es saber usar el diagrama

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Dibuja figuras tridimensionales (páginas 514 517)

Dibuja figuras tridimensionales (páginas 514 517) A NOMRE FECHA PERÍODO Dibuja figuras tridimensionales (páginas 514 517) Las figuras tridimensionales se llaman sólidos. Puedes usar un dibujo en perspectiva para mostrar las tres dimensiones de un sólido

Más detalles

Lección número veintisiete Lección no. 27. Medidas de superficie

Lección número veintisiete Lección no. 27. Medidas de superficie Lección número veintisiete Lección no. 27 Medidas de superficie Anselmo va a pintar unas bardas. Para saber cuanta pintura necesita, Anselmo tiene que medir las bardas. Observe las siguientes ilustraciones.

Más detalles

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 1 1 MÓDULO DE LOS ENTEROS Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 2 Módulo 3 Tema: Los Enteros

Más detalles

Potencias, radicales y logaritmos

Potencias, radicales y logaritmos Potencias, radicales y logaritmos 1. Potencias de exponente natural y entero Calcula mentalmente las siguientes potencias: a) b) ( ) c) d) ( ) P I E N S A Y C A L C U L A a) 8 b) 8 c) 8 d) 8 1 Calcula

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Problemas aditivos. Cuando se suman con signos iguales, se conserva el y se suman las cantidades. Ejemplo. 2 + 7 = 9-4 8 = -12

Problemas aditivos. Cuando se suman con signos iguales, se conserva el y se suman las cantidades. Ejemplo. 2 + 7 = 9-4 8 = -12 Bloque dos Eje temático Tema Contenido Sentido numérico y pensamiento algebraico Problemas aditivos Resolución de problemas que impliquen adición y sustracción de monomios Regla de los signos para la suma

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

LA MEDIDA DE LA LONGITUD

LA MEDIDA DE LA LONGITUD LA MEDIDA DE LA LONGITUD Introducción Si quieres conocer la anchura de una mesa, la altura de un compañero o la distancia que separa tu casa de tu instituto necesitas medirlas, es decir, compararlas con

Más detalles

XI Olimpiada Matemática Asturiana Fase final - PRUEBA VELOCIDAD 2º ciclo ESO

XI Olimpiada Matemática Asturiana Fase final - PRUEBA VELOCIDAD 2º ciclo ESO PRUEBA Nº 1 SOKOBAN Debéis colocar los bloques sobre los lugares señalados de la pantalla. Los bloques se mueven cuando los empuja el hombrecillo que aparece. Sólo puede mover un bloque de cada vez. PRUEBA

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

PROBLEMAS DE ECUACIONES SIMULTÁNEAS

PROBLEMAS DE ECUACIONES SIMULTÁNEAS PROBLEMAS DE ECUACIONES SIMULTÁNEAS Por: ELÍAS LOYOLA CAMPOS 1. En un recinto del zoológico se tienen dos tipos de animales: avestruces y jirafas. Hay 30 ojos y 44 patas, cuántos animales hay de cada tipo?

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

Seminario Universitario Física. Cifras significativas

Seminario Universitario Física. Cifras significativas Seminario Universitario Física Cifras significativas Las cifras significativas son los dígitos de un número que consideramos no nulos. Son significativos todos los dígitos distintos de cero. Ej. 8723 tiene

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID. Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA)

POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID. Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA) POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA) MICROSCOPIA Elabore portada, introducción y descripción

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Unidad II. Perímetro, área y volumen

Unidad II. Perímetro, área y volumen Perímetro, área y volumen Unidad II Al estudiar esta unidad usted podrá: Conocer las unidades de medición más comunes en el campo. Medir con distintos instrumentos y en diferentes unidades de distancias

Más detalles

Puedes Desarrollar Tu Inteligencia

Puedes Desarrollar Tu Inteligencia Puedes desarrollar tu Inteligencia (Actividad-Opción A) Puedes Desarrollar Tu Inteligencia Una nueva investigación demuestra que el cerebro puede desarrollarse como un músculo Muchas personas piensan que

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Tema 6: Geometría en dimensión 3

Tema 6: Geometría en dimensión 3 Tema 6: Geometría en dimensión 3 Contenidos: 1. Introducción. 2. Poliedros. 3. Volumen. Capacidad. Unidades. 4. Volumen de sólidos básicos: prismas y cilindros. 5. Volumen de pirámides y conos. 6. Volumen

Más detalles

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO En palabras simples, el Cambio Climático es la modificación del clima que actualmente ocurre en

Más detalles

LA GYMKHANA DE LA SILLA ROJA

LA GYMKHANA DE LA SILLA ROJA LA GYMKHANA DE LA SILLA ROJA 1. OBJETIVOS 1. Entender que la educación es importante para la vida de las personas. 2. (Re) Conocer la Silla Roja como símbolo del derecho a la educación 2. DESARROLLO La

Más detalles

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN TERCER GRADO MATEMÁTICAS 3 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

Polígonos, perímetros y áreas

Polígonos, perímetros y áreas 9 Polígonos, perímetros y áreas Objetivos Antes de empezar En esta quincena aprenderás a: Reconocer, representar e identificar los elementos geométricos que caracterizan a diferentes polígonos. Construir

Más detalles

Áreas de rectángulos y paralelogramos

Áreas de rectángulos y paralelogramos LECCIÓN CONDENSADA 8.1 Áreas de rectángulos y paralelogramos En esta lección Revisarás la fórmula del área de un rectángulo Usarás la fórmula del área de un rectángulo para encontrar las áreas de otras

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5 Concurso BECAS 2016 Ejercicios orientadores 1) En la ciudad de Odnap los ómnibus urbanos cumplen sus horarios con rigurosidad y tienen una frecuencia constante a lo largo del día. El ciudadano Imel concurre

Más detalles

Unidad I. Medidas de longitud

Unidad I. Medidas de longitud Medidas de longitud Unidad I En esta unidad usted aprenderá a: Medir la longitud. Utilizar algunos instrumentos en la medición de la longitud de las cosas. Construir su propio metro. Utilizar la unidades

Más detalles

ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs

ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs En 2006 entró en vigor una nueva ley de enseñanza en Noruega. Entre otras cuestiones la Ley K06 establece, a la hora

Más detalles

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud.

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. 7 SISTEMA DE MEDIDAS EJERCICIOS PROPUESTOS 7.1 Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. B A u El segmento AB contiene 5 veces a u. Luego mide 5u. 7.2 Observa

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

ACTIVIDADES DE UNIDAD DE SUPERFICIE

ACTIVIDADES DE UNIDAD DE SUPERFICIE ACTIVIDADES DE UNIDAD DE SUPERFICIE AUTORA: Caroline Flecchia Ramos DNI: 25732052C ESPECIALIDAD: EDUCACIÓN PRIMARIA ACTIVIDAD 1 SUPERFICIE DE FIGURAS PLANAS Para comenzar este nuevo tema, La medida de

Más detalles

Tema 7 Sistema Métrico Decimal

Tema 7 Sistema Métrico Decimal 1. Magnitudes Tema 7 Sistema Métrico Decimal Cuando cogemos un objeto y queremos describirlo, nos fijamos en sus cualidades y características. Si describimos un objeto, por ejemplo, un libro, diremos que

Más detalles

REPASO DE LA PRIMERA EVALUACIÓN

REPASO DE LA PRIMERA EVALUACIÓN REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,

Más detalles

Tema XI: Obtención del Capital Necesario para emprender el Negocio

Tema XI: Obtención del Capital Necesario para emprender el Negocio Tema XI: Obtención del Capital Necesario para emprender el Negocio A través de este tema podrás identificar las estrategias para la obtención de financiamiento y capital para emprender un negocio. Emprender

Más detalles

Actividad: Qué es capilaridad?

Actividad: Qué es capilaridad? Qué es capilaridad? Nivel: 3º medio Subsector: Ciencias físicas Unidad temática: Ver video Capilaridad Actividad: Qué es capilaridad? Los fluidos son un conjunto de moléculas distribuidas al azar que se

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano

Créditos académicos. Ignacio Vélez. Facultad de Ingeniería Industrial. Politécnico Grancolombiano Créditos académicos Ignacio Vélez Facultad de Ingeniería Industrial Politécnico Grancolombiano 11 de noviembre de 2003 Introducción Cuando se habla del sistema de créditos muchas personas consideran que

Más detalles

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Matematiza situaciones de forma y movimiento

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Matematiza situaciones de forma y movimiento PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Primer grado Duración: 2 horas pedagógicas I. TÍTULO DE LA SESIÓN Midiendo la superficie de una laguna II. APRENDIZAJES ESPERADOS COMPETENCIA CAPACIDADES

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN)

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN) EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN) En el artículo anterior definimos conceptos básicos de esta verdadera disciplina que es cubicar. Ahora quiero describir algunos

Más detalles

Investigamos sobre la energía hidráulica

Investigamos sobre la energía hidráulica QUINTO Grado - Unidad 6 - Sesión 23 Investigamos sobre la energía hidráulica Por qué es importante la energía hidráulica? Las caídas de agua son fuentes de energía no contaminantes. Estas son utilizadas

Más detalles

Los elementos que usualmente componen la identidad digital son:

Los elementos que usualmente componen la identidad digital son: Enero 2016 Programa Civismo Digital - Escolar Material Educativo Lección: TU IDENTIDAD EN INTERNET v. 1.0 Topico: Alfabetización Digital, Huella Digital Objetivo: Fomentar en los alumnos la importancia

Más detalles

CREAR FORMAS BÁSICAS

CREAR FORMAS BÁSICAS Crea un documento Nuevo. CREAR FORMAS BÁSICAS De la barra de herramientas Dibujo pulsa sobre Autoformas. Se abre el siguiente cuadro: Lleva el puntero del ratón sobre la opción Formas básicas. Pasa despacio

Más detalles

Boletín Mensual Programa Autismo Teletón

Boletín Mensual Programa Autismo Teletón Boletín Mensual Programa Autismo Teletón Número 8, Año 1 Noviembre 2010 Ya puedes encontrar nuevos contenidos en nuestra sección de internet! En la sección temas de interés encontrarás un útil artículo

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica.

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 ) Dadas las funciones f) +4, g) 3 & h), obtener: g/h)), h f)) &g h)), así como sus respectivos dominios. ) Dada la función definida por f) 3 5 5 3,

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud?

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Errores La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Sabemos que el volumen de un cubo se calcula por medio

Más detalles

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros Razones financieras Uno de los métodos más útiles y más comunes dentro del análisis financiero es el conocido como método de razones financieras, también conocido como método de razones simples. Este método

Más detalles

Unidad didáctica: Perímetro, área y volumen en el 3. er ciclo 10-12

Unidad didáctica: Perímetro, área y volumen en el 3. er ciclo 10-12 Unidad didáctica: Perímetro, área y volumen en el 3. er ciclo 10-12 Las actividades que conforman esta unidad didáctica fueron elaboradas en colaboración con Ángeles Camacho Machín, Antonio Ramón Martín

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009

XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009 XXIII Olimpiada Mexicana de Matemáticas Examen Departamental de Secundarias. Nivel Cadete. Yucatán, 2009 Problema 1: Para buscar el área sombreada, restamos el área de los cuatro círculos al área del cuadrado:

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS 1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS

Más detalles

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide.

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. La Pirámide Humana En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. Esta pirámide es una torre de varias personas. Cada persona

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

Habilidades para clasificar objetos dentro de recipientes similares: Para aumentar el grado de complejidad

Habilidades para clasificar objetos dentro de recipientes similares: Para aumentar el grado de complejidad GUIA PARA TRABAJAR HABILIDADES DEL PENSAMIENTO NO VERBAL, COMUNICACIÓN, IMITACIÓN Y HABILIDADES DE JUEGO DESDE UNA PERSPECTIVA DE DESARROLLO PARA ALUMNOS AUTISTAS HABILIDAD DEL PENS. VISUAL O NO VERBAL

Más detalles

OLIMPÍADA RECREATIVA DE MATEMÁTICA 2012 CANGURO MATEMÁTICO PRUEBA PRELIMINAR QUINTO GRADO

OLIMPÍADA RECREATIVA DE MATEMÁTICA 2012 CANGURO MATEMÁTICO PRUEBA PRELIMINAR QUINTO GRADO OLIMPÍADA RECREATIVA DE MATEMÁTICA 2012 CANGURO MATEMÁTICO PRUEBA PRELIMINAR QUINTO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Juan escribe las palabras OLIMPÍADA RECREATIVA en una hoja

Más detalles

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S

Más detalles