Soluciones Problemas Capítulo 1: Relatividad I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones Problemas Capítulo 1: Relatividad I"

Transcripción

1 Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = km. (b) El tiempo que tarda la primera señal en regresar a la Tierra medido desde la nave se puede alular haiendo uso de la expresión de la dilataión del tiempo: t 1 = γt 1 = t 1 1 v 2 / 2, donde v es la veloidad del ohete. Obviamente, neesitamos onoer primero la veloidad del ohete para alular t 1. Así pues, neesitamos resolver primero el siguiente apartado. () Para hallar la veloidad relativa usamos la diferenia de tiempos de medida de las dos señales en la Tierra, t = 1.74 µs. Esta diferenia se debe a la distania extra que ha de reorrer la segunda señal: v t + 2L /γ, donde L = 6 m es la longitud propia del ohete. En la expresión anterior, el primer término es la distania reorrida por el ohete en ese intervalo de tiempo y el segundo orresponde a dos vees la longitud del ohete (medida desde la Tierra). Nótese que hemos usado la fórmula de la ontraión de la longitud para alular esta segunda ontribuión. Así pues, Nuestro objetivo ahora es despejar β = v/: t = v t+2l /γ. t v t = 2L /γ t() = 2L 2. Haiendo uso de 2 = ()(), tenemos t = 2L 2 t 2 () = 4L 2 (). Finalmente, β = v = 2 t 2 4L t 2 +4L 2 Ahora podemos volver al apartado anterior para obtener: t 1 = s. 2) (a) El tiempo t 1 viene dado obviamente por t 1 = l. (b) Para determinar el instante t 1 haemos uso de las transformaiones de Lorentz: t 1 = γ(t 1 +vx 1/ 2 ) = γ ( l vl ) = γl 2 (1 v/). 1

2 Definiendo β = v/, t 1 = l 2 = l ()() = l. () Calulamos t 2 haiendo uso de la expresión de la dilataión del tiempo: γt 2 = t 2 = l v t 2 = l γv = l v 2. Obviamente, también se puede llegar a este resultado haiendo uso de las transformaiones de Lorentz. 3) (a) Para hallar la distania, x, haemos uso de las transformaiones de Lorentz: x = γ(x +vt ) = γl () = L = 2L = 2m. Aquí hemos usado que la longitud propia L es 1 m y β =.6. (b) Este intervalo de tiempo es simplemente: t = x = 2L s. () El intervalo de tiempo medido desde el ohete es: t = L = s. 4)(a)TeniendoenuentaqueC sealejadeb onunaveloidadv, tenemosquelafreuenia que busamos está dada por la expresión del efeto Doppler (alejamiento): f = f, donde β = v/. (b) Para determinar la freuenia de las señales de A que reibe C, neesitamos saber uál es la veloidad relativa de A on respeto a C, u A,C. Usando que v es la veloidad de A on respeto a B, podemos utilizar la ley relativista de omposiión de veloidades del siguiente modo: u A,C = u x v 1 vu x / = 2v 2 1+v 2 / 2, donde hemos usado que u x = v (veloidad de A on respeto a C). Ahora podemos usar de nuevo la expresión del efeto Doppler (alejamiento) para obtener: f = f 1 u ( ) A,C / 1+ u A,C / = f. 2

3 5) (a) Para determinar la veloidad de la luz en el sistema del laboratorio haemos uso de la ley relativista de omposiión de veloidades. En la disposiión habitual, suponemos que el agua es el sistema de referenia S y que el laboratorio orresponde al sistema S. De este modo, la veloidad que busamos viene dada por u = u x +v 1+vu x/ 2 = v +/n 1+v/(n 2 ) = n ( ) 1+nv/. 1+v/n (b) Suponiendo que v, podemos haer una expansión de Taylor de la expresión anterior usando v/ omo el parámetro pequeño. La idea es la siguiente: u = 1+nx f(x) donde f(x) = n 1+x/n on x = v/. Es fáil demostrar que el desarrollo de Taylor de la funión f(x) entorno a x = viene dado por (hasta primer orden en x): ( f(x) = 1+ n 1 ) x+o(x 2 ). n De este modo, u n ( 1+[n 1/n] v ) = n +v v n 2. Nótese que el resultado no relativista sería u = v +/n. Por tanto, el resultado del experimento de Fizeau fue una lara demostraión de que la ley de omposiión de veloidades de Galileo no se aplia a la propagaión de la luz. 6) (a) Como la longitud de onda medida es mayor que la orrespondiente a la Tierra, la galaxia se está alejando de nosotros. Por tanto, para determinar la veloidad haremos uso de la ley de Doppler (alejamiento): f = f λ = λ, donde hemos usado que f = /λ. Ahora despejamos β de esta expresión para obtener: β = (λ/λ ) 2 1 (λ/λ ) Usando que λ = nm y λ = nm, obtenemos que β.2, es deir, v = km/s. (b) La distania a la galaxia, r, la podemos obtener haiendo uso de la ley de Hubble: v = H r r = v H = 6 14 km/s 71km/(s Mp) = 845.7Mp. () El tiempo que busamos viene dado por: T = r v = 1 H años. Este tiempo nos da una idea de la edad del universo. 3

4 7) (a) Consideramos un objeto que se mueve on una veloidad arbitraria u on respeto al sistema de referenia S. La orrespondiente veloidad u en el sistema S viene dada por la ley de adiión de veloidades. En partiular, la omponente u x viene dada por u x = u x +v 1+vu x/ 2, donde v es la veloidad relativa entre los dos sistemas de referenia. Para obtener la orrespondiente relaión entre las omponentes x de las aeleraiones, tan sólo tenemos que difereniar la expresión anterior du x = Reagrupando términos llegamos a du x 1+vu x/ 2 [ u x +v vdu ] x. (1+vu x/ 2 ) 2 2 du x du x = γ 2 (1+vu x/ 2 ) 2, dondeomodeostumbreγ = 1/ 1 v 2 / 2. AhorausamoslastransformaionesdeLorentz para obtener dt = γ(dt +vdx / 2 ) = γ(1+vu x/ 2 )dt. Por tanto, a x = du x dt = du x/dt γ 3 (1+vu x/ 2 ) 3 = a x γ 3 (1+vu x/ 2 ) 3. (b) Supongamos que el sistema S está en reposo on respeto a la Tierra y el S es el sistema en reposo momentáneo on el astronauta. De esto modo, la expresión del apartado (a) nos da la relaión entre las aeleraiones del astronauta, a x = g = 9.8 m/s 2, y la de la Tierra, a x (t), que depende del tiempo t, sin más que haer u x = : a x (t) = g γ 3 = g ( ) 3/2 1 v2, 2 donde v(t) es la veloidad del astronauta on respeto a la Tierra en el instante t. El siguiente paso es obtener la veloidad v en el instante t integrando la euaión anterior que se puede reesribir omo Integrando, t a x = dv ( ) 3/2 dt = g 1 v2 gdt = 2 gdt = v Despejamos ahora la veloidad: v(t) = dv v gt = (1 (v ) 2 / 2 3/2 ) dv (1 v 2 / 2 ) 3/2. (1 v 2 / 2 ) 1/ /(g 2 t 2 ) = gt 1+g 2 t 2 / 2. 4

5 De esta expresión podemos ver que uando t entones v, es deir, la veloidad de la luz no se puede superar. Para obtener la distania, x, que ha reorrido el astronauta al abo de un tiempo terrestre t tenemos que integrar la expresión de la veloidad: x dx = t gt dt ( ) 2 x(t) = 1+g 1+g 2 (t ) 2 /2 g 2 t 2 / 2 1. Finalmente, para determinar uanto tarda el astronautra en alanzar la veloidad /2, invertimos la expresión de la veloidad para despejar t en funión de v: t = v t(v = /2) = g 1 v 2 /2 g 3. 8) (a) Llegarán todas las señales que A emita antes de llegar a la estrella. Para alular el número de señales neesitamos saber el tiempo que tarda A en llegar a la estrella desde su punto de vista, t A. Si definimos d = 4 años-luz omo la distania a la estrella (medida desde la Tierra) y v =.6 la veloidad relativa entre los gemelos, t A será igual a t A = d/γ v = 16 3 años. Nótese que hemos usado que para A la distania de la Tierra a la estrella es igual a d/γ (ontraión de la longitud). De este modo, si A emite una señal ada.1 años (en su sistema), entones el número total de señales en el viaje de ida será: (16/3 años)/(.1 años) = (16/3) señales 533 señales. (b) El intervalo de tiempo (medido desde A) entre dos señales onseutivas emitidas por B viene dado por γt B + vγt B, donde T B =.1 años es el intervalo de tiempo entre dos señales medido por B. En la expresión anterior, el primer término representa el intervalo de tiempo entre dos señales de B tal y omo lo mide A (dilataión del tiempo), mientras que el segundo orresponde al tiempo que tarda en reorrer una señal la distania que A se ha alejado desde la anterior señal. La expresión anterior se redue a: γt B () = T B = 2T B =.2 años, donde hemos usado que β = v/ =.6. Por tanto, el número de señales reibidas por A antes del regreso será: (16/3 años)/(.2 años) = (8/3) señales 267 señales. () En el viaje de regreso B reibe otra vez el mismo número de señales y, por tanto, reibe en total 167 señales. Por su parte, A reibe señales de B on un intervalo de tiempo igual a γt B vγt B = γt B () = T B = T B /2 =.5 años. 5

6 Por tanto, en el viaje de regreso, A habrá reibido (16/3 años)/(.5 años) = (32/3) señales 167 señales y en total 1333 señales en todo el viaje. (d) El gemelo A será más joven en un fator dado por el fator γ = 5/4 de la dilataión del tiempo. Por tanto, omo el viaje dura según B (8 años-luz)/(.6) = 4/3 años, para A dura 32/3 años y, por tanto, A será 8/ años más joven al final del viaje. Ambos gemelos están de auerdo en el resultado. El gemelo A ha reibido más señales que B, lo que india que A debe onluir que ha transurrido más tiempo para el gemelo B, o en otras palabras que su reloj ha ido más deprisa. De heho, el oiente entre el número de señales reibidas por A y por B es simplemente 1333/167 5/4, que no es otra osa que el fator γ que determina la dilataión del tiempo. 6

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.- 1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta

Más detalles

11 La teoría de la relatividad

11 La teoría de la relatividad La teoría de la relatividad de Einstein Atividades del interior de la unidad. Desde una nave que se mueve a 50 000 km/s se emite un rayo de luz en la direión y sentido del movimiento. Calula la veloidad

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

Anexo a la guía 4 Geometría: ejemplos y comentarios

Anexo a la guía 4 Geometría: ejemplos y comentarios Anexo a la guía 4 Geometría: ejemplos y comentarios Sergio Dain 26 de mayo de 2014 En las guías 1 y 2 discutimos vectores, covectores y tensores de manera puramente algebraica, sin hacer referencia a la

Más detalles

RELATIVIDAD EN LA FÍSICA

RELATIVIDAD EN LA FÍSICA Capítulo 8 RELATIVIDAD EN LA FÍSICA CLÁSICA 1 8.1 Transformaciones de Galileo y Mecánica Sea S un sistema de referencia en el que se verifican las leyes de la Mecánica Clásica. Estos sistemas se denominan

Más detalles

1. Energía y momentum

1. Energía y momentum Teoría de la Relatividad Especial. Segunda parte. Víctor Muñoz, noviembre 2006 1. Energía y momentum 1.1. Introducción Hasta el momento, hemos estudiado la Relatividad Especial a través de los gráficos

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

TEMA: TEOREMA DE PITÁGORAS

TEMA: TEOREMA DE PITÁGORAS TEMA: TEOREMA DE PITÁGORAS Atividades iniio: Ejeriios de alentamiento Traajo en grupo Entregar opia del ejeriio de exploraión a ada estudiante Disutir ejeriio de exploraión Llegar a una onjetura Calentamiento

Más detalles

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud?

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Errores La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Sabemos que el volumen de un cubo se calcula por medio

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

y = y ' Esta es la relatividad de Galileo.

y = y ' Esta es la relatividad de Galileo. Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se muee en

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

LOGSE - JUNIO 2008 F Í S I C A

LOGSE - JUNIO 2008 F Í S I C A PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE - JUNIO 2008 F Í S I C A INDICACIONES AL ALUMNO 1. El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Un paseo por la Relatividad Especial

Un paseo por la Relatividad Especial Un paseo por la Relatividad Especial A qué velocidad viaja la luz en el vacío? Distancia media de la Tierra-Luna 380.000 km La velocidad de la pelota depende del punto de vista El fotón: el más independiente

Más detalles

Principio de equivalencia y efectos de la Relatividad General

Principio de equivalencia y efectos de la Relatividad General Prinipio de equivalenia y efetos de la Relatividad General 6 Anular o simular g En aída libre no se siente gravedad (anular g) Se puede simular g on una aeleraión a en sentido opuesto Prinipio de equivalenia:

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

Guía Gravitación y Leyes de Kepler.

Guía Gravitación y Leyes de Kepler. Guía Gravitación y Leyes de Kepler. Leyes de Kepler Johannes Kepler, trabajando con datos cuidadosamente recogidos por ycho Brahe y sin la ayuda de un telescopio, desarrolló tres leyes que describen la

Más detalles

Soluciones Hoja 1: Relatividad (I)

Soluciones Hoja 1: Relatividad (I) Souiones Hoja 1: Reatividad I) 1) Un desteo de uz es emitido en e punto O y se absorbe después en e punto P ver a figura). En e sistema de referenia S a ínea OP tiene una ongitud y forma un ánguo θ on

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1 PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 1399-1 Índie Sistemas de montaje de tornillo/tuera/arandela (Consulte la tabla más abajo) 2 La empresa 3 Tornillos estruturales de alta resistenia

Más detalles

1.1Estándares de longitud, masa y tiempo

1.1Estándares de longitud, masa y tiempo CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES 1.1 Ecuación de onda. Las ecuaciones de Maxwell se publicaron en 1864, su principal función es predecir la propagación de la energía en formas de Onda.

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

Análisis de correspondencias

Análisis de correspondencias Análisis de orrespondenias Eliseo Martínez H. 1. Eleiones en París Hemos deidido presentar un legendario ejemplo para expliar el objetivo del Análisis de Correspondenia. Este ejemplo se enuentra en el

Más detalles

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

0.5 -0.5 [Z/Z ] N -1.5 -2.5

0.5 -0.5 [Z/Z ] N -1.5 -2.5 Resumen La mayoría de las galaxias en el Universo se encuentran a distancias tan alejadas que de tal manera que, ya no es posible identificar individualmente a las estrellas que las constituyen. n embargo,

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad T El GPS y la teoría de la atividad Eduardo Huerta(*), arlos Galles(**), Andrés Greo(**) y Aldo Mangiaterra(*) (*) DEPARTAMENTO DE GEOTOPOARTOGRAFÍA (**) DEPARTAMENTO DE FÍSIA FAULTAD DE IENIAS EXATAS,

Más detalles

Acuerdo 286. Física. Unidad 5. Acústica. Ing. Enriqueta Del Ángel Hernández

Acuerdo 286. Física. Unidad 5. Acústica. Ing. Enriqueta Del Ángel Hernández Acuerdo 286 Física Unidad 5 Acústica Ing. Enriqueta Del Ángel Hernández Acústica.- Rama de la física que se encarga de estudiar las propiedades del sonido y sus aplicaciones. 5.1 SONIDO: CONCEPTO, TRANSMISIÓM

Más detalles

Esta es la relatividad de Galileo.

Esta es la relatividad de Galileo. FJC 009 Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se

Más detalles

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2 El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco cuestiones propuestas. No deben resolverse problemas de opciones diferentes, ni tampoco más de cuatro cuestiones. Cada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo.

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo. Físia relatiista. Meánia uántia Página de 4 FÍSICA º BACHILLERATO ELEMENTOS DE FÍSICA RELATIVISTA SISTEMA DE REFERENCIA Punto, o onjunto de puntos, respeto al ual desribimos el moimiento de un uerpo. ONDAS

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA I. RELATIVIDAD a) Métodos para medir la eloidad de la luz. b) Experimento de Mihelson-Morley (88). ) Sistemas de referenia. d) Transformaiones de Galileo. e) Constania

Más detalles

Capítulo 15. Ultrasonidos

Capítulo 15. Ultrasonidos Capítulo 15 Ultrasonidos 1 Efecto Doppler El efecto Doppler consiste en el cambio de frecuencia que experimenta una onda cuando el emisor o el receptor se mueven con respecto al medio de propagación. La

Más detalles

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO.

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. Ciertas líneas del hidrógeno y de los alalinos mostraban perfiles on varias omponentes muy próximas entre sí, indiando un desdoblamiento de los niveles de energía

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

TÉCNICAS DE INTEGRACIÓN

TÉCNICAS DE INTEGRACIÓN C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

Ecuaciones de Máxwell y ondas electromagnéticas

Ecuaciones de Máxwell y ondas electromagnéticas Zero Order of Magnitude ZOoM)-PID 13-28 Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Cálculo de altura de formación de auroras.

Cálculo de altura de formación de auroras. Cálculo de altura de formación de auroras. Andrea Polo Padilla E X P E D I C I Ó N S H E L I O S C A R L A M E N D O Z A R U T A D E L A S E S T R E L L A S 2 0 1 5 I E S L u c a s M a r t í n E s p i

Más detalles

Estrategias De Ventas

Estrategias De Ventas Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Fracciones: términos, lectura y escritura

Fracciones: términos, lectura y escritura Fraiones: términos, letura y esritura Feha Reuerda Los términos de una fraión son el numerador y el denominador: El denominador india el número de partes iguales en que se divide la unidad. El numerador

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

Tema 2: Elección bajo incertidumbre

Tema 2: Elección bajo incertidumbre Tema : Eleión bajo inertidumbre Ref: Capítulo Varian Autor: Joel Sandonís Versión:..0 Javier López Departamento de Fundamentos del Análisis Eonómio Universidad de Aliante Miroeonomía Intermedia Introduión

Más detalles

Ángulo de desfase en un circuito RC Fundamento

Ángulo de desfase en un circuito RC Fundamento Ángulo de desfase en un iruito RC Fundaento En un iruito de orriente alterna, están situados en serie una resistenia variable R V y un ondensador. Debido a que las aídas de tensión en ada eleento no están

Más detalles

Estudio experimental de la influencia del estrato rocoso en la forma del foso de erosión producida por jet en salto de esquí.

Estudio experimental de la influencia del estrato rocoso en la forma del foso de erosión producida por jet en salto de esquí. 1. Introducción. Este capítulo trata sobre los sistemas de medición que hemos utilizado en la realización de los ensayos. Se han incluido todos los sistemas de medida utilizados, aquellos que han funcionado

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

a) 2,8[m] ; 7,6 [m] b) 0,7[m/s]; 1,9[m/s]

a) 2,8[m] ; 7,6 [m] b) 0,7[m/s]; 1,9[m/s] 1m F Í S I C MOVIMIENTO Curso : Tercero Cinemática. Un móvil describe una trayectoria como indica la figura, a) Determina el desplazamiento y la distancia recorrida desde el punto hasta el punto, b) Si

Más detalles

T7. DINÁMICA RELATIVISTA: E = mc 2 Y MOVIMIENTO ACELERADO

T7. DINÁMICA RELATIVISTA: E = mc 2 Y MOVIMIENTO ACELERADO T7. DINÁMICA RELATIVISTA: E = mc 2 Y MOVIMIENTO ACELERADO 1. Introducción 2. La equivalencia entre masa y energía 3. Transformaciones de Lorentz para velocidades y aceleraciones 4. Sistema de referencia

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

Interrogación 1 de Ecuaciones Diferenciales

Interrogación 1 de Ecuaciones Diferenciales PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS MAT15 I1-006/1 Interrogación 1 de Ecuaciones Diferenciales Profesores Claudio Fernández y Rolando Rebolledo 6 de Abril 005 1. Ejercicio

Más detalles

11 Efectos de la esbeltez

11 Efectos de la esbeltez 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

13 Mediciones en fibras ópticas.

13 Mediciones en fibras ópticas. 13 Mediiones en fibras óptias. 13.1 Introduión: 13.1.1 Historia El uso de señales visuales para las omuniaiones de larga distania ya se realizaba por el año 1794 uando se transmitían mensajes de alerta

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles

GUÍA DE REPASO FUERZA Y MOVIMIENTO 7 BÁSICO

GUÍA DE REPASO FUERZA Y MOVIMIENTO 7 BÁSICO GUÍA DE REPASO FUERZA Y MOVIMIENTO 7 BÁSICO 1.- Las fuerzas se pueden representar gráficamente empleando flechas que se denominan vectores. Al respecto elige la alternativa que explique mejor lo que representan

Más detalles

T1. CONSTANCIA DE LA VELOCIDAD DE LA LUZ

T1. CONSTANCIA DE LA VELOCIDAD DE LA LUZ T. CONSTANCIA DE LA VELOCIDAD DE LA LUZ. Naturaleza y veloidad de la luz 2. El éter luminífero 3. Primeros experimentos 3. Aberraión estelar 3.2 Arrastre del éter: experimento de Fizeau 3.3 Preludio del

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real).

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real). Tema 5 Integral Indefinida 5.1 Introducción Dedicaremos este tema a estudiar el concepto de Integral Indefinida y los métodos más habituales para calcular las integrales indefinidas. De una manera intuitiva

Más detalles

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor

Más detalles

EDICIÓN DE LA GRAN ILUSIÓN LAS GRANDES OBRAS DE ALBERT EINSTEIN

EDICIÓN DE LA GRAN ILUSIÓN LAS GRANDES OBRAS DE ALBERT EINSTEIN EDICIÓN DE LA GRAN ILUSIÓN LAS GRANDES OBRAS DE ALBERT EINSTEIN LA GRAN ILUSIÓN LAS GRANDES OBRAS DE ALBERT EINSTEIN Edición de STEPHEN HAWKING CRÍTICA BARCELONA Primera edición: noviembre de 2010 Primera

Más detalles

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE SECCIÓN : CÁCUO DE GOPE DE ARIETE CÁCUO DE GOPE DE ARIETE SEGÚN AIEVI El impato de la masa líquida ante una válvula no es igual si el ierre es instantáneo o gradual. a onda originada no tendrá el mismo

Más detalles

2. Principios del sonido digital

2. Principios del sonido digital 2. Principios del sonido digital 2.1 Introducción El principio fundamental del audio digital consiste en discretizar las señales sonoras continuas (como las emitidas por un micrófono) para convertirlas

Más detalles

La energía de las ondas

La energía de las ondas 7 La energía de las ondas 1. Propagación y clasificación de las ondas 102 2. Magnitudes características de las ondas 104 3. Algunos fenómenos ondulatorios 106 4. El sonido 108 5. La luz. Reflexión de la

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Examen de Estadística Ingeniería de Telecomunicación

Examen de Estadística Ingeniería de Telecomunicación Examen de Estadística Ingeniería de Telecomunicación 8 de Mayo de 3 Cuestiones solucion h C. (.5p) El equipo directivo de cierta empresa del sector de hostelería está constituido por 5 personas de las

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al

Más detalles