Lección n 5. Modelos de distribución n potencial de especies

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección n 5. Modelos de distribución n potencial de especies"

Transcripción

1 Lección n 5. Modelos de distribución n potencial de especies

2 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución estimada de una especie debe coincidir con la distribución conocida o deducida a partir de las condiciones ambientales dónde ha sido observada. El procedimiento consiste en usar algoritmos computerizados para generar mapas predictivos sobre la distribución potencial de especies en el espacio geográfico a partir de las distribuciones (conocidas o deducidas) de la especies en el espacio ambiental. Los modelos de distribución de especies tienen un gran interés aplicado pues permiten evaluar cuantitativamente la posibilidad de que una población de plantas o animales ocupe un determinado lugar. La capacidad de predicción de estos modelos los ha convertido en una herramienta clave en temas relacionados con la gestión ambiental cuyos objetivos son variados: Diseño de reservas naturales. Restauración de poblaciones. Predicción de invasiones biológicas. Evaluación de impacto del cambio climático sobre la distribución geográfica de las especies.

3 1. Elaboración de modelos de distribución. b. Fuentes de información. Su elaboración requiere modelos de abstracción tipo campo que representen la distribución espacial de las variables ambientales (capas) y un conjunto de puntos georeferenciados que indiquen donde está presente la especie. Modelos sobre variables ambientales Datos sobre presencia de las especies Elaboración de modelos de distribución

4 1. Elaboración de modelos de distribución. c. Incertidumbre asociada al proceso de modelado. El grado de certidumbre de que tales modelos reflejan la verdadera distribución de una especie en el espacio geográfico dependerá de varios factores: La naturaleza, la complejidad y exactitud de los modelos usados. La calidad de las capas de datos ambientales disponibles La disponibilidad de datos sobre la distribución de la especie que deben ser suficientes y confiables como datos de entrada del modelo. También hay que tener en cuenta la influencia de otros factores del nicho como barreras para la dispersión, la historia geológica o la competición entre especie, que pueden impedir la ocupación actual de los nichos potenciales identificados por el modelo. Elaboración de modelos de distribución - Test Jackknife Evaluación de los modelos Curva ROC

5 1. Elaboración de modelos de distribución. b. Estrategia general de análisis. Modelos sobre variables ambientales Datos sobre presencia de las especies Elaboración de modelos de distribución - Evaluación de los modelos Gestión y planificación ambiental Cambio climático Distribución potencial de especies

6 2. Tipos de algoritmos empleados en el proceso de modelización. Existen diferentes tipos de modelos en función de sus planteamientos teóricos y el tipo de datos que utilizan: DATOS DE PRESENCIA Modelos basados en la envoltura Modelos basados en la métrica de Gower ambiental de las especies Biodiversity and Conservation 2, (1993) A project within the European Commission 5th Euratom Framework Programme Contract FIKW-CT s DATOS DE PRESENCIA DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals G. CARPENTER, A.N. GILLISON, J. WINTER DATOS DE PRESENCIA Y AUSENCIA Modelos basados en técnicas de regresión DATOS DE PRESENCIA Y PSEUDO-AUSENCIA Modelos basados en la Entropía máxima (MAXENT)

7 2. Tipos de algoritmos empleados en el proceso de modelización.. a. Modelos basados en la envoltura ambiental de las especies (BIOCLIM). Estima la envoltura de la especie dentro del rango de variación de cada variable ambiental y se identifican los sitios que están ubicados dentro del híper-espacio ambiental ocupado por una especie. Para cada variable ambiental en particular, el algoritmo calcula la media y la desviación típica (asumiendo una distribución normal) asociada al conjunto de puntos donde está presente la especie (ocurrencia). Cada variable tiene su propia envoltura representada por el intervalo de confianza de la media para una probabilidad del 95% o del 99%. Además de la envoltura, cada variable ambiental tiene límites máximos y mínimos adicionales tomados de los valores máximos y mínimos relativos al conjunto de puntos de ocurrencia. Área estudio En este modelo, cualquier celdilla puede ser clasificada como: Apropriada: si todas las variables ambientales asociadas se sitúan dentro de la envoltura calculada. Marginal: si una o más variables ambientales asociadas se sitúan fuera de la envoltura calculada, pero permanecen dentro de los límites máximo y mínimo. Especie 95% 100% Inadecuado: si una o más variables ambientales asociadas se sitúan fuera de los límites máximo y mínimo de la envoltura.

8 2. Tipos de algoritmos empleados en el proceso de modelización. b. Modelos basados en la métrica de Gower (DOMAIN). Se calcula una matiz de distancias punto a punto para asignar valores de similitud a cada punto del espacio geográfico en base su la proximidad en el espacio ambiental a los puntos de ocurrencia de la especie. La métrica de Gower provee unos medios apropiados para cuantificar la similitud entre dos sitios. La distancia (d) entre un punto candidato (A) y un punto de ocurrrencia (B) en un espacio Euclideo con p dimensiones se define como: p 1 Ak Bk d AB p k 1 rangok la similitud entre ambos puntos (R AB ), sería el complementario de la distancia: R 1 R AB está restringido entre los valores 0 y 1 para puntos dentro de los rangos usados en la primera ecuación. De esta forma, para el punto candidato (A) se obtiene un conjunto de m valores de similitud correspondientes a los puntos de ocurrencia. Se define S TA, como la similitud máxima entre el punto candidato A y el conjunto de puntos de ocurrencia de m la especie T como: S max R TA Los valores de S TA generados por el algoritmo se representan en el mapa de una forma continua. Hay que tener en cuenta que estos valores no se interpretan como probabilidades, sino como grados de similitud. j 1 T j A AB d AB Área estudio Especie: S = 0.95 S = 0.93

9 2. Tipos de algoritmos empleados en el proceso de modelización. b. Modelos basados en la similitud (DOMAIN).

10

11 2. Tipos de algoritmos empleados en el proceso de modelización. c. Modelos basados en la Entropía máxima (MAXENT). Maxent es uno método cuyo propósito general es caracterizar distribuciones de probabilidad cuya información está incompleta. Se basa en el principio de que la distribución estimada de una especie debe coincidir con la distribución conocida o deducida a partir de las condiciones ambientales dónde ha sido observada, evitando hacer cualquier suposición que no sea soportada por los datos. El enfoque consiste en encontrar la distribución de probabilidad de entropía máxima, que es la más cercana a la distribución uniforme, condicionada por las restricciones impuestas por la información disponible sobre la distribución observada de la especie y las condiciones ambientales del área de estudio. El método de Maxent no requiere datos de ausencia de la especie para elaborar el modelo; en vez de ello, usa los datos ambientales proporcionados por el área de estudio al completo como datos de pseudo-ausencia. Puede utilizar variables tanto continuas como categóricas y el producto es un pronóstico continuo que varía de 0 a 100 y se interpreta como un grado relativo de adecuación (en qué medida un lugar es adecuado para que la especie esté presente). Maxent ha demostrado funcionar bien en comparación con otros métodos alternativos como BIOCLIM y DOMAINE, que tan sólo consideran datos de presencia de la especie, resultando difícil evaluar la significación de los resultados que se obtienen mediante test estadísticos.

12 3. Validación de la capacidad predictiva del modelo. a. Planteamiento. La puesta en práctica del modelo tendrá poco interés si previamente no hemos validado la exactitud de sus pronósticos. La validación nos permite determinar la conveniencia de un modelo para una aplicación específica, así como, comparar diferentes métodos de modelado. Este apartado aborda diferentes pasos para evaluar la capacidad predictiva de un modelo: Obtención de un conjunto de datos de prueba Elaboración de una matriz de confusión (o de contingencia) Aplicación de Test estadísticos sobre la matriz de confusión Selección de umbrales de presencia Valoración independiente del umbral

13 3. Validación de la capacidad predictiva del modelo. b. Obtención de un conjunto de datos de prueba. Para evaluar el rendimiento del modelo es necesario disponer de datos contra los que poder comparar los pronósticos del modelo. A este conjunto de datos lo referimos como datos de prueba o de evaluación para distinguirlos de los datos de entrenamiento o calibración que se han usado para desarrollar el modelo. Idealmente, los datos de prueba deberían obtenerse por separado de los datos de entrenamiento del modelo. Sin embargo, en la práctica muchas veces no es posible poder obtener los datos de prueba independientemente y es por lo que generalmente se dividen los datos disponibles en un conjunto de datos de entrenamiento y un conjunto de datos de prueba. Pueden utilizarse diferentes estrategias para dividir los datos. La más simple y común consiste en agrupar los datos aleatoriamente en dos conjuntos con una proporción de datos arbitraria que depende del número total de puntos con datos disponibles, aunque por lo general se usa el 70% de los datos para el conjunto de datos de entrenamiento y el 30% para el conjunto de datos de prueba.

14 3. Validación de la capacidad predictiva del modelo. c. Elaboración de una matriz de confusión (o de contingencia). Si se usan los resultados obtenidos por el modelo para pronosticar un conjunto de datos de prueba, el rendimiento predictivo puede ser resumido en una matriz de confusión. Para ello es necesario que los pronósticos del modelo sean binarios, o sea, que sólo indiquen las zonas apropiadas e inadecuadas para la presencia de la especie (1 / 0) y para ello es necesario seleccionar previamente un umbral de presencia. La matriz de confusión recoge las frecuencias de cada uno de los cuatro tipos posibles de pronóstico y nos indica el error que ha cometido el modelo en su predicción. Los falsos positivos (b) provocan una sobrepredicción y se denominan ERROR POR COMISIÓN. Los falsos negativos (c) provocan una infrapredicción y se denominan ERROR POR OMISIÓN. El ERROR DE COMISIÓN puede ser real o aparente, ya que un falso positivo puede significar o una sobre-predicción del modelo o una predicción de nicho potencial de la especie El ERROR DE OMISIÓN: es mucho más importante y peor, pues NO predice lugares de presencia que pueden ser de importancia crucial para la supervivencia de la población. DATOS DE ENTRENAMIENTO Especie predicha Especie no predicha DATOS DE PRUEBA Especie Especie presente ausente Verdadero + positivo (a ) Falso - negativo (c ) + - Falso positivo (b ) Verdadero negativo (d )

15 3. Validación de la capacidad predictiva del modelo. d. Aplicación de Test estadísticos sobre la matriz de confusión. Las frecuencias de la matriz de confusión constituyen la base para una gran variedad de pruebas estadísticas diferentes que pueden ser usadas para evaluar el rendimiento del modelo. El estadístico Kappa (k), estima de la exactitud del modelo y tiene en cuenta la proporción de predicciones correctas que cabría esperar aleatoriamente. Se calcula como: El estadístico Kappa usa todos los valores de la matriz de confusión y requiere tanto datos de presencia como de ausencia. Sin embargo, los datos de ausencia a menudo no están disponibles y resulta inapropiado usarlos cuando se trata de calcular la distribución potencial (debido a que el ambiente podría ser apropiado aunque la especie esté ausente). En nuestro ejemplo, el valor de Kappa sería: 0,62

16 3. Validación de la capacidad predictiva del modelo. e. Aplicación de Test estadísticos sobre la matriz de confusión. Cuándo solamente se usan datos de presencia, se puede calcular la proporción de ocurrencias observadas correctamente predichas: a / (a+c) Este estadístico se denomina Sensibilidad o "Fracción de verdaderos positivos". Por otra parte, podemos calcular: c / (a+c) Este estadístico se denomina Tasa de omisión o "Fracción de falsos positivos".la suma de ambas medidas es igual a la unidad. La significación de los resultados obtenidos con estos estadísticos puede ser estimada mediante un test binomial exacto de una cola o, para tamaños de muestra grandes, con un test de ji-cuadrado. Otro estadístico derivado de la matriz de confusión es la proporción de ausencias observadas que son correctamente predichas, calculada como: d / (b + d). Este estadístico se denomina Especificidad o Fracción de verdaderos negativos. Normalmente, esta medida no se usa como test estadístico por sí mismo, sin embargo, adquiere una gran importancia en la selección del umbral de presencias y en el análisis de las curvas ROC.

17 3. Validación de la capacidad predictiva del modelo. f. Selección de umbrales de presencia. Existen diferentes métodos para seleccionar el umbral de presencia de las especies: Valor fijado: se fija un valor arbitrario, por ejemplo una probabilidad = 0.5 (datos de presencia) Valor predicho más bajo: el valor predicho más bajo correspondiente a un registro de ocurrencia observada (datos de presencia) Sensibilidad fijada: el umbral en el cual se alcanza una sensibilidad fijada arbitrariamente. Por ejemplo, un valor de 0.95 significa que el 95% de las localidades observadas estarían incluidas en la predicción (datos de presencia) Igualdad de sensibilidad-especificidad: el umbral en el que la sensibilidad y la especificidad se igualan (datos de presencia-ausencia) Maximización de Kappa: el umbral en el que el estadístico Kappa es máximo (datos de presenciaausencia)

18 3. Validación de la capacidad predictiva del modelo. g. Valoración independiente del umbral. Cuando la salida del modelo es continua, la valoración de la predicción utilizando la estadística derivada de la matriz de confusión será sensible al método utilizado para elegir el umbral para crear una predicción binaria. Además, si las predicciones son binarias, la evaluación del modelo no tiene en cuenta toda la información que da el modelo. Por ello, normalmente es útil derivar un test estadístico que de una sola medida de evaluación del poder predictivo a través de todo el rango de posibles umbrales. Esto se consigue con un estadístico llamado AUC: El área bajo la curva ROC (Receiver Operating Characteristic). La curva ROC se obtiene al enfrentar la sensibilidad frente a 1-Especificidad a los largo de todos los posibles umbrales. Se utilizan la sensibilidad y la especificidad porque estas dos medidas tienen en cuenta los cuatro elementos de la matriz de confusión. Por conveniencia se calcula 1-Especificidad para que la sensibilidad y la especificidad varíen en la misma dirección cuando se ajusta el umbral. FRACCIÓN DE VERDADEROS POSITIVOS FRACCIÓN DE FALSOS POSITIVOS

19 3. Validación de la capacidad predictiva del modelo. g. Valoración independiente del umbral. Un modelo que prediga perfectamente la distribución de una especie generará una curva ROC que siga el eje izquierdo hasta lo alto del gráfico, mientras que un modelo que prediga no mejor que al azar generará una curva ROC que siga la línea 1:1 (diagonal).

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

Interfaz BIOCLIM e Interfaz DOMAIN

Interfaz BIOCLIM e Interfaz DOMAIN Grupo de investigación Ecología de Zonas Áridas CENTRO ANDALUZ PARA LA EVALUACIÓN Y SEGUIMIENTO DEL CAMBIO GLOBAL Interfaz BIOCLIM e Interfaz DOMAIN Elisa Liras Dpto. Biología Vegetal y Ecología Universidad

Más detalles

Técnicas de valor presente para calcular el valor en uso

Técnicas de valor presente para calcular el valor en uso Normas Internacionales de Información Financiera NIC - NIIF Guía NIC - NIIF NIC 36 Fundación NIC-NIIF Técnicas de valor presente para calcular el valor en uso Este documento proporciona una guía para utilizar

Más detalles

Aula Banca Privada. La importancia de la diversificación

Aula Banca Privada. La importancia de la diversificación Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Estimación de una probabilidad

Estimación de una probabilidad Estimación de una probabilidad Introducción En general, la probabilidad de un suceso es desconocida y debe estimarse a partir de una muestra representativa. Para ello, deberemos conocer el procedimiento

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

NORMA INTERNACIONAL DE AUDITORÍA 520

NORMA INTERNACIONAL DE AUDITORÍA 520 NORMA INTERNACIONAL DE AUDITORÍA 520 PROCEDIMIENTOS ANALíTICOS (En vigor para auditorías de estados financieros por periodos que comiencen en, o después del, 15 de diciembre de 2004)* CONTENIDO Párrafo

Más detalles

[PROYECTO] DOCUMENTO DE PRACTICA DE LAS NIIF. Aplicación de la Materialidad o Importancia Relativa en los Estados Financieros

[PROYECTO] DOCUMENTO DE PRACTICA DE LAS NIIF. Aplicación de la Materialidad o Importancia Relativa en los Estados Financieros [PROYECTO] DOCUMENTO DE PRACTICA DE LAS NIIF Aplicación de la Materialidad o Importancia Relativa en los Estados Financieros Objetivo Proporcionar guías para ayudar a la gerencia a aplicar el concepto

Más detalles

Validation. Validación Psicométrica. Validation. Central Test. Central Test. Centraltest CENTRAL. L art de l évaluation. El arte de la evaluación

Validation. Validación Psicométrica. Validation. Central Test. Central Test. Centraltest CENTRAL. L art de l évaluation. El arte de la evaluación Validation Validación Psicométrica L art de l évaluation Validation Central Test Central Test Centraltest L art de l évaluation CENTRAL test.com El arte de la evaluación www.centraltest.com Propiedades

Más detalles

DETERMINACIÓN DEL VOLUMEN DE PEDIDO.

DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Lote económico de compra o Lote Optimo DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Concepto que vemos en casi todos libros de aprovisionamiento, habitualmente la decisión de la cantidad a reaprovisionar en las

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

La práctica del análisis de correspondencias

La práctica del análisis de correspondencias La práctica del análisis de correspondencias MICHAEL GREENACRE Catedrático de Estadística en la Universidad Pompeu Fabra Separata del capítulo 18 Análisis de correspondencias múltiples Primera edición:

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

Sistemas de Gestión de Calidad. Control documental

Sistemas de Gestión de Calidad. Control documental 4 Sistemas de Gestión de Calidad. Control documental ÍNDICE: 4.1 Requisitos Generales 4.2 Requisitos de la documentación 4.2.1 Generalidades 4.2.2 Manual de la Calidad 4.2.3 Control de los documentos 4.2.4

Más detalles

Test de Idioma Francés. Manual del evaluador

Test de Idioma Francés. Manual del evaluador Test de Idioma Francés Manual del evaluador 1 CONTENIDO Introducción Qué mide el Test de idioma francés? Qué obtienen el examinado y el examinador? Descripción de los factores Propiedades psicométricas

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO Los métodos más eficaces de protección contra las heladas son la plantación de cultivos que no

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Tratamiento del Riesgo

Tratamiento del Riesgo Tratamiento del Riesgo 1 En que consiste el tratamiento de los riesgos? 2. Cuando debemos enfrentarnos a los riesgos? 3. Estrategias de tratamiento de riesgos 4. Modelo de Análisis de Riesgos 5. Qué pasos

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

El Futuro de la Computación en la Industria de Generación Eléctrica

El Futuro de la Computación en la Industria de Generación Eléctrica El Futuro de la Computación en la Industria de Generación Eléctrica Retos a los que se enfrenta la industria de generación La industria de generación eléctrica se enfrenta a dos retos muy significativos

Más detalles

INDICADORES. PROBLEMAS ASOCIADOS A SU SELECCIÓN PARA MEDIR SUSTENTABILIDAD Y EFICIENCIA AMBIENTAL

INDICADORES. PROBLEMAS ASOCIADOS A SU SELECCIÓN PARA MEDIR SUSTENTABILIDAD Y EFICIENCIA AMBIENTAL FUNDACION NEXUS ciencias sociales medio ambiente salud INDICADORES. PROBLEMAS ASOCIADOS A SU SELECCIÓN PARA MEDIR SUSTENTABILIDAD Y EFICIENCIA AMBIENTAL Por Daniel Fernández Dillon Ingeniería Sanitaria

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

TIPOS DE MUESTREO. Jordi Casal 1, Enric Mateu RESUMEN

TIPOS DE MUESTREO. Jordi Casal 1, Enric Mateu RESUMEN TIPOS DE MUESTREO Jordi Casal 1, Enric Mateu CReSA. Centre de Recerca en Sanitat Animal / Dep. Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona RESUMEN Se discute

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

Diseño de un estudio de investigación de mercados

Diseño de un estudio de investigación de mercados Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,

Más detalles

ANÁLISIS DE BALANCES CON EL NUEVO PGC DE 2008

ANÁLISIS DE BALANCES CON EL NUEVO PGC DE 2008 ANÁLISIS DE BALANCES CON EL NUEVO PGC DE 2008 Índice: 1.- ANÁLISIS DE BALANCES. GENERALIDADES...2 2.- EL FONDO DE MANIOBRA...2 3.- ANÁLISIS FINANCIERO DEL BALANCE...3 4.- ANÁLISIS ECONÓMICO DEL BALANCE...6

Más detalles

Movimiento a través de una. José San Martín

Movimiento a través de una. José San Martín Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

1.1 EL ESTUDIO TÉCNICO

1.1 EL ESTUDIO TÉCNICO 1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar

Más detalles

DATA MINING EN LA BASE DE DATOS DE LA OMS KNOWLEDGE DETECTION (DETECCIÓN DEL CONOCIMIENTO) Q.F.B. JUANA LETICIA RODRÍGUEZ Y BETANCOURT

DATA MINING EN LA BASE DE DATOS DE LA OMS KNOWLEDGE DETECTION (DETECCIÓN DEL CONOCIMIENTO) Q.F.B. JUANA LETICIA RODRÍGUEZ Y BETANCOURT DATA MINING EN LA BASE DE DATOS DE LA OMS KNOWLEDGE DETECTION (DETECCIÓN DEL CONOCIMIENTO) Q.F.B. JUANA LETICIA RODRÍGUEZ Y BETANCOURT REACCIONES ADVERSAS DE LOS MEDICAMENTOS Los fármacos por naturaleza

Más detalles

BREVE MANUAL DE SOLVER

BREVE MANUAL DE SOLVER BREVE MANUAL DE SOLVER PROFESOR: DAVID LAHOZ ARNEDO PROGRAMACIÓN LINEAL Definición: Un problema se define de programación lineal si se busca calcular el máximo o el mínimo de una función lineal, la relación

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO

ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO ANÁLISIS DINÁMICO DEL RIESGO DE UN PROYECTO Por: Pablo Lledó Master of Science en Evaluación de Proyectos (University of York) Project Management Professional (PMP) Profesor de Project Management y Evaluación

Más detalles

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias: Iniciar con las interpretaciones de las medidas MEDIA VS MEDIANA VS MODA CUAL ES LA MEDIDA ADECUADA TAREA MEDIA PONDERADA Actividad de Medidas de Localización Problema 1. El problema de las tasas de delito.

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias

Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía

Más detalles

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20 CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS CONTENIDO NEC 20 Norma Ecuatoriana de Contabilidad 20 Contabilización de Inversiones en Asociadas Alcance Definiciones Influencia significativa Métodos de contabilidad

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

PROCEDIMIENTO DE GESTIÓN DE LOS ASPECTOS AMBIENTALES

PROCEDIMIENTO DE GESTIÓN DE LOS ASPECTOS AMBIENTALES H. R. U. CARLOS HAYA SERVICIO ANDALUZ DE SALUD Fecha: 13/12/2007 PROCEDIMIENTO DE Nombre y Cargo Firma Fecha Elaborado Sergio Pérez Ortiz 12/12/2007 Responsable Operativo del Sistema de Gestión Ambiental

Más detalles

Análisis de los estados contables III Análisis de los resultados. Estudio de la cuenta de pérdidas y ganancias

Análisis de los estados contables III Análisis de los resultados. Estudio de la cuenta de pérdidas y ganancias Análisis de los estados contables III Análisis de los resultados. Estudio de la cuenta de pérdidas y ganancias Guía Introducción: La cuenta de pérdidas y ganancias: concepto y función Modelos de cuentas

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

Sistemas de Información Geográficos (SIG o GIS)

Sistemas de Información Geográficos (SIG o GIS) Sistemas de Información Geográficos (SIG o GIS) 1) Qué es un SIG GIS? 2) Para qué sirven? 3) Tipos de datos 4) Cómo trabaja? 5) Modelos de datos, Diseño Conceptual 6) GeoDataase (GD) 7) Cómo evaluamos

Más detalles

Servicio de administración de pautas publicitarias en Internet

Servicio de administración de pautas publicitarias en Internet Servicio de administración de pautas publicitarias en Internet Resumen Ejecutivo Es habitual que la publicidad en Internet sea un apéndice de la publicidad en otros medios. Como no se conocen los resultados,

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II

MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II 28 febrero de 2012 Javier Marchamalo Martínez Universidad Rey Juan Carlos SABER INTERPRETAR LOS RATIOS SIGNIFICATIVOS EN LA GESTIÓN POR BENCHMARK Ratio

Más detalles

CURSO: ANALISIS DE RIESGOS EN ADMINISTRACION DE PROYECTOS

CURSO: ANALISIS DE RIESGOS EN ADMINISTRACION DE PROYECTOS MANAGEMENT CONSULTORES CURSO: ANALISIS DE RIESGOS EN ADMINISTRACION DE PROYECTOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

Inteligencia de Negocio

Inteligencia de Negocio UNIVERSIDAD DE GRANADA E.T.S. de Ingenierías Informática y de Telecomunicación Departamento de Ciencias de la Computación e Inteligencia Artificial Inteligencia de Negocio Guión de Prácticas Práctica 1:

Más detalles

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA 1. Cuenta de pérdidas y ganancias analítica 1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA La cuenta de pérdidas y ganancias que se recoge en el modelo normal del Plan General de Contabilidad se puede presentar,

Más detalles

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS 6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS Esquema del capítulo Objetivos 6.1. 6.. 6.3. 6.4. ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS COEFICIENTES DE CONTINGENCIA LA

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

EL MODELO DE DATOS RASTER

EL MODELO DE DATOS RASTER EL MODELO DE DATOS RASTER El modelo de datos raster, como señala Bosque (1992), es el modelo de datos complementario al modelo vectorial presentado anteriormente. Tiene como principal característica el

Más detalles

NORMA INTERNACIONAL DE AUDITORÍA 706 PÁRRAFOS DE ÉNFASIS Y PÁRRAFOS DE OTROS ASUNTOS EN EL

NORMA INTERNACIONAL DE AUDITORÍA 706 PÁRRAFOS DE ÉNFASIS Y PÁRRAFOS DE OTROS ASUNTOS EN EL NORMA INTERNACIONAL DE AUDITORÍA 706 PÁRRAFOS DE ÉNFASIS Y PÁRRAFOS DE OTROS ASUNTOS EN EL DICTAMEN DEL AUDITOR INDEPEN DIENTE (Entra en vigor para las auditorías de estados financieros por periodos que

Más detalles

CALIDAD página: 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ECONOMÍA Y ADMINISTRACIÓN DE EMPRESA

CALIDAD página: 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ECONOMÍA Y ADMINISTRACIÓN DE EMPRESA CALIDAD página: 1 HISTOGRAMA QUÉ ES EL HISTOGRAMA? El histograma es una herramienta útil para resumir y analizar datos. Por su naturaleza gráfica, puede ayudar a identificar e interpretar pautas que son

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN.

SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN. SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN. CURVA ROC OBJETIVOS Si disponemos de una variable continua (por ejemplo una determinación de un valor analítico),

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

ASEGURAMIENTO DE LA CALIDAD EN LABORATORIO

ASEGURAMIENTO DE LA CALIDAD EN LABORATORIO FUNDACION NEXUS ASEGURAMIENTO DE LA CALIDAD EN LABORATORIO Marzo de 2012 CALIDAD, CONTROL DE LA CALIDAD Y ASEGURAMIENTO DE LA CALIDAD El laboratorio de análisis ofrece a sus clientes un servicio que se

Más detalles

ANÁLISIS DE BONOS. Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003

ANÁLISIS DE BONOS. Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003 ANÁLISIS DE BONOS Fuente: Alexander, Sharpe, Bailey; Fundamentos de Inversiones: Teoría y Práctica; Tercera edición, 2003 Métodos de Análisis Una forma de analizar un bono es comparar su rendimiento al

Más detalles

Contenidos. INFORME ENCUESTA TELEFÓNICA. Curso 2009 10

Contenidos. INFORME ENCUESTA TELEFÓNICA. Curso 2009 10 ENCUESTA DE OPINIÓN DEL ALUMNADO SOBRE LA ACTUACIÓN DOCENTE DEL PROFESORADO UNIVERSIDAD DE SEVILLA Curso 2009-2010 ENCUESTA TELEFÓNICA Contenidos Introducción.... 4 El Cuestionario... 5 El muestreo...

Más detalles

PREGUNTAS DE RESPUESTA CORTA SELECTIVIDAD TEMA 4:

PREGUNTAS DE RESPUESTA CORTA SELECTIVIDAD TEMA 4: PREGUNTAS DE RESPUESTA CORTA SELECTIVIDAD TEMA 4: 1. La organización formal e informal en la empresa. La organización formal se define como la estructura intencional definida e identificada en que la empresa

Más detalles

Funcionalidades Software PROYECTOS GotelGest.Net Software para la gestión de Proyectos GotelGest.Net

Funcionalidades Software PROYECTOS GotelGest.Net Software para la gestión de Proyectos GotelGest.Net 2012 Funcionalidades Software PROYECTOS GotelGest.Net Software para la gestión de Proyectos GotelGest.Net Servinet Sistemas y Comunicación S.L. www.softwaregestionproyectos.com Última Revisión: Febrero

Más detalles

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier

Más detalles

FUNCIÓN FINANCIERA DE LA EMPRESA

FUNCIÓN FINANCIERA DE LA EMPRESA FUNCIÓN FINANCIERA DE LA EMPRESA La función financiera, junto con las de mercadotecnia y producción es básica para el buen desempeño de las organizaciones, y por ello debe estar fundamentada sobre bases

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

NORMA INTERNACIONAL DE AUDITORÍA 520 PROCEDIMIENTOS ANALÍTICOS

NORMA INTERNACIONAL DE AUDITORÍA 520 PROCEDIMIENTOS ANALÍTICOS NORMA INTERNACIONAL DE AUDITORÍA 520 PROCEDIMIENTOS ANALÍTICOS (NIA-ES 520) (adaptada para su aplicación en España mediante Resolución del Instituto de Contabilidad y Auditoría de Cuentas, de 15 de octubre

Más detalles

ADMIRAL MARKETS AS. Normas de Ejecución Óptima. medida en que ha actuado de acuerdo con las correspondientes instrucciones del cliente.

ADMIRAL MARKETS AS. Normas de Ejecución Óptima. medida en que ha actuado de acuerdo con las correspondientes instrucciones del cliente. ADMIRAL MARKETS AS Normas de Ejecución Óptima 1. Disposiciones Generales 1.1. Estas Normas de Ejecución Óptima (de aquí en adelante Normas ) estipularán los términos, condiciones y principios sobre los

Más detalles

4.4.1 Servicio de Prevención Propio.

4.4.1 Servicio de Prevención Propio. 1 Si se trata de una empresa entre 250 y 500 trabajadores que desarrolla actividades incluidas en el Anexo I del Reglamento de los Servicios de Prevención, o de una empresa de más de 500 trabajadores con

Más detalles

ÍNDICE. Introducción. Alcance de esta NIA Fecha de vigencia

ÍNDICE. Introducción. Alcance de esta NIA Fecha de vigencia NORMA INTERNACIONAL DE AUDITORÍA 706 PARRAFOS DE ÉNFASIS EN EL ASUNTO Y PARRAFOS DE OTROS ASUNTOS EN EL INFORME DEL AUDITOR INDEPENDIENTE (En vigencia para las auditorías de estados financieros por los

Más detalles

Cómo sistematizar una experiencia?

Cómo sistematizar una experiencia? Cómo sistematizar una experiencia? Una sistematización puede llevarse a cabo de múltiples formas, y además puede ser llevada a cabo por cualquier persona sin necesidad de ser especialista en la materia.

Más detalles

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Análisis de medidas conjuntas (conjoint analysis)

Análisis de medidas conjuntas (conjoint analysis) Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los

Más detalles

❷ Aritmética Binaria Entera

❷ Aritmética Binaria Entera ❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas

Más detalles

1.2 SISTEMAS DE PRODUCCIÓN

1.2 SISTEMAS DE PRODUCCIÓN 19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

Módulo 7: Los activos de Seguridad de la Información

Módulo 7: Los activos de Seguridad de la Información Módulo 7: Los activos de Seguridad de la Información Se explica en este tema cómo deben abordarse la elaboración de un inventario de activos que recoja los principales activos de información de la organización,

Más detalles