Lección n 5. Modelos de distribución n potencial de especies

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección n 5. Modelos de distribución n potencial de especies"

Transcripción

1 Lección n 5. Modelos de distribución n potencial de especies

2 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución estimada de una especie debe coincidir con la distribución conocida o deducida a partir de las condiciones ambientales dónde ha sido observada. El procedimiento consiste en usar algoritmos computerizados para generar mapas predictivos sobre la distribución potencial de especies en el espacio geográfico a partir de las distribuciones (conocidas o deducidas) de la especies en el espacio ambiental. Los modelos de distribución de especies tienen un gran interés aplicado pues permiten evaluar cuantitativamente la posibilidad de que una población de plantas o animales ocupe un determinado lugar. La capacidad de predicción de estos modelos los ha convertido en una herramienta clave en temas relacionados con la gestión ambiental cuyos objetivos son variados: Diseño de reservas naturales. Restauración de poblaciones. Predicción de invasiones biológicas. Evaluación de impacto del cambio climático sobre la distribución geográfica de las especies.

3 1. Elaboración de modelos de distribución. b. Fuentes de información. Su elaboración requiere modelos de abstracción tipo campo que representen la distribución espacial de las variables ambientales (capas) y un conjunto de puntos georeferenciados que indiquen donde está presente la especie. Modelos sobre variables ambientales Datos sobre presencia de las especies Elaboración de modelos de distribución

4 1. Elaboración de modelos de distribución. c. Incertidumbre asociada al proceso de modelado. El grado de certidumbre de que tales modelos reflejan la verdadera distribución de una especie en el espacio geográfico dependerá de varios factores: La naturaleza, la complejidad y exactitud de los modelos usados. La calidad de las capas de datos ambientales disponibles La disponibilidad de datos sobre la distribución de la especie que deben ser suficientes y confiables como datos de entrada del modelo. También hay que tener en cuenta la influencia de otros factores del nicho como barreras para la dispersión, la historia geológica o la competición entre especie, que pueden impedir la ocupación actual de los nichos potenciales identificados por el modelo. Elaboración de modelos de distribución - Test Jackknife Evaluación de los modelos Curva ROC

5 1. Elaboración de modelos de distribución. b. Estrategia general de análisis. Modelos sobre variables ambientales Datos sobre presencia de las especies Elaboración de modelos de distribución - Evaluación de los modelos Gestión y planificación ambiental Cambio climático Distribución potencial de especies

6 2. Tipos de algoritmos empleados en el proceso de modelización. Existen diferentes tipos de modelos en función de sus planteamientos teóricos y el tipo de datos que utilizan: DATOS DE PRESENCIA Modelos basados en la envoltura Modelos basados en la métrica de Gower ambiental de las especies Biodiversity and Conservation 2, (1993) A project within the European Commission 5th Euratom Framework Programme Contract FIKW-CT s DATOS DE PRESENCIA DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals G. CARPENTER, A.N. GILLISON, J. WINTER DATOS DE PRESENCIA Y AUSENCIA Modelos basados en técnicas de regresión DATOS DE PRESENCIA Y PSEUDO-AUSENCIA Modelos basados en la Entropía máxima (MAXENT)

7 2. Tipos de algoritmos empleados en el proceso de modelización.. a. Modelos basados en la envoltura ambiental de las especies (BIOCLIM). Estima la envoltura de la especie dentro del rango de variación de cada variable ambiental y se identifican los sitios que están ubicados dentro del híper-espacio ambiental ocupado por una especie. Para cada variable ambiental en particular, el algoritmo calcula la media y la desviación típica (asumiendo una distribución normal) asociada al conjunto de puntos donde está presente la especie (ocurrencia). Cada variable tiene su propia envoltura representada por el intervalo de confianza de la media para una probabilidad del 95% o del 99%. Además de la envoltura, cada variable ambiental tiene límites máximos y mínimos adicionales tomados de los valores máximos y mínimos relativos al conjunto de puntos de ocurrencia. Área estudio En este modelo, cualquier celdilla puede ser clasificada como: Apropriada: si todas las variables ambientales asociadas se sitúan dentro de la envoltura calculada. Marginal: si una o más variables ambientales asociadas se sitúan fuera de la envoltura calculada, pero permanecen dentro de los límites máximo y mínimo. Especie 95% 100% Inadecuado: si una o más variables ambientales asociadas se sitúan fuera de los límites máximo y mínimo de la envoltura.

8 2. Tipos de algoritmos empleados en el proceso de modelización. b. Modelos basados en la métrica de Gower (DOMAIN). Se calcula una matiz de distancias punto a punto para asignar valores de similitud a cada punto del espacio geográfico en base su la proximidad en el espacio ambiental a los puntos de ocurrencia de la especie. La métrica de Gower provee unos medios apropiados para cuantificar la similitud entre dos sitios. La distancia (d) entre un punto candidato (A) y un punto de ocurrrencia (B) en un espacio Euclideo con p dimensiones se define como: p 1 Ak Bk d AB p k 1 rangok la similitud entre ambos puntos (R AB ), sería el complementario de la distancia: R 1 R AB está restringido entre los valores 0 y 1 para puntos dentro de los rangos usados en la primera ecuación. De esta forma, para el punto candidato (A) se obtiene un conjunto de m valores de similitud correspondientes a los puntos de ocurrencia. Se define S TA, como la similitud máxima entre el punto candidato A y el conjunto de puntos de ocurrencia de m la especie T como: S max R TA Los valores de S TA generados por el algoritmo se representan en el mapa de una forma continua. Hay que tener en cuenta que estos valores no se interpretan como probabilidades, sino como grados de similitud. j 1 T j A AB d AB Área estudio Especie: S = 0.95 S = 0.93

9 2. Tipos de algoritmos empleados en el proceso de modelización. b. Modelos basados en la similitud (DOMAIN).

10

11 2. Tipos de algoritmos empleados en el proceso de modelización. c. Modelos basados en la Entropía máxima (MAXENT). Maxent es uno método cuyo propósito general es caracterizar distribuciones de probabilidad cuya información está incompleta. Se basa en el principio de que la distribución estimada de una especie debe coincidir con la distribución conocida o deducida a partir de las condiciones ambientales dónde ha sido observada, evitando hacer cualquier suposición que no sea soportada por los datos. El enfoque consiste en encontrar la distribución de probabilidad de entropía máxima, que es la más cercana a la distribución uniforme, condicionada por las restricciones impuestas por la información disponible sobre la distribución observada de la especie y las condiciones ambientales del área de estudio. El método de Maxent no requiere datos de ausencia de la especie para elaborar el modelo; en vez de ello, usa los datos ambientales proporcionados por el área de estudio al completo como datos de pseudo-ausencia. Puede utilizar variables tanto continuas como categóricas y el producto es un pronóstico continuo que varía de 0 a 100 y se interpreta como un grado relativo de adecuación (en qué medida un lugar es adecuado para que la especie esté presente). Maxent ha demostrado funcionar bien en comparación con otros métodos alternativos como BIOCLIM y DOMAINE, que tan sólo consideran datos de presencia de la especie, resultando difícil evaluar la significación de los resultados que se obtienen mediante test estadísticos.

12 3. Validación de la capacidad predictiva del modelo. a. Planteamiento. La puesta en práctica del modelo tendrá poco interés si previamente no hemos validado la exactitud de sus pronósticos. La validación nos permite determinar la conveniencia de un modelo para una aplicación específica, así como, comparar diferentes métodos de modelado. Este apartado aborda diferentes pasos para evaluar la capacidad predictiva de un modelo: Obtención de un conjunto de datos de prueba Elaboración de una matriz de confusión (o de contingencia) Aplicación de Test estadísticos sobre la matriz de confusión Selección de umbrales de presencia Valoración independiente del umbral

13 3. Validación de la capacidad predictiva del modelo. b. Obtención de un conjunto de datos de prueba. Para evaluar el rendimiento del modelo es necesario disponer de datos contra los que poder comparar los pronósticos del modelo. A este conjunto de datos lo referimos como datos de prueba o de evaluación para distinguirlos de los datos de entrenamiento o calibración que se han usado para desarrollar el modelo. Idealmente, los datos de prueba deberían obtenerse por separado de los datos de entrenamiento del modelo. Sin embargo, en la práctica muchas veces no es posible poder obtener los datos de prueba independientemente y es por lo que generalmente se dividen los datos disponibles en un conjunto de datos de entrenamiento y un conjunto de datos de prueba. Pueden utilizarse diferentes estrategias para dividir los datos. La más simple y común consiste en agrupar los datos aleatoriamente en dos conjuntos con una proporción de datos arbitraria que depende del número total de puntos con datos disponibles, aunque por lo general se usa el 70% de los datos para el conjunto de datos de entrenamiento y el 30% para el conjunto de datos de prueba.

14 3. Validación de la capacidad predictiva del modelo. c. Elaboración de una matriz de confusión (o de contingencia). Si se usan los resultados obtenidos por el modelo para pronosticar un conjunto de datos de prueba, el rendimiento predictivo puede ser resumido en una matriz de confusión. Para ello es necesario que los pronósticos del modelo sean binarios, o sea, que sólo indiquen las zonas apropiadas e inadecuadas para la presencia de la especie (1 / 0) y para ello es necesario seleccionar previamente un umbral de presencia. La matriz de confusión recoge las frecuencias de cada uno de los cuatro tipos posibles de pronóstico y nos indica el error que ha cometido el modelo en su predicción. Los falsos positivos (b) provocan una sobrepredicción y se denominan ERROR POR COMISIÓN. Los falsos negativos (c) provocan una infrapredicción y se denominan ERROR POR OMISIÓN. El ERROR DE COMISIÓN puede ser real o aparente, ya que un falso positivo puede significar o una sobre-predicción del modelo o una predicción de nicho potencial de la especie El ERROR DE OMISIÓN: es mucho más importante y peor, pues NO predice lugares de presencia que pueden ser de importancia crucial para la supervivencia de la población. DATOS DE ENTRENAMIENTO Especie predicha Especie no predicha DATOS DE PRUEBA Especie Especie presente ausente Verdadero + positivo (a ) Falso - negativo (c ) + - Falso positivo (b ) Verdadero negativo (d )

15 3. Validación de la capacidad predictiva del modelo. d. Aplicación de Test estadísticos sobre la matriz de confusión. Las frecuencias de la matriz de confusión constituyen la base para una gran variedad de pruebas estadísticas diferentes que pueden ser usadas para evaluar el rendimiento del modelo. El estadístico Kappa (k), estima de la exactitud del modelo y tiene en cuenta la proporción de predicciones correctas que cabría esperar aleatoriamente. Se calcula como: El estadístico Kappa usa todos los valores de la matriz de confusión y requiere tanto datos de presencia como de ausencia. Sin embargo, los datos de ausencia a menudo no están disponibles y resulta inapropiado usarlos cuando se trata de calcular la distribución potencial (debido a que el ambiente podría ser apropiado aunque la especie esté ausente). En nuestro ejemplo, el valor de Kappa sería: 0,62

16 3. Validación de la capacidad predictiva del modelo. e. Aplicación de Test estadísticos sobre la matriz de confusión. Cuándo solamente se usan datos de presencia, se puede calcular la proporción de ocurrencias observadas correctamente predichas: a / (a+c) Este estadístico se denomina Sensibilidad o "Fracción de verdaderos positivos". Por otra parte, podemos calcular: c / (a+c) Este estadístico se denomina Tasa de omisión o "Fracción de falsos positivos".la suma de ambas medidas es igual a la unidad. La significación de los resultados obtenidos con estos estadísticos puede ser estimada mediante un test binomial exacto de una cola o, para tamaños de muestra grandes, con un test de ji-cuadrado. Otro estadístico derivado de la matriz de confusión es la proporción de ausencias observadas que son correctamente predichas, calculada como: d / (b + d). Este estadístico se denomina Especificidad o Fracción de verdaderos negativos. Normalmente, esta medida no se usa como test estadístico por sí mismo, sin embargo, adquiere una gran importancia en la selección del umbral de presencias y en el análisis de las curvas ROC.

17 3. Validación de la capacidad predictiva del modelo. f. Selección de umbrales de presencia. Existen diferentes métodos para seleccionar el umbral de presencia de las especies: Valor fijado: se fija un valor arbitrario, por ejemplo una probabilidad = 0.5 (datos de presencia) Valor predicho más bajo: el valor predicho más bajo correspondiente a un registro de ocurrencia observada (datos de presencia) Sensibilidad fijada: el umbral en el cual se alcanza una sensibilidad fijada arbitrariamente. Por ejemplo, un valor de 0.95 significa que el 95% de las localidades observadas estarían incluidas en la predicción (datos de presencia) Igualdad de sensibilidad-especificidad: el umbral en el que la sensibilidad y la especificidad se igualan (datos de presencia-ausencia) Maximización de Kappa: el umbral en el que el estadístico Kappa es máximo (datos de presenciaausencia)

18 3. Validación de la capacidad predictiva del modelo. g. Valoración independiente del umbral. Cuando la salida del modelo es continua, la valoración de la predicción utilizando la estadística derivada de la matriz de confusión será sensible al método utilizado para elegir el umbral para crear una predicción binaria. Además, si las predicciones son binarias, la evaluación del modelo no tiene en cuenta toda la información que da el modelo. Por ello, normalmente es útil derivar un test estadístico que de una sola medida de evaluación del poder predictivo a través de todo el rango de posibles umbrales. Esto se consigue con un estadístico llamado AUC: El área bajo la curva ROC (Receiver Operating Characteristic). La curva ROC se obtiene al enfrentar la sensibilidad frente a 1-Especificidad a los largo de todos los posibles umbrales. Se utilizan la sensibilidad y la especificidad porque estas dos medidas tienen en cuenta los cuatro elementos de la matriz de confusión. Por conveniencia se calcula 1-Especificidad para que la sensibilidad y la especificidad varíen en la misma dirección cuando se ajusta el umbral. FRACCIÓN DE VERDADEROS POSITIVOS FRACCIÓN DE FALSOS POSITIVOS

19 3. Validación de la capacidad predictiva del modelo. g. Valoración independiente del umbral. Un modelo que prediga perfectamente la distribución de una especie generará una curva ROC que siga el eje izquierdo hasta lo alto del gráfico, mientras que un modelo que prediga no mejor que al azar generará una curva ROC que siga la línea 1:1 (diagonal).

Interfaz BIOCLIM e Interfaz DOMAIN

Interfaz BIOCLIM e Interfaz DOMAIN Grupo de investigación Ecología de Zonas Áridas CENTRO ANDALUZ PARA LA EVALUACIÓN Y SEGUIMIENTO DEL CAMBIO GLOBAL Interfaz BIOCLIM e Interfaz DOMAIN Elisa Liras Dpto. Biología Vegetal y Ecología Universidad

Más detalles

Regresión de Poisson

Regresión de Poisson Regresión de Poisson -- Si la estructura de los errores es realmente de Poisson, entonces: devianza residual / grados de libertad residuales = 1 si el cociente es mayor que 1 estamos ante el fenómeno (incómodo)

Más detalles

Comparación de proporciones

Comparación de proporciones 11 Comparación de proporciones Neus Canal Díaz 11.1. Introducción En la investigación biomédica se encuentran con frecuencia datos o variables de tipo cualitativo (nominal u ordinal), mediante las cuales

Más detalles

Predicción de la distribución potencial del castaño en Galicia mediante modelos de nicho ecológico

Predicción de la distribución potencial del castaño en Galicia mediante modelos de nicho ecológico Predicción de la distribución potencial del castaño en Galicia mediante modelos de nicho ecológico Seminario Sectorial del PNACC: Adaptación al cambio climático en bosques CENEAM, Valsaín (Segovia), 14

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

Universidad Autónoma de Yucatán Facultad de Matemáticas

Universidad Autónoma de Yucatán Facultad de Matemáticas Universidad Autónoma de Yucatán Facultad de Matemáticas Enfoque Bayesiano del Método Domain para la estimación de la zona de alto potencial de una especie. Tesis que presenta L.M. Edith Aracelly Pech Méndez

Más detalles

Estimación de parámetros, validación de modelos y análisis de sensibilidad

Estimación de parámetros, validación de modelos y análisis de sensibilidad Tema 6 Estimación de parámetros, validación de modelos y análisis de sensibilidad 6.1 Calibración Una vez que se ha identificado el modelo y se ha programado, necesitamos aplicarlo al problema concreto

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Análisis de riesgo e incertidumbre

Análisis de riesgo e incertidumbre Análisis de riesgo e incertidumbre Eduardo Contreras Enero 2009 Introducción a riesgo e incertidumbre Dos Conceptos: Riesgo:» Información de naturaleza aleatórea, las probabilidades de ocurrencia de eventos

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Control de calidad del. Ciudad de La Rioja Mayo 2013

Control de calidad del. Ciudad de La Rioja Mayo 2013 Control de calidad del Hormigón Ciudad de La Rioja Mayo 2013 Control de calidad Desde que se comenzó con la producción de bienes, se han hecho intentos en controlar el proceso de manera de mejorar la calidad

Más detalles

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO

C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO C A P Í T U L O 1 LA PROBABILIDAD DE HELADA Y EL RIESGO DE DAÑO IMPORTANCIA DE LA PROBABILIDAD Y DEL RIESGO Los métodos más eficaces de protección contra las heladas son la plantación de cultivos que no

Más detalles

3. Principios de medición de la calidad del aire

3. Principios de medición de la calidad del aire 3. Principios de medición de la calidad del aire 3.1. Medición. Medir es contar, comparar una unidad con otra, dar una valoración numérica, asignar un valor, asignar números a los objetos. Todo lo que

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES

UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES José Alejandro Chiri Aguirre RESUMEN La predicción de recidiva en pacientes que han sido

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Minitab Training. Blackberry&Cross es aliado oficial de Minitab Inc., en Centroamérica, así como aliado y comercializador de BBCross Learning Center.

Minitab Training. Blackberry&Cross es aliado oficial de Minitab Inc., en Centroamérica, así como aliado y comercializador de BBCross Learning Center. Minitab Training Minitab Statiscal Software, Quality Companion, sus logotipos, marcas y demás símbolos distintivos son propiedad de Minitab Inc. Blackberry&Cross, su logotipo, y demás símbolos distintivos

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR Juan Mascareñas Universidad Complutense de Madrid Versión inicial: mayo 1998 - Última versión: mayo 2008 - El valor en riesgo (VaR), 2 - El método histórico, 3 - El método varianza-covarianza, 6 - El método

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

Cualitativos Caso de Aplicación

Cualitativos Caso de Aplicación Validación n de Métodos M Cualitativos Caso de Aplicación Agenda Introducción Definiciones Clasificación Validación Evaluación de Métodos Cualitativos Caso de Aplicación Conclusiones Introducción La validación

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Equipo requerido Cantidad Observaciones Reglas graduadas en decímetros, en centímetros y milímetros

Equipo requerido Cantidad Observaciones Reglas graduadas en decímetros, en centímetros y milímetros DEPARTAMENTO DE FISICA Y GEOLOGIA No 0 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos Entender y familiarizarse

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Introducción al DataMining

Introducción al DataMining Introducción al DataMining Lluís Garrido garrido@ecm.ub.es Universitat de Barcelona Índice Qué es el DataMining? Qué puede hacer el DataMining? Cómo hacer el DataMining? Técnicas Metodología del DataMining

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

5. SISTEMA DE COSTOS ESTÁNDAR

5. SISTEMA DE COSTOS ESTÁNDAR 5. SISTEMA DE COSTOS ESTÁNDAR Entre los diversos procedimientos técnicos que los ejecutivos y funcionarios de las organizaciones privadas, públicas o no gubernamentales, tienen que utilizar para administrar

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia Capítulo 12 Análisis de variables categóricas: El procedimiento Tablas de contingencia En las ciencias sociales, de la salud y del comportamiento es muy frecuente encontrarse con variables categóricas.

Más detalles

Curso DE Fundamentos de Diseño y Estadística

Curso DE Fundamentos de Diseño y Estadística www.metodo.uab.cat Estudios de postgrado en Metodología de la investigación en Ciencias de la Salud Curso DE Fundamentos de Diseño y Estadística Contenidos UD 1 Descripción de datos cuantitativos 1 Conceptos

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto

Contenido. Horizontes temporales de la previsión La influencia del ciclo de vida del producto Previsión Contenido Qué es la previsión? Horizontes temporales de la previsión La influencia del ciclo de vida del producto Tipos de previsiones La importancia estratégica de la previsión Recursos humanos

Más detalles

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo 1 Algoritmos de minería de datos incluidos en SQL Server 2008 Los algoritmos que aquí se presentan son: Árboles de decisión de Microsoft, Bayes naive de Microsoft, Clústeres de Microsoft, Serie temporal

Más detalles

EDUCACION CONTINUADA. Epidemiología y metodología científica aplicada a la pediatría (IV): Pruebas diagnósticas. Introducción

EDUCACION CONTINUADA. Epidemiología y metodología científica aplicada a la pediatría (IV): Pruebas diagnósticas. Introducción EDUCACION CONTINUADA C. Ochoa Sangrador 1, G. Orejas 2 An Esp Pediatr 1999;50:301-314. Epidemiología y metodología científica aplicada a la pediatría (IV): Pruebas diagnósticas Introducción El diagnóstico

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

Repaso de conceptos. Tipos de RNA más utilizados. Técnicas de Clasificación con RNA. Contenido

Repaso de conceptos. Tipos de RNA más utilizados. Técnicas de Clasificación con RNA. Contenido Contenido Introducción al Diseño de Experimentos para el Reconocimiento de Patrones Capítulo 3: Redes Neuronales Artificiales Curso de doctorado impartido por Dr. Quiliano Isaac Moro Dra. Aranzazu Simón

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Serie Documentos de Trabajo. Tablas de Mortalidad CNSF 2000-I y CNSF 2000-G. Documento de trabajo No. 80

Serie Documentos de Trabajo. Tablas de Mortalidad CNSF 2000-I y CNSF 2000-G. Documento de trabajo No. 80 Tablas de Mortalidad CNSF 2-I y CNSF 2-G Manuel Mendoza Ramírez Ana María Madrigal Gómez Evangelina Martínez Torres Mayo 2 Serie Documentos de Trabajo Documento de trabajo No. 8 Índice 1. Antecedentes

Más detalles

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN Análisis del Entorno. Es el análisis de grandes cantidades de información del medio ambiente para detectar tendencias emergentes y crear escenarios. Análisis del

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Vanesa Berlanga-Silvente y Ruth Vilà-Baños Fecha de presentación:

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

INDICADORES DE GESTION

INDICADORES DE GESTION INDICADORES DE GESTION Un indicador se define como la relación entre las variables cuantitativas o cualitativas, que permite observar la situación y las tendencias de cambio generadas en el objeto o fenómeno

Más detalles

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como:

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como: TEMA 1: PRONÓSTICOS 1.1. Introducción Pronostico es un método mediante el cual se intenta conocer el comportamiento futuro de alguna variable con algún grado de certeza. Existen disponibles tres grupos

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

TEMA 6. LA VALIDEZ. 3. Validez de criterio o criterial Validez externa / validez interna Validez concurrente / validez predictiva

TEMA 6. LA VALIDEZ. 3. Validez de criterio o criterial Validez externa / validez interna Validez concurrente / validez predictiva TEMA 6. LA VALIDEZ 1. Concepto de validez 2. Validez de contenido 3. Validez de criterio o criterial Validez externa / validez interna Validez concurrente / validez predictiva 4. Validez de constructo

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Printer: Opaue this Métodos de la Minería de Datos Dr. Oldemar Rodríguez Rojas de noviembre de 2005 ii Contents This is page iii Printer: Opaue this iv This is page v Printer: Opaue this

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Suplemento Control estadístico stico de procesos

Suplemento Control estadístico stico de procesos Suplemento Control estadístico stico de procesos Contenido Control estadístico de procesos (CEP) Gráficos de control para variables El teorema central del límite Fijación de límites del gráfico de medias

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA barcillo@gmail.com (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister

Más detalles

Facultad de Ciencias

Facultad de Ciencias Facultad de Ciencias Trabajo Fin de Grado Grado en Estadística Métodos de predicción de fuga con grandes volúmenes de datos Autor: D. Raquel García Fernández Tutor/es: D. Eusebio Arenal Gutiérrez Página

Más detalles

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES DEFINICIÓN: AGRUPAR UN CONJUNTO DE n OBJETOS, DEFINIDOS POR p VARIABLES, EN c CLASES, DONDE EN CADA CLASE LOS ELEMENTOS POSEAN CARACTERÍSTICAS AFINES Y SEAN MÁS SIMILARES ENTRE SÍ QUE RESPECTO AELEMENTOS

Más detalles

Análisis de datos de accidentes de tráfico mediante soluciones BigData y Business Intelligence

Análisis de datos de accidentes de tráfico mediante soluciones BigData y Business Intelligence Análisis de datos de accidentes de tráfico mediante soluciones BigData y Business Intelligence Marc Alvarez Brotons Ingeniería Informática David Isern Alarcón 27/12/2014 1. Objetivos del proyecto 2. Enfoque

Más detalles

Curso de Estadística y Matemáticas Farmacéuticas

Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas Titulación certificada por EUROINNOVA BUSINESS SCHOOL Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas

Más detalles

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Fernando Solís Soberón Emma Izquierdo Ortega Diciembre 1992

Más detalles

7 Irradiación solar. 7.1 Determinación del factor de transmisión atmosférica horario y diario

7 Irradiación solar. 7.1 Determinación del factor de transmisión atmosférica horario y diario 7 Irradiación solar La premisa básica en la determinación de la irradiación solar mediante un modelo estadístico es el planteamiento de una relación lineal entre el índice de nubosidad y el factor de transmisión

Más detalles

Object Search and Localization for an Indoor Mobile Robot

Object Search and Localization for an Indoor Mobile Robot Object Search and Localization for an Indoor Mobile Robot Kristoffer Sjö, Dorian Gálvez López, Chandana Paul, Patric Jensfelt and Danica Kragic Artículo presentado por : Javier Cabanillas Lugar : Laboratorio

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN.

SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN. SESIÓN PRÁCTICA DE BIOESTADÍSTICA: EVALUACIÓN DE CRITERIOS DIAGNÓSTICOS. DISCRIMINACIÓN. CURVA ROC OBJETIVOS Si disponemos de una variable continua (por ejemplo una determinación de un valor analítico),

Más detalles

Porqué varían los resultados analíticos?

Porqué varían los resultados analíticos? ESTADÍSTICA BÁSICA I 1. La estadística y sus objetivos. Aplicación de la Estadística en Química Analítica 3. Variabilidad analítica. Distribución normal 4. Otros conceptos básicos. Intervalos de confianza

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN TALLER PREPARATORIO: SEGUNDO EXAMEN DE INVERSIONES BAJO RIESGO 1. Usted es el encargado de administrar

Más detalles

CARTERAS DE EMPRESAS. SISTEMAS DE RATING. CONSTRUCCION Y EVALUACION

CARTERAS DE EMPRESAS. SISTEMAS DE RATING. CONSTRUCCION Y EVALUACION CARTERAS DE EMPRESAS. SISTEMAS DE RATING. CONSTRUCCION Y EVALUACION Dirección General de Supervisión Grupo de Tesorería y Modelos de Gestión de Riesgos Luis González Mosquera Antonio Marcelo Antuña Raúl

Más detalles

PROPÓSITO Y PLANEACIÓN DE UN INVENTARIO DE EMISIONES

PROPÓSITO Y PLANEACIÓN DE UN INVENTARIO DE EMISIONES PROPÓSITO Y PLANEACIÓN DE UN INVENTARIO DE EMISIONES 4 4.1. PROPÓSITO DE UN INVENTARIO DE EMISIONES El primer paso técnico en el desarrollo de de emisiones es la definición de su propósito, el cual no

Más detalles

UTILIZACIÓN DE HERRAMIENTAS INFORMÁTICAS EN EL ANÁLISIS DE SENSIBILIDAD PARA LA FINANCIACIÓN DE PROYECTOS

UTILIZACIÓN DE HERRAMIENTAS INFORMÁTICAS EN EL ANÁLISIS DE SENSIBILIDAD PARA LA FINANCIACIÓN DE PROYECTOS UTILIZACIÓN DE HERRAMIENTAS INFORMÁTICAS EN EL ANÁLISIS DE SENSIBILIDAD PARA LA FINANCIACIÓN DE PROYECTOS Roqueñí Gutiérrez, I.*; Roqueñí Gutiérrez, N.**; Álvarez Cabal, J. V.**; J. Manuel Mesa Fernández,

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles