Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES"

Transcripción

1 Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste en lanzar de modo ordenado 2 monedas al aire para observar el número de caras (C) y cruces (X) que se obtienen, el espacio muestral asociado a dicho experimento aleatorio sería: Ω = {CC, CX, XC, XX} En Estadística resulta más fácil utilizar valores numéricos en lugar de trabajar directamente con los elementos de un espacio muestral como el anterior. Así, preferimos identificar los sucesos {CX, XC} con el valor numérico 1, que representa el número de caras obtenidas al realizar el experimento. De este modo aparece el concepto de variable aleatoria. Sea (Ω, (Ω), P) un espacio de probabilidad. Una función X: Ω R ω X(ω)= x ω es una variable aleatoria, es decir, las variables aleatorias unidimensionales son funciones cuyos valores dependen del resultado de un experimento aleatorio. Una variable aleatoria es una función que asocia un número real y sólo uno x ω, a cada suceso elemental ω del espacio muestral (Ω ) de un experimento aleatorio. Las variables aleatorias discretas son aquellas que sólo pueden tomar un número de valores finito o infinito numerable. X: Ω Ν ω X(ω)= x ω Se representan mediante letras mayúsculas y pueden tomar n posibles valores: X = { x 1, x 2,..., x i,..., x n } Experimento aleatorio: Lanzar una moneda al aire dos veces Espacio muestral: Ω = {CC, CX, XC, XX} Sucesos elementales: {CC}, {CX}, {XC}, {XX} Se define la variable X: Nº de caras obtenidas Asignación de números reales: (CC, 2); (CX, 1); (XC, 1); (XX, 0) Por tanto, la variable X viene definida por los valores: 0, 1, 2 En el ejemplo anterior, X = {0, 1, 2} La v.a.d., X, queda caracterizada por la función de probabilidad, f(x) = P(X = x), y por la función de distribución, F(x) = P(X x). 1

2 2.- Función de probabilidad, f(x) (Ω, (Ω), P) un espacio de probabilidad, X v. a. d., y {x i } i=1.. los valores que toma. Se llama función de probabilidad, f(x), a la función que indica la probabilidad de cada posible valor de la v. a. d. X, es decir: f: N [0, 1] x i f(x i ) = P(X = x i ) = p i =P[{ω t.q. X(ω)=x i ] i=1,.., y que verifica: (i) 0 f(x i ) 1 (ii) f(x i ) = 1 Si x i no es uno de los valores que puede tomar X, entonces f(x i )=0. Gráficamente se representa mediante un diagrama de barras análogo al de distribución de frecuencias relativas para variables discretas. Con los datos del ejemplo anterior: X f(x i ) 0,25 0,50 0,25 f (x) 3.- Función de distribución, F(x) Sea (Ω, (Ω), P) un espacio de probabilidad, X v. a. d., {x i } i=1.. los valores que toma y {p i }i=1.. R la función de probabilidad de X. Se llama función de distribución (acumulativa) de la v.a.d. X, F(x), a la probabilidad de que X sea menor o igual que x; es decir: F: N [0, 1] x i F(x i ) = P(X x i ) = P[{ω t.q. X(ω) x i ] F(x i ) = P(X x i ) = x f ( x j ) j x i Que cumple las siguientes propiedades: (i) F(- )=0 (ii) F(x min ) = f(x 1 ) 2

3 (iii) F(x max ) = 1 (iv) F( )=1 (v) F es monótona no decreciente, es decir, si x i x j entonces F(x i ) F(x j ) (vi) F es continua a derecha, tiene límites a izquierda y es constante en [x i-1, x i ), donde toma el valor f ( x k ) k i (vii) P(X > x) = 1 - P(X x) = 1 - F(x) (viii) P(x i X x j ) = F(x j ) - F(x i-1 ) Gráficamente resulta en la función escalera Continuando con el ejemplo anterior: X F(x i ) 0,25 0,75 1,00 F (x) Características de las v. a. discretas Se trata de resumir la información de una variable aleatoria en un conjunto de medidas (números). De forma análoga a lo que se hizo en el tema de Estadística Descriptiva, podemos definir para las variables aleatorias medidas de centralización, dispersión, simetría y forma. Por su interés especial, nos vamos a centrar en dos medidas sobre variables aleatorias que son: la esperanza matemática, que desempeña un papel equivalente al de la media, y la varianza. Esperanza: Sea X v. a. El valor esperado o esperanza matemática de X, denotada por E(X) o por µ, se define como: 3

4 E( X ) = n i= 1 x f ( i x i E(X) no es una función de x, es un valor fijo que depende de la distribución de probabilidad de X. E(X) está medida en las mismas unidades que X. Si X es una v.a. con función de probabilidad simétrica respecto a un punto x=a, entonces E(X)=a. Propiedades de la esperanza: (i) Si C es una constante, entonces E(C)=C. (ii) Linealidad: E(aX+b)=aE(X)+b, a, b R (iii) Si g(x) es una función de X, entonces: E[ g( X )] = n ) i= 1 g( x ) f ( i x i (iv) Si g(x), h(x) son funciones de X, entonces E[g(X)+h(X)]=E[g(X)]+ E[h(X)] (v) E[g(X)] E[ g(x) ] (vi) Si X e Y son v. a. independientes E[X.Y]=E[X].E[Y] Varianza: Sea X v. a. La varianza de X se denota con Var(X) o σ 2 y se define como 2 2 Var[ X ] = E[ ( X E[ X ]) ] = ( xi E[ X ]) f ( xi ) La raíz cuadrada positiva de la varianza se llama desviación típica y se denota con σ. Tanto la varianza como la desviación típica miden la dispersión de la v.a. respecto a su media. Observaciones: - La varianza y la desviación típica son cantidades positivas. - La desviación típica está medida en las mismas unidades que la v.a. i ) Propiedades de la varianza: (i) Si C es una constante, Var(C)=0 (ii) Var(X) = E(X 2 ) - E 2 (X) (iii) Si a y b son constantes: Var(aX + b) = a 2 Var(X) (iv) Si X e Si X e Y son v.a. independientes V(X+Y) = V(X) + V(Y) La desviación media se define como la esperanza de X-µ. 5.- Principales distribuciones de las v. a. discretas: En la práctica, la función de probabilidad de la mayoría de las variables discretas se ajusta a un modelo teórico expresado mediante una fórmula concreta. Veremos los más habituales. Distribución de Bernouilli Be(p) La distribución de Bernouilli se aplica cuando se realiza una sola vez un experimento que tiene únicamente dos posibles resultados (éxito o fracaso), por lo que la variable sólo puede tomar dos valores: el 1 (éxito) y el 0 (fracaso). Definimos la v.a.: 4

5 Al haber únicamente dos soluciones se trata de sucesos complementarios: A la probabilidad de éxito se le denomina "p" A la probabilidad de fracaso se le denomina "q" Verificándose que: p + q = 1 Así P(X=1)=p y P(X=0)=1-p=q. Además E(X)=p, Var(X)=pq. Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); probabilidad de ser admitido en una universidad (o te admiten o no te admiten); probabilidad de acertar una quiniela (o aciertas o no aciertas) Distribución Binomial B(n,p) La distribución binomial parte de la distribución de Bernouilli. Se aplica cuando se realizan un número "n" de veces el experimento de Bernouilli, siendo cada ensayo independiente del anterior. Realizamos el experimento anterior n veces de forma independiente, y definimos la v.a.: X= Número de éxitos obtenidos en las n realizaciones que puede tomar los valores k=0,1,,n 0: si todos los experimentos han sido fracaso n: si todos los experimentos han sido éxitos con probabilidades: La distribución de probabilidad de este tipo de distribución expresada de otra forma: donde " k " es el número de aciertos " n" es el número de ensayos. " p " es la probabilidad de éxito E(X) = n.p Var(X) = n.p.(1-p)=n.p.q Cuál es la probabilidad de obtener 6 caras al lanzar una moneda 10 veces? La fórmula quedaría: Luego, P (x = 6) = 0,205 5

6 Es decir, se tiene una probabilidad del 20,5% de obtener 6 caras al lanzar 10 veces una moneda. No siempre es necesario aplicar la fórmula para obtener la función de probabilidad asociada a un valor de la variable. Existen tablas donde se puede consultar el valor de f (x i ). La tabla de la Binomial tiene la siguiente estructura: Dado X B (x; n; p), para buscar una f (x): 1ª columna: valor de n 2ª columna: posibles valores de X: 0, 1,, n 3ª columna: valor de f(x) bajo diferentes valores de p (aparece en porcentajes, por brevedad. El signo +significa que hay más de tres ceros) Nota: Cuando n > 17, f (x i ) puede aproximarse mediante el modelo normal (lo veremos en el próximo tema) P(X = 1) = 0,02 bajo X B (x; 2; 0,01) Un sujeto responde a un test 4 preguntas de tipo V/F al azar. 1) Elabore el modelo de distribución para la variable X (nº de aciertos al azar) X B (n = 4, p= 0,50) X f(x) 0,0625 0,250 0,375 0,250 0,0625 2) Cuál es la probabilidad de que acierte al menos 3 preguntas? P(X 3) = P(X = 3) + P(X = 4) = 0, ,0625 = 0,3125 (coincide con tablas) O también P(X 3) = 1- P(X 2) = 1 - (0, , ,375) = 1-0,687 = 0,313 3) Valor esperado: E(X) = n p= (4) (0,50) = 2 4) Varianza: s2(x) = n p.(1 - p) = (4) (0,50 0,50) = 1 5) Cuál es la probabilidad de que acierte como máximo 2 preguntas? P(X 2) = F(2) = 0, , ,375 = 0,6875 6) Cuál es la probabilidad de que acierte entre 1 y 3 preguntas (ambas inclusive)? P(1 X 3) = F(3) - F(0) = 0,9375-0,0625 = 0,875 7) Cuál es la probabilidad de que acierte más de 2 preguntas? P(X > 2) = P(X 3) = 1 - P(X 2) = 1 0,6875 = 0,3125 Distribución de Poisson P(λ) 6

7 Esta distribución aparece en algunos procesos que tienen una dimensión temporal o espacial, como el número de llamadas telefónicas que recibe un servicio de atención a urgencias durante un intervalo de tiempo determinado, o el número de cultivos infectados por una plaga en una cierta región geográfica. En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc,: - nº de defectos de una tela por m 2 - nº de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc. - nº de bacterias por cm 2 de cultivo - nº de llamadas telefónicas a un conmutador por hora, minuto, etc, etc. - nº de llegadas de embarcaciones a un puerto por día, mes, etc, etc. X= Número de éxitos obtenidos por unidad de tiempo o de espacio Para determinar la probabilidad de que ocurran k éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería: donde: p(x=k) = probabilidad de que ocurran k éxitos cuando el número promedio de ocurrencia de ellos es λ λ = media o promedio de éxitos por unidad de tiempo, área o producto e = x = variable que nos denota el número de éxitos que se desea que ocurra E(X)=λ Var(X)=λ Hay que hacer notar que en esta distribución el número de éxitos que ocurren por unidad de tiempo, área o producto es totalmente al azar y que cada intervalo de tiempo es independiente de otro intervalo dado, así como cada área es independiente de otra área dada y cada producto es independiente de otro producto dado. En estas condiciones el proceso de Poisson, que mide el número de éxitos en un intervalo de tiempo t, en lugar de por unidad de tiempo, vendría dado por A λ se le llama tasa de emisión (por unidad de tiempo). Si un banco recibe en promedio 6 cheques sin fondo por día, cuáles son las probabilidades de que reciba, a) cuatro cheques sin fondo en un día dado, b) 10 cheques sin fondos en cualquiera de dos días consecutivos? 7

8 a) x = variable que nos define el número de cheques sin fondo que llegan al banco en un día cualquiera = 0, 1, 2, 3,..., etc λ = 6 cheques sin fondo por día 4 6 ( 6 ) ( ) ( 1296 )( ) p ( x = 4, λ = 6 ) = = = ! 24 b) x= variable que nos define el número de cheques sin fondo que llegan al banco en dos días consecutivos = 0, 1, 2, 3,..., etc λ = 6 x 2 = 12 cheques sin fondo en promedio que llegan al banco en dos días consecutivos Nota: λ siempre debe de estar en función de x siempre o dicho de otra forma, debe hablar de lo mismo que x ( 12 ) ( ) ( Ε10 )( ) p ( x = 10, λ = 12 ) = = = ! En la inspección de hojalata producida por un proceso electrolítico continuo, se identifican 0.2 imperfecciones en promedio por minuto. Determine las probabilidades de identificar a) una imperfección en 3 minutos, b) al menos dos imperfecciones en 5 minutos, c) cuando más una imperfección en 15 minutos. a) x = variable que nos define el número de imperfecciones en la hojalata por cada 3 minutos = 0, 1, 2, 3,..., etc. λ = 0.2 x 3 =0.6 imperfecciones en promedio por cada 3 minutos en la hojalata 1 ( 0. 6 ) ( ) p( x = 1, λ = 0. 6 ) = 1! 0. 6 ( 0. 6 )( ) = = b) x = variable que nos define el número de imperfecciones en la hojalata por cada 5 minutos = 0, 1, 2, 3,..., etc λ = 0.2 x 5 =1 imperfección en promedio por cada 5 minutos en la hojalata p( x = 2, 3, 4,etc... λ = 1) = 1 p( x =1-( ) = ( 1) ( ) = 01,, λ = 1) = 1 0! 1 ( 1)( ) + 1! 1 = c) x = variable que nos define el número de imperfecciones en la hojalata por cada 15 minutos = 0, 1, 2, 3,..., etc. λ = 0.2 x 15 = 3 imperfecciones en promedio por cada 15 minutos en la hojalata p( x = 01,, λ = 3) = p( x = 0, λ = 3) + = = p( x 0 ( 3 ) ( ) = 1, λ = 3) = 0! 3 1 ( 3 ) ( ) + 1! 3 = 8

9 También se puede considerar esta distribución como una aproximación de la binomial cuando n y p, pero el producto n.p permanece constante. Cuando en una distribución binomial se realiza el experimento un número "n" muy elevado de veces y la probabilidad de éxito "p" en cada ensayo es reducida, manteniéndose constante n.p, entonces se aplica el modelo de distribución de Poisson. Realizamos indefinidamente el experimento y definimos la v.a.: X= Número de éxitos obtenidos que puede tomar los valores k=0,1,2, Al igual que ocurría con la binomial, los valores acumulados de la distribución de Poisson se encuentran tabulados para que resulte más fácil su manejo. En una concurrida intersección de tráfico, la probabilidad de que un automóvil tenga un accidente de tráfico es muy escasa, digamos de 0,0001. Sin embargo, durante cierta parte del día (entre las 4:00 pm y las 6:00 pm) un gran número de automóviles pasa por esa intersección, digamos unos En dichas condiciones, cual es la probabilidad de que dos o más accidentes ocurran durante ese período? X= nº accidentes en 1000 coches X B(1000, ) P(X 2) Como la probabilidad " p " es menor que 0,1, y n 30, entonces aplicamos el modelo de distribución de Poisson y podríamos aproximar por X P(0.1) P(X 2) = 1 P(X < 2) = 1 P(X 1) = = Distribución Geométrica G(p) Realizamos el experimento de forma independiente hasta que obtenemos el primer éxito, y definimos la v.a.: Y= Número de experimentos hasta obtener el primer éxito que toma los valores k=1,2,3, con probabilidades: donde se tiene que E(Y)=1/p y Var(Y)=(1-p)/p 2. Una vía de una ciudad tiene seis cruces regulados por semáforos. La probabilidad de que al pasar un vehículo un semáforo esté verde es de Cuál es la probabilidad de atravesar dicha vía en verde, encontrándose rojo solamente el último semáforo? Se supone que la regulación de los semáforos es tal que estos son independientes entre sí. X = nº de semáforos que debemos atravesar hasta encontrar el primero rojo X G(0.4) P(X=6) = =

10 Distribución Binomial Negativa BN (n,p) Realizamos el experimento de forma independiente hasta obtener n éxitos y definimos la v.a.: X= Número de fracasos antes del n-ésimo éxito que puede tomar los valores k=0,1,2, Además E(X)=n(1-p)/p y Var(X)=n(1-p)/p 2. En los play-off de la NBA americana, el vencedor de cada eliminatoria final es el equipo que logre primero la 4ª victoria en un total de 7 confrontaciones. Cuál es la probabilidad de que un equipo dispute como mucho 6 partidos, si su porcentaje de partidos ganados es del 60%? P=probabilidad de éxito =0.6 X= nº fracasos hasta obtener la 4ª victoria X BN(4,0.6) P(X 2)=P(X=0) + P(X=1) + P(X=2) = = Distribución Hipergeométrica H(N,D,n) La distribución hipergeométrica es el modelo que se aplica en experimentos donde, al igual que en la distribución binomial, en cada ensayo hay tan sólo dos posibles resultados: éxito o fracaso. Pero se diferencia de la distribución binomial en que los distintos ensayos son dependientes entre sí (no hay reemplazamiento). Supongamos que tenemos un lote de N piezas de las cuales D son defectuosas (D N). Extraigo una muestra de n piezas (sin reemplazamiento) y defino la v. a.: X= Número de defectuosas en la muestra que puede tomar los valores k=max{0,n+d-n},1,,min{d,n} Además E(X) = nd/n y Var(X) = np(1-p)[(n-n)/(n-1)] con p = D/N = proporción de defectuosas. Nota: Cuando se realiza un muestreo, éste puede ser con o sin reemplazamiento. Si es con reemplazamiento utilizaremos la distribución binomial para contar el número de éxitos y si es sin reemplazamiento utilizaremos la distribución hipergeométrica. Además, si N es grande respecto a n, la binomial aproximará a la hipergeométrica (la aproximación es buena cuando n/n < 0.1). 10

11 En una urna hay 7 bolas blancas y 5 negras. Se sacan 4 bolas Cuál es la probabilidad de que 3 sean blancas? Entonces: N = 12; N-D = 5; D = 7; k = 3; n = 4 Si aplicamos el modelo: Por lo tanto, P (x = 3) = 0,3535. Es decir, la probabilidad de sacar 3 bolas blancas es del 35,3%. Pero este modelo no sólo se utiliza con experimentos con bolas, sino que también se aplica con experimentos similares: En una fiesta hay 20 personas: 14 casadas y 6 solteras. Se eligen 3 personas al azar Cuál es la probabilidad de que las 3 sean solteras? Por lo tanto, P (x = 3) = 0,0175. Es decir, la probabilidad de que las 3 personas sean solteras es tan sólo del 1,75%. Distribución Multinomial La distribución multinomial es similar a la distribución binomial, con la diferencia de que en lugar de dos posibles resultados en cada ensayo, puede haber múltiples resultados: La distribución multinomial sigue el siguiente modelo: con n= x 1 +x 2 +x 3 + Donde: X 1 = x 1 : indica que el suceso X 1 aparezca x 1 veces n: indica el número de veces que se ha repetido el experimento n!: es factorial de n p 1 : es la probabilidad del suceso X 1 En una fiesta, el 20% de los asistentes son españoles, el 30% franceses, el 40% italianos y el 10% portugueses. En un pequeño grupo se han reunido 4 invitados: cual es la probabilidad de que 2 sean españoles y 2 italianos? 11

12 Aplicamos el modelo: Luego P = 0,0384 Por lo tanto, la probabilidad de que el grupo esté formado por personas de estos países es tan sólo del 3,84%. Distribucion Multihipergeométrica La distribución multihipergeométrica es similar a la distribución hipergeométrica, con la diferencia de que en lugar de dos posibles resultados en cada ensayo, puede haber múltiples resultados (en la urna, en lugar de haber únicamente bolas de dos colores, hay bolas de diferentes colores). La distribución multihipergeométrica sigue el siguiente modelo: siendo n = x 1 + x 2 + x 3 +. Donde: X 1 = x 1 : indica que el suceso X 1 aparezca x 1 veces N 1 : indica el número de elementos del tipo X 1 que existen N: es el número total de elementos que existen n: es el número total de elementos que se extraen En una caja de lápices hay 10 de color amarillo, 3 de color azul y 4 de color rojo. Se extraen 7 lápices, cual es la probabilidad de que 5 sean amarillos y 2 rojos? Aplicamos el modelo: Luego P = 0,0777 Por lo tanto, la probabilidad de que los 5 lápices sean de los colores indicados es del 7,77%. 12

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera:

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera: INTRODUCCIÓN AL VALOR ESPERADO Y VARIANZA (5 MINUTOS) Cuando nos hablan del promedio de que ocurra un evento, cómo sabemos con certeza qué tan cerca estamos de alcanzar ese promedio? Esta pregunta nos

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN. BINOMIAL Y NORMAL I.- Variable aleatoria. Concepto. Antes de definir el concepto de varibale aleatoria, veamos algunos ejemplos (ya estás empezando a comprobar

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística ( ) x n P(X x) = p i (1 p) n i i σ 2 X i=0 µ X = np = np(1 p) Variables Aleatorias Discretas y algunas Distribuciones de Probabilidad Raúl D. Katz Pablo A. Sabatinelli 2013 Índice

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

Capítulo 9. Regresión lineal simple

Capítulo 9. Regresión lineal simple Capítulo 9. Regresión lineal simple 9.1 Introducción Uno de los aspectos más relevantes de la Estadística es el análisis de la relación o dependencia entre variables. Frecuentemente resulta de interés

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008.

Examen de la asignatura Estadística aplicada a las ciencias sociales Profesor Josu Mezo. 9 de junio de 2008. Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008. Pregunta nº 1 (5 puntos). En una base de datos sobre los países del mundo se incluyen una

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad Matemáticas aplicadas a las Ciencias Sociales II Índice 1. Experimentos aleatorios 2 1.1. Espacio muestral...................................... 2 1.2. Los sucesos.........................................

Más detalles

Mª Cruz González Página 1

Mª Cruz González Página 1 SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige

Más detalles

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias? PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO

I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO 1 I.E. CÁRDENAS CENTRO MÓDULO DE ESTADÍSTICA CICLO VI GRADO UNDÉCIMO 2 TABLA DE CONTENIDO pág. UNIDAD 1 1. VARIABLE ALEATORIA, ESPACIO MUESTRAL, TÉCNICAS DE CONTEO 6 1.1. VARIABLE ALEATORIA 6 1.1.1. Clasificación

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

1 Tema 1: Estadística descriptiva

1 Tema 1: Estadística descriptiva PROBLEMAS DE MATEMÁTICAS Estadística Curso 2005-2006 Primero Licenciatura en Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 1 Tema 1: Estadística descriptiva

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación de Septiempbre, 00 Cuestiones 1h C1. El tiempo que un ordenador tarda en ejecutar una tarea es una v.a. Y Expλ). Para hacer un estudio

Más detalles

Tema 1. Inferencia estadística para una población

Tema 1. Inferencia estadística para una población Tema 1. Inferencia estadística para una población Contenidos Inferencia estadística Estimadores puntuales Estimación de la media y la varianza de una población Estimación de la media de la población mediante

Más detalles

Ejercicios Resueltos de Teorema Central de Límite (TCL) Ejercicios 1 y 2: Resolución de Ejercicios propuestos del Tema 5.

Ejercicios Resueltos de Teorema Central de Límite (TCL) Ejercicios 1 y 2: Resolución de Ejercicios propuestos del Tema 5. EJERCICIOS DE PROBABILIDAD EJERCICIOS ADECUADOS PARA SECUNDARIA O BACHILLER TITULO: AUTOR: Ejercicios Resueltos de Teorema Central de Límite (TCL) JUAN VICENTE GONZÁLEZ OVANDO Ejercicio 15: Ejercicios

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008

IES PADRE SUÁREZ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Probabilidad 2008 Probabilidad 2008 EJERCICIO A Laura tiene en su monedero 6 monedas francesas, 2 italianas y 4 españolas. Vicente tiene 9 francesas y 3 italianas. Cada uno saca, al azar, una moneda de su monedero y observa

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA Por población o universo se entiende como un conjunto de medidas, cuando estas son aplicadas a una característica cuantitativa, o como el recuento de todas las unidades que presentan una característica

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito, 1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable

Más detalles

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2 PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.

Más detalles

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S. Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Una introducción amable a la teoría de colas

Una introducción amable a la teoría de colas Pablo Serrano Yáñez-Mingot, José Alberto Hernández Gutiérrez Una introducción amable a la teoría de colas Departamento de Ingeniería Telemática - Universidad Carlos III de Madrid Control de versiones 205-09-22

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

Actividad A ganar, a ganar!

Actividad A ganar, a ganar! Nivel: 2.º Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Ficha 13: Actividad A ganar, a ganar! Cada vez que en un juego de azar se acumula el pozo de dinero para repartir, miles

Más detalles