Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar"

Transcripción

1 Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar

2 b a d c Flujo en Rede. Flujo máximo

3 Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de una fuene a un umidero repeando una erie de rericcione. Lo flujo e miden como el flujo que ale de un nodo, i aí ocurriera el flujo e conidera poiivo, en cao conrario enemo un flujo negaivo. La fuene iene un flujo neo poiivo, el umidero iene un flujo neo negaivo, y lo nodo inermedio en lo camino que van de la fuene al umidero ienen un flujo neo igual a cero. propiedad de conervación del flujo f i = f o (por nodo). Equivalene a la leye de conervación de la maeria en fíica y leye de Kirchoff en elecricidad.

4 Algorimo de Flujo Uo: modelado de flujo en ubería, pieza a ravé de línea de enamblado, corriene en rede elécrica, información en rede de comunicación, ec. Una red de flujo G=(N,A) e un grafo dirigido al que cada arco (u,v) A poee una capacidad c(u,v) 0. Si (u,v) A, c(u,v)=0. Se diinguen vérice, el fuene y el deino. Cada vérice v N ea en algún ~>v~>. El grafo e conexo A N - peo de la aria repreena la capacidad máxima de ranporar un flujo.

5 Algorimo de Flujo Problema: Maximizar la canidad de flujo dede un vérice fuene a oro umidero, in uperar la rericcione de capacidad. Méodo de Ford-Fulkeron para reolver el problema de máximo flujo. Problema del flujo máximo: enconrar la raa máxima a la cual el maerial puede er ranporado de una fuene () a un deino (), in violar la rericcione de capacidad de la red.

6 Flujo Máximo Rericcione: La uma de la enrada de cada nodo inerior debe er igual a la uma de u alida. Lo valore de flujo en cada aria no pueden uperar lo valore máximo. G b d a c J. Aguilar 6

7 Flujo Máximo Solución. G: grafo del problema. F: grafo reulane. G b d F b 0 d a c a c El problema e puede reolver de forma eficiene. Poible algorimo: Enconrar un camino cualquiera dede haa. El máximo flujo que puede ir por ee camino e el mínimo coe de la aria que lo forman, m. Sumar m en el camino en F, y rearlo de G. Ojo: ee algorimo no garaniza olución ópima.

8 Rede de flujo Digrafo G=(V, E) Lo peo de la aria repreenan capacidad (c(u, v)> 0). Si no hay aria la capacidad e cero. Vérice epeciale: fuene, vérice in aria de enrada. umidero, vérice in aria de alida. El grafo e conecado: Hay un camino enre y por algún vérice inermedio del grafo. J. Aguilar 8

9 0 / 7 / 7 Rede de flujo Un flujo en G e una función real f : VxV que aiface la iguiene propiedade: Rericción de capacidad: Para odo u, v V, f (u, v) < c (u, v) Aniimería: Para odo u, v V, f (u, v) = f (v, u) Conervación de flujo: Para odo u V {, }, = 0 Valor del flujo: f = = / v v v v / 6

10 El problema del flujo máximo Se define como: dado G, (fuene) y (deino) enconrar el flujo neo oal máximo dede haa Flujo neo poiivo enrando a un nodo v e u N F(u,v) y el que ale e define iméricamene. J. Aguilar 0

11 Algorimo de Ford-Fulkeron E un méodo ieraivo que depende de re idea imporane: Red reidual Aumeno de camino Core Ua el eorema max-flow min-cu que caraceriza el flujo máximo en érmino de core de la red de flujo. En cada ieración e va coniguiendo un valor de flujo que aumena el camino, e decir, podemo aumenar el flujo en un camino de a. Ee proceo e repie haa que no haya má poibilidad de aumenar. J. Aguilar

12 Flujo reidual E el flujo diponible en una deerminada aria una vez que e ha enviado flujo por ella (en ningún cao el flujo neo reidual debe er mayor a la capacidad de dicha aria ni menor que cero). flujo reidual = capacidad flujo_acual, Dada una red de flujo G=(N,A) con fuene y deino Sea f el flujo en G, y conidere un par de verice u,v N. La canidad de flujo adicional que e puede verer obre u,v e la capacidad reidual. c f (u,v) = c(u,v) f(u,v)

13 Red reidual Un camino de flujo reidual e aquel camino de la fuene al umidero donde oda la aria en el camino ienen un flujo reidual mayor a cero red reidual conie en arco que admien má flujo (en ella aparecen lo camino de flujo reidual) Un arco (u, v) aparece en G f olo i (u, v) A y i hay una flujo neo poiivo o flujo reidual de u a v o (v, u) A y ea paando un flujo acual enre (v, u) A f A G con flujo f / /6 / / / /7 8/ / /0 G f

14 0 / 7 / 7 7 Rede reiduale Para una red de flujo y un flujo, la red reidual e el conjuno de aria que pueden admiir má flujo. Sea una red de flujo G=(V, E) con fuene y umidero. Sea f un flujo en G y un par de vérice u, v V. El flujo neo adicional dede u a v in exceder la capacidad c(u, v) e la capacidad reidual de (u, v), definida por: c f (u,v) = c(u,v) f(u,v) La red reidual de G inducida por f e G f = (V, E f ) donde E f = {(u,v) VxV: c f (u, v) > 0} G / v v G f v v v v / v v

15 Aumeno de camino Dada una red de flujo G=(N,A), un camino aumenado p e un camino imple de a en la red reidual G f. La canidad máxima de flujo que puede llevare por lo arco en un camino aumenado p e denomina capacidad reidual de p, y eá dado por: c f (p) = min {c f (u,v): (u,v) p} El méodo buca repeidamene aumenar el flujo a ravé de lo camino de aumeno haa alcanzar el máximo / /6 G con flujo f / / / /7 8/ / / c f (p)=c(, )= G f con camino aumenado p

16 0 / 7 / 7 7 Camino aumenane Un camino aumenane p en una red de flujo G=(V, E) y flujo f, e un camino imple de a en la red reidual G f. Cada aria (u, v) del camino aumenane admie un flujo neo poiivo adicional de u a v in violar la rericción de capacidad de la aria. Capacidad reidual: e la máxima canidad de flujo neo que e puede enviar por la aria de un camino aumenane. Se calcula por: c f (p) = min{c f (u,v) (u,v) p} G / v v G f C f = min{,, } = v v v v / v v

17 0 / 7 / 7 Core en rede de flujo Un core (S, T) de una red de flujo G=(V, E) e una parición del conjuno de vérice V en do ubconjuno S y T = V S al que S y T. Si f e un flujo: f(s, T) e el flujo neo a ravé del core (S,T). c(s, T) e la capacidad del core (S,T). Flujo en una red = flujo neo a ravé de cualquier core de la red. G S / T v v Core = ( {, v, v }, {, v, v } ) f(, ) = f(v, v ) + f(v, v ) + f(v, v ) = + (-) + = 9 v v / c(, ) = c(v, v ) + c(v, v ) = + = 6

18 Teorema flujo-máximo mínimo-core Si f e un flujo en una red de flujo G = (V, E) con fuene y umidero, enonce la iguiene condicione on equivalene: f e un flujo máximo en G. La red reidual G f no coniene camino aumenane. f = c(s, T) para algún core (S, T) de G. J. Aguilar 8

19 Teorema max-flow min-cu Core (S, T) S={,, } T={,, } f(s, T) = 9 c(s, T) = 7 /6 0 0 / 8/ / /9 / 7/7 G con flujo f / /0 Teorema: El máximo valor de enre odo lo flujo en una red e igual a la capacidad mínima de enre odo lo core.

20 Algorimo de Ford-Fulkeron FORD-FULKERSON( f, ) Para cada aria (u, v) en el grafo f[u][v] = 0 f[v][u] = 0 Mienra exia un camino de flujo reidual enre f y incremeno = min(cap(u,v) al que (u,v) eá en el camino p) para cada aria (u,v) en el camino f[u][v] = f[u][v] + incremeno f[v][u] = -f[u][v] J. Aguilar 0

21 0 7 7 / 0 7 / Grafo Reidual v v Ejemplo Flujo / v v v v v v / 8 v v / v v 0 v v v v /

22 7 0 / 7 / / 7 / 7 Grafo Reidual 8 v v Ejemplo Flujo / v v v v v v / v v / v v v v v v /

23 7 0 / 7 / 7 Ejemplo y complejidad Grafo Reidual Flujo v v / v v v v v v / Para hallar el camino aumenane e puede uar cualquier ipo de recorrido (BPA o BPP). La capacidad de cada aria e puede muliplicar por un facor de ecala para coneguir que ea enera. Bajo ea condicione el algorimo iene una complejidad de O(E f * ), donde f * e el máximo flujo obenido por el algorimo.

24 0 0 Cmin = Cmin = 0 Cmin = Qué paa i la aria (,) o (,) cambian de igno? Algorimo de Ford-Fulkeron

25 0 0 Cmin = Cmin = 0 Cmin = Algorimo de Ford-Fulkeron Do cao Sin conraflujo: e deiene el algorimo en ea ieración=> Fllujo Max.= Con conraflujo: aparece ee camino aumenado J. Aguilar

26 Dirección del Flujo Algorimo de Ford-Fulkeron Flujo Máximo Con conraflujo Sin conraflujo 0 S S T T

27 Algorimo de Ford-Fulkeron fordfulkeron(nodo:, ) {pre: n > 0 } {po: n > 0 } [ f(u, v), f(v, u) = 0, 0 ] (u, v) A // Inicia f ( un p de a en Gf ) [ cf(p) = min(cf(u, v) : (u, v) eá en p [ f(u, v) = f(u, v) + cf(p) f(v, u) = - f(u, v) ] (u, v) en p ] // Aumena el flujo a lo largo de p // por cf (p) haa que no hayan ma p -u, v: Nodo. Nodo del grafo. -Gf: Grafo. Grafo reidual. -cf: Enero.Capacidad reidual -p: Camino aumenado de Gf. -f: Arreglo(n x n)de [Enero]. Flujo del arco. J. Aguilar 7

28 Ora idea baada en Core de la red de flujo Un core (S,T) de la red de flujo G=(N,A) e una parición de N en S y T=N-S al que S y T. Si f e el flujo, enonce El flujo de red a ravé del core (S,T) e define f(s,t) La capacidad del core (S,T) e c(s,t) El flujo neo a ravé del core (S, T) e f(s, T) = f El valor de cualquier flujo f en una red de flujo G eá limiado uperiormene por la capacidad de cualquier core de G.

29 Exenione Rede con vario nodo fuene y vario nodo deino: Se reduce al anerior colocando do nodo ficicio denominado: nodo uperfuene y nodo uperdeino, Anexar un arco (, i) por cada nodo fuene de G para i =,,..., m y un arco (j, ) por cada nodo deino de G para j =,,..., n. Ambo nodo e conecan a lo oro nodo con arco de capacidad.

30 Exenione S T

31 Ee ipo de grafo irve para reolver problema como el de aignación de area. Si uponemo que el conjuno R repreena a un grupo de rabajadore y que L correponde a un conjuno de area, La aria repreenan la relación de que un rabajador puede realizar deerminada area. El problema conie en aignar la mayor canidad de area para que ean realizada por lo rabajadore. Grafo biparido Problema inereane que e puede reducir a un problema de flujo máximo e el del aparejamieno ("maching ) bipario máximo. Biparido ignifica que e pueden idenificar en el grafo do ubconjuno de vérice L y R de al manera que uno de lo exremo de la aria eá en R y el oro L. La aria (u,v) donde u y v perenecen al mimo conjuno no eán permiida. N puede er dividido en N = L U R, L R = y odo la aria en A van de lo nodo de L a lo de R.

32 L R Grafo biparido Dado un grafo no dirigido G = (N, A), un "maching" e un ubconjuno de aria M A, al que para odo lo nodo v N, a lo umo una aria de M incide en v. Aignación de cardinalidad Aignación de cardinalidad Un "maching" M e máximo i iene una cardinalidad máxima al que para cualquier M' e iene M' M.

33 Grafo biparido Se puede uar el algorimo de Ford-Fulkeron para reolver dicho problema. Si enemo el grafo biparido G = (N, A) e conruye el grafo de flujo G = (N, A ) de la iguiene manera Agregar do nodo ficicio y, N' = N U {, } Lo arco de G' on la aria de A dirigida de L a R, má la aria de/a lo nodo ficicio. A'= {(,u) : u L}U {(u,v) : u L,v R,(u,v) A}U {(v,) : v R} Aignar capacidad de a lo arco de A'..

34 Grafo biparido S T

35 Grafo biparido Si M e una aignación ("maching") en G, enonce hay un flujo de valor enero en G' cuyo valor f = M y vicevera. La cardinalidad de la aignación máxima en un grafo bipario G e el valor del flujo máximo en u correpondiene red de flujo G'.

Flujo en Redes de Transporte

Flujo en Redes de Transporte Flujo en Rede de Tranpore Eduardo Urei Flujo en Rede de Tranpore p./55 Red de Tranpore Una Red de Tranpore e un grafo dirigido con peo (V, E, c) donde hay do vérice diinguido: uno llamado fuene y oro llamado

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

Flujo Máximo. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002

Flujo Máximo. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 Flujo Máximo Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 1 Introducción Así como modelamos los enlaces de una red y sus nodos como un grafo dirigido, podemos interpretar

Más detalles

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR SUPERINTENDENCI DE NCOS Y SEGUROS REPULIC DEL ECUDOR Inrucivo para la aplicación del Concepo de Valor en Riego (Var), para la eimación de la Liquidez erucural requerida por la Iniucione Financiera OCTURE

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

modelación Markov Switching con probabilidades de transición crecimiento económico en Colombia: endógenas María Teresa Ramírez Giraldo

modelación Markov Switching con probabilidades de transición crecimiento económico en Colombia: endógenas María Teresa Ramírez Giraldo crecimieno económico en Colombia: modelación Markov Swiching con probabilidade de ranición endógena Marha Mia Arango María erea Ramírez Giraldo . Moivación. Objeivo 3. Modelo Economérico 4. Información

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

J.1. Análisis de la rentabilidad del proyecto... 3

J.1. Análisis de la rentabilidad del proyecto... 3 Esudio de la implanación de una unidad produciva dedicada a la Pág 1 abricación de conjunos soldados de aluminio J.1. Análisis de la renabilidad del proyeco... 3 J.1.1. Desglose del proyeco en coses ijos

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica Índice de Precio Hoelero (. Bae 20 (dede enero de 20 a diciembre 2008 Noa meodológica adrid, marzo 2009 El Índice de Precio Hoelero,, e una medida eadíica de la evolución menual del conjuno de la principale

Más detalles

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010. COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Asimetrías en la Respuesta de los Precios de la Gasolina en Chile 1

Asimetrías en la Respuesta de los Precios de la Gasolina en Chile 1 Aimería en la Repuea de lo Precio de la Gaolina en Chile 1 Felipe Balmaceda Cenro de Economía Aplicada Univeridad de Chile Paula Soruco Deparameno de Economía ILADES-Univeridad Albero Hurado 27 diciembre

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

Tema 4: Fuentes y generadores

Tema 4: Fuentes y generadores Tema 4: Fuenes y generadores Fuenes de alimenación: : convieren ensión ac en ensión dc E. Mandado, e al. 995 Generadores de funciones: Fuene de señal calibrada y esable Aplicaciones: obención de respuesa

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

PROBLEMAS RESUELTOS DIRECCIÓN DE OPERACIONES. Federico Garriga Garzón

PROBLEMAS RESUELTOS DIRECCIÓN DE OPERACIONES. Federico Garriga Garzón PROBLEMAS RESUELTOS DE DIRECCIÓN DE OPERACIONES Federico Garriga Garzón Open Access Suppor Si encuenra ese libro ineresane le agradeceríamos que diera sopore a sus auores y a OmniaScience para coninuar

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Cifras poblacionales de referencia METODOLOGÍA

Cifras poblacionales de referencia METODOLOGÍA Cifra poblacionale de referencia MTOOLOGÍA. Inroducción La elaboración de cifra de población de cada ámbio geográfico e uno de lo comeido de la oficina de eadíica pública por er un elemeno relevane para

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A MUESTREO DE SEÑALES Tipos de Señales de los Procesos Indusriales El ipo de señales usadas en conrol de procesos dependen del nivel en el que nos siuemos. Así, a nivel alo se uilizan señales de comunicación

Más detalles

Tema 5 El Transistor MOS

Tema 5 El Transistor MOS FUNAMENTO FÍCO Y TECNOLÓGCO E LA NFORMÁTCA Tema 5 El Transisor MO Agusín Álvarez Marquina Esrucura física y polarización del ransisor nmo de acumulación (ource= Fuene) G (Gae= Puera) (rain= renador) (+)

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

FUENTES DE INFORMACION SOBRE EMPRESAS

FUENTES DE INFORMACION SOBRE EMPRESAS N N P S FUENTES DE INFMACIN SBE EMPESAS! " # $&% "(')'+*# $ ", ' -.,/1032 2 4 5 236 1 78:9);=@?BAC?>=EDGF=LK&M+=@DG9A Prena en papel en la Biblioeca (plana -1 morador de préamo): Cinco

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres ESTRUCTURAS DE DATOS 2006 Prof. DEFINICIÓN Un grafo consta de un conjunto de nodos(o vértices) y un conjunto de arcos (o aristas). Cada arco de un grafo se especifica mediante un par de nodos. Denotemos

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Las Opciones Reales y su Influencia en. la Valoración de Empresas

Las Opciones Reales y su Influencia en. la Valoración de Empresas Documeno de Trabajo 2003-01 Faculad de Ciencia Económica y Empreariale Univeridad de Zaragoza La Opcione Reale y u Influencia en la Valoración de Emprea Manuel Epiia Ecuer y Gema Paor Aguín Deparameno

Más detalles

Estimaciones y proyecciones de la población de Uruguay: metodología y resultados. Revisión 2013

Estimaciones y proyecciones de la población de Uruguay: metodología y resultados. Revisión 2013 Eimacione y proyeccione de la población de Uruuay: meodoloía y reulado Reviión 2013 Junio 2014 Eimacione y proyeccione de la población de Uruuay: meodoloía y reulado Reviión 2013 INSTITUTO NACIONAL DE

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II Prueba Dr. Jeú Albero Mellado Boque Prueba de hipóei En el méodo cienífico e eablecen lo iguiene pao: Obervación, Hipóei, Experimenación y Concluione. Con el objeivo de ajuare a ee proceo cienífico, la

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

Simulación de Orbitas Mediante MatLab

Simulación de Orbitas Mediante MatLab ongreo Argenino de ecnología Epacial Siulación de Orbia Mediane MaLab André LEÓN, Marcelo BASANSKI, Lui MORENO Univeridad Nacional del oahue Faculad de Ingeniería Bueno Aire 8 Neuquén Argenina elfa: 99-9-

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Descripción técnica del Servicio Web para el envío de los datos de la Encuesta de Ocupación en Apartamentos Turísticos del Instituto Nacional de

Descripción técnica del Servicio Web para el envío de los datos de la Encuesta de Ocupación en Apartamentos Turísticos del Instituto Nacional de Descripción técnica del Servicio Web para el envío de los datos de la Encuesta de Ocupación en Apartamentos Turísticos del Instituto Nacional de Estadística Abril de 2010 1 Índice 1.- Descripción del Servicio

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Indicadores demográficos METODOLOGÍA

Indicadores demográficos METODOLOGÍA Indicadores demográicos METOOLOGÍA 1. Objeivos y uilidades El objeivo de esa operación esadísica es la obención de una serie de indicadores descripivos de la siuación demográica de Galicia, con la que

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

AUTOCORRELACIÓN. Autocorrelación. Contraste de Hipótesis. Test de Durbin-Watson para. autocorrelación de tipo AR(1)

AUTOCORRELACIÓN. Autocorrelación. Contraste de Hipótesis. Test de Durbin-Watson para. autocorrelación de tipo AR(1) Auocorrelación AUTOCORRELACIÓN Auore: Ángel Alejandro Juan Pérez (ajuanp@uoc.edu), Renaa Kizy (rkizy@uoc.edu), Lui María Manzanedo Del Hoyo (lmanzanedo@uoc.edu). ESQUEMA DE CONTENIDOS Mariz Var[U] en modelo

Más detalles

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 RESULTADOSEDUCATIVOS RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 FÓRMULA RE01 NOMBREdelINDICADOR Diferencia del loro promedio

Más detalles

/5 1/58. Metodología de cálculo del consumo de energía de los trenes de viajeros y actuaciones en el diseño del material rodante para su reducción

/5 1/58. Metodología de cálculo del consumo de energía de los trenes de viajeros y actuaciones en el diseño del material rodante para su reducción Meodología de cálculo del conumo de energía de lo rene de viajero y acuacione en el dieño del maerial rodane para u reducción Albero García Álvarez Mª del Pilar Marín Cañizare Fundación de lo Ferrocarrile

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

ECONOMÍA DE LA EMPRESA: INVERSIONES. Tema 1: Métodos de selección de inversiones en condiciones de certeza... 1

ECONOMÍA DE LA EMPRESA: INVERSIONES. Tema 1: Métodos de selección de inversiones en condiciones de certeza... 1 ECONOMÍA DE LA EMPRESA: INVERSIONES Tema 1: Méodos de selección de inversiones en condiciones de cereza.... 1 Tema : Cálculo de las variables de un proyeco de inversión.... 13 Tema 3: Valoración de las

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional 3. MODELO MACROECONOMICO 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional Definimos primero a la oferta y demanda agregada para después desglosar sus elementos. Veremos la

Más detalles

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES

PRÁCTICA 4 TEMA 6: SERIES TEMPORALES PRÁCTICA 4 TEMA 6: SERIES TEMPORALES En las prácicas aneriores se habían analizado observaciones de variables de ipo ransversal (por ejemplo, obenidas para diferenes municipios). Llamaremos Serie Temporal

Más detalles

Notas de Clase. Prof. Juan Andrés Colmenares, M.Sc. Instituto de Cálculo Aplicado Facultad de Ingeniería Universidad del Zulia. 21 de febrero de 2004

Notas de Clase. Prof. Juan Andrés Colmenares, M.Sc. Instituto de Cálculo Aplicado Facultad de Ingeniería Universidad del Zulia. 21 de febrero de 2004 Árboles Notas de Clase Prof. Juan Andrés Colmenares, M.Sc. Instituto de Cálculo Aplicado Facultad de Ingeniería Universidad del Zulia 21 de febrero de 2004 Índice 1. Definición 1 2. Términos Básicos 2

Más detalles

Guías y tutoriales/compresores/winrar

Guías y tutoriales/compresores/winrar g coordinación de uoriales: Graciela Sosisky exo: Horacio Marínez Philipps edición: Gabriela Tenner diseño: CAFE Guías y uoriales/compresores/winrar Los orígenes de ese programa se remonan a las experiencias

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

Inteligencia Artificial Búsqueda entre adversarios

Inteligencia Artificial Búsqueda entre adversarios Inteligencia Artificial Búsqueda entre adversarios Primavera 27 profesor: Luigi Ceccaroni Juegos En los entornos multiagente (cooperativos o competitivos), cualquier agente tiene que considerar las acciones

Más detalles

Molécula de Azúcar ( C 12 H 22 O 11 ) Informe estadístico del sector agroindustrial de la caña de azúcar Zafras 2007/08 2013/14

Molécula de Azúcar ( C 12 H 22 O 11 ) Informe estadístico del sector agroindustrial de la caña de azúcar Zafras 2007/08 2013/14 Molécula de Azúcar ( C 12 H 22 O 11 ) Informe esadísico del secor agroindusrial de la caña de azúcar Zafras 2007/08 2013/14 INTRODUCCIÓN Ese primer informe esadísico del secor agroindusrial de la caña

Más detalles

CMT. CARACTERÍSTICAS DE LOS MATERIALES

CMT. CARACTERÍSTICAS DE LOS MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: CMT. CARACTERÍSTICAS DE LOS MATERIALES 2. MATERIALES PARA ESTRUCTURAS 4. Soldadura 1. Soldadura al Arco Elécrico A. CONTENIDO Ea Norma coniene lo requiio de calidad de la

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada de Laplace 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m g, c 4 Nm/ y 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x

Más detalles

Unidad 3 Direccionamiento IP (Subnetting)

Unidad 3 Direccionamiento IP (Subnetting) Unidad 3 Direccionamiento IP (Subnetting) Las direcciones denominadas IPv4 se expresan por combinaciones de números de hasta 32 bits que permiten hasta 2 32 posibilidades (4.294.967.296 en total). Los

Más detalles

LECCIÓN N 3 SEÑALES. Introducción

LECCIÓN N 3 SEÑALES. Introducción LECCIÓN N 3 SEÑALES Inroducción Señales coninuas y discreas Señales ípicas Señales periódicas y aperiódicas Parámeros ípicos. Especro de frecuencias Ruido y disorsión Elecrónica General Inroducción En

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles