4. Estilos y Paradigmas de Interacción

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. Estilos y Paradigmas de Interacción"

Transcripción

1 Coteidos El Factor Humao 3. Diseño Gráfico 4. Estilos de Iteracció 5. Metáforas 6. Iteracioalizació 7. Soporte al Usuario 8. Usabilidad Web 9. Guías y Estádares 10. Accesibilidad 11. Trabajo cooperativo 12. Evaluació 4. Estilos y Paradigmas de Iteracció Itroducció Estilos de Iteracció Iterfaz de líea de comados Meús y formularios Maipulació directa Iteracció Asistida Paradigmas de Iteracció Ordeador de Sobremesa Etoros virtuales y realidad virtual Computació ubicua Realidad aumetada

2 Itroducció Estilo de Iteracció Termio geérico para agrupar las diferetes maeras e que los usuarios se comuica o iteraccioa co el ordeador Estilos predomiates so: Iterfaz por líea de comados Meús y formularios Maipulació directa Iteracció asistida Iterfaz de líea de comados C:\Ejemplo>javac HolaMudo Javac: ivalid argumet: HolaMudo use: javac [-g] [-O] [-classpath path] [-d dir] file.java... C:\Ejemplo>javac HolaMudo.java C:\Ejemplo>java HolaMudo Hola Mudo!! C:\Ejemplo>

3 Líea de comados (II) Fue el primer estilo de diálogo iteractivo e ser ampliamete utilizado Idica istruccioes al ordeador directamete mediate teclas de fució, caracteres simples, abreviaturas y comados de palabra-completa Hoy e día represeta u acceso suplemetario a las iterfaces basadas e meús para usuarios expertos Líea de comados (III) Vetajas: Es potete ya que ofrece acceso directo a la fucioalidad del sistema Es flexible, ya que por ejemplo a u comado puede aplicársele muchos modificadores (ej. dir *.* /s /p...) Desvetajas: Es difícil de apreder y carga la memoria del usuario Requiere ua memorizació y etreamieto importate

4 Meús Se muestra las opcioes dispoibles para el usuario e patalla La selecció se hace mediate la tecla iicial, itroduciedo el úmero asociado o moviédose mediate las teclas de cursor Se acude al recoocimieto más que al recuerdo So ieficietes cuado tiee demasiados ítems Meús (II) Las opcioes debe ser sigificativas y estar agrupadas. El problema pricipal es que ítems icluir y cómo agruparlos (o por orde alfabético) Se debe permitir su persoalizació por parte del usuario Será utilizados e cojució co otros estilos de iterfaz

5 Meús de Patalla Completa Meús de Barra

6 Meús e Cascada Meús Cotextuales (Pop-Up)

7 Iterfaces Maipulació Directa Las patallas gráficas de alta resolució y los dispositivos aputadores, como el rató, ha permitido la creació de los etoros de maipulació directa Estas iterfaces supoe u cambio de ua sitaxis de comados compleja a ua maipulació de objetos y accioes El etoro más comú de maipulació directa es la iterfaz WIMP (Widows Icos Meus Poiters). Iterfaces Maipulació Directa (II) Beeficios Sitaxis mas secilla, reduce los errores Apredizaje más rápido y mejor reteció Icita a la exploració por parte del usuario Problemas Se ecesita más recursos

8 Iterfaces Gráficas - WIMP Desarrolladas iicialmete por Xerox (1981), y popularizadas por Apple (Lisa, Macitosh) Características pricipales: Posee u moitor gráfico de alta resolució y u dispositivo aputador (geeralmete rató) Icorpora elemetos de iterfaz estádar como vetaas, icoos, meús y diálogos Existe cotroles gráficos (widgets) para la selecció e itroducció de la iformació Puede maipular e la patalla directamete los objetos y la iformació Promueve la cosistecia de la iterfaz etre programas Iterfaces Gráficas - WIMP (III) Emplea metáforas de la vida real que se adapta al modelo metal del usuario: escritorio, sala de juegos, ageda, cámara, etc Ej. Escritorio de Widows

9 Iteracció Asistida Cocepto itroducido por Negropote (70) y Ala Kay (90) Se basa e la metáfora del asistete persoal o agete que colabora co el usuario e el mismo ambiete de trabajo El usuario e vez de dirigir la iteracció, trabaja e u etoro cooperativo co los agetes Permite reducir el esfuerzo para realizar tareas E maipulació directa hay que seleccioar los objetos y seleccioar las accioes E iteracció asistida se puede provocar cambios e los objetos que o correspode ua por ua co las accioes del usuario Iteracció Asistida (II) Agete Programa que ayuda al usuario. No se le cosidera ua herramieta desde el puto de vista de maipulació directa [Hery Lieberma]. Tiee que teer alguas de las características que asociamos a la iteligecia humaa: capacidad de apreder, iferecia, adaptabilidad,.. U agete de la iterfaz puede afectar a los objetos de la iterfaz pero si istruccioes explícitas del usuario Características So más discretos que los asistetes Actúa e u segudo plao Actúa por iiciativa propia cuado ecuetra iformació relevate para el usuarios Su implemetació es complicada (sistemas expertos, redes euroales)

10 Iteracció Asistida (III) Utilidad de los agetes Libera a los usuarios de tareas rutiarias Copias de seguridad Búsquedas de determiadas oticias... Hace los ordeadores más usables para la gete a la que o le gusta la tecología Iteracció Asistida (IV) Asistetes Etidades computacioales que os asiste e el uso de las aplicacioes existetes: Expoe de ua maera fácil que es lo que se ha de hacer Puede eteder palabras escritas o habladas So bastate habituales e las aplicacioes actuales y a veces tiee más de uo.

11 Paradigmas de iteracció Represeta los ejemplos o modelos de los que se deriva todos los sistemas de iteracció Los paradigmas iteractivos actuales so: Ordeador de Sobremesa Etoros virtuales y realidad virtual Computació ubicua Realidad aumetada Ordeador de sobremesa Es el paradigma domiate actualmete Características de la iteracció Se realiza aislada del etoro Setado e ua mesa co u ordeador e iterfaces de maipulació directa

12 Etoros virtuales y realidad virtual Describe ua amplia variedad de estilos de iteracció desde iterfaces tridimesioales co los que se puede iteraccioar y actualizar e tiempo real hasta sistemas e los que sesació de presecia es prácticamete igual al mudo real Beeficios Simulacioes imposibles e otro sitio Problemas Alto coste Casacio del usuario Ejemplos de uso de realidad virtual Etreamieto de operarios e ua cetral uclear Etreamieto de bomberos Recostruccioes virtuales de patrimoio histórico Etoros virtuales y realidad virtual (II)

13 Computació ubicua Mark Weisser (1991) Trata de exteder la capacidad computacioal al etoro del usuario Permitiedo que la capacidad de iformació esté presete e todas partes e forma que pequeños dispositivos muy diversos, que permite iteraccioes de poca dificultad, coectados e red a servidores de iformació El diseño de estos dispositivos debe realizarse acorde a la tarea objeto de la iteracció Computació ubicua (II) Ya o existirá estacioes de trabajo co ua sola patalla dode iteraccioar, sio ua serie de visualizacioes por todas partes permitiedo iteraccioes de poca dificultad Doald Norma e su libro El ordeador ivisible isiste: El ordeador persoal Es probablemete la tecología más frustrate jamás fabricada Tiee que ser silecioso, ivisible y o obstructivo Pero Es demasiado visible, demasiado exigete y cotrola uestro destio Cocetra demasiadas fucioes e ua caja que está e uestra sobremesa Solució comezar de uevo co simples dispositivos (appliaces)

14 Realidad Aumetada El usuario será capaz de iteraccioar co el mudo real, el cual parece aumetado por la iformació sitética del ordeador La situació del usuario será automáticamete recoocida utilizado u amplio cojuto de métodos de recoocimieto Puede ser muy útil para u rago muy amplio de sectores: medicia, costrucció, diseño iterior,... Si embargo, implica ua fuerte demada tecológica que todavía o se ha alcazado Comparació de Paradigmas Iteracció etre usuario y ordeador está aislada del mudo real Comparació de estilos de presetació El ordeador evuelve completamete al usuario. Iteracció etre usuario y mudo real desaparece A) IGU B) Realidad Virtual El usuario iteraccioa co el mudo real C) Computació Ubícua D) Realidad Aumetada Soporta iteracció etre el usuario y el mudo real utilizado la iformació aumetada del ordeador

15 Bibliografía The Ivisible Computer D. Norma, The MIT Press, 1998 The Architecture Machie. Towards a More Huma Eviromet N. Negropote. The MIT Press, 1970 Virtual Eviromets ad Advaced Iterface Desig K. Kaczmarec et. al.oxford Uiversity Press, 1996 The Sciece of Virtual Reality ad Virtual Eviromets R.S. Kalawsky. Addiso-Wesley, 1993 The Computer for the Twety-First Cetury M. Weiser. Scietific America, Septiembre 1991 Bibliografía Huma Factors ad Virtual Reality: a Perspective Society for Iformatio Display, v. XXIV, 1993 Agets that Reduce Work a Iformatio Overload P. Maes. Commuicatios of the ACM, Julio 1994, Vol 37 Autoomous Iterface Agets H. Lieberma. ACM Coferece o CHI, Atlata, 1997

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia *

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia * Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. Articulació de los sectores de salud, protecció y educació e la ateció a la primera

Más detalles

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona Edició # 53 EL SALVADOR iss : 2075-6631 Lic. Luis Barahoa Destacado abogado acioal y regioal e el área del derecho tributario. Co más de 20 años de recorrido profesioal. Socio de la firma Arias & Muñoz.

Más detalles

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL?

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Rev. 12/26/12 DATOS Por qué? Qué? QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Las istitucioes fiacieras elige la maera e que comparte su iformació persoal. La ley federal otorga a los

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

LA GUERRA INFORMÁTICA

LA GUERRA INFORMÁTICA 219 CLAUDIO C. LÓPEZ La guerra iformática se aucia como ua herramieta revolucioaria que se empleará e los futuros coflictos armados. Desigada ormalmete co la expresió ataque cotra las redes iformáticas

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Guía de servicio al cliente VAIO-Link

Guía de servicio al cliente VAIO-Link Guía de servicio al cliete VAIO-Lik "Tratamos cada problema de cada cliete co cuidado, ateció y respecto y queremos que todos uestros clietes se sieta bie sobre la experiecia que tiee co VAIO-Lik." Guía

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Estilos y paradigmas

Estilos y paradigmas Interacción persona-computador Estilos y paradigmas Objetivos Entender y aprender qué es un estilo de interacción Tener una visión general y comparativa de los estilos y paradigmas de interacción Conocer

Más detalles

Criterio 1: (objetivo 1) Graduació Competencias básicas Indicadores relacionadas . M

Criterio 1: (objetivo 1) Graduació Competencias básicas Indicadores relacionadas . M C. M. INDICADORE DEPARTAMENTO DE TECNOLOGIA 1º DE LA EO Volver a idice Criterio 1: Aalizar y describir e las estructuras del etoro los elemetos resistetes y los esfuerzos a que está sometidas (objetivo

Más detalles

Router Teldat. Route Mapping

Router Teldat. Route Mapping Router Teldat Route Mappig Doc. DM 764 Rev. 10.71 Abril, 2008 ÍNDICE Capítulo 1 Itroducció...1 1. Route maps... 2 1.1. Policy routig... 2 1.2. Redistribució de rutas... 2 1.3. Itercambio de rutas e BGP...

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

3. Diseño Gráfico. Contenidos. Introducción Organización perceptual de los objetos Texto Color Gráficos Navegación. Diseño Gráfico

3. Diseño Gráfico. Contenidos. Introducción Organización perceptual de los objetos Texto Color Gráficos Navegación. Diseño Gráfico Coteidos 1. Iteracció Hombre-Máquia 2. El Factor Humao 3. 4. Estilos de Iteracció 5. Metáforas 6. Iteracioalizació 7. Soporte al Usuario 8. Usabilidad Web 9. Guías y Estádares 10. Accesibilidad 11. Trabajo

Más detalles

INTRODUCCIÓN HISTÓRICA.

INTRODUCCIÓN HISTÓRICA. Aplicació de los Sistemas Evolutivos al Tratamieto de Imágees Ferado Galido Soria Escuela Superior de Cómputo (ESCOM) Istituto Politécico Nacioal Av. Miguel Othó de Medizábal y Av. Jua de Dios Bátiz s/

Más detalles

2n = 4 cromosomas. Eje proteico

2n = 4 cromosomas. Eje proteico meiosis 22 + X 22 + X 22 + X 2 44 + XY 22 + Y + 22 + Y 22 + Y La meiosis es u proceso de divisió celular por el que a partir de ua célula madre diploide (2) se obtiee cuatro células hijas haploides ()

Más detalles

Sumando la Derivada de la Serie Geométrica

Sumando la Derivada de la Serie Geométrica Boletí de la Asociació Matemática Veezolaa, Vol. X, No. 1 (2003) 89 MATEMÁTICAS RECREATIVAS Sumado la Derivada de la Serie Geométrica Lyoell Boulto y Mercedes H. Rosas 1. Itroducció Jacobo Beroulli (1654

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

CREACIÓN DE EQUIPOS DE TRATAMIENTO Y RESPUESTA A INCIDENTES EN REDES COMPUTACIONALES - ETIR

CREACIÓN DE EQUIPOS DE TRATAMIENTO Y RESPUESTA A INCIDENTES EN REDES COMPUTACIONALES - ETIR 05/IN01/DSIC/GSIPR 01 /AGO/09 1/7 PRESIDENCIA DE LA REPÚBLICA Gabiete de Seguridad Istitucioal Departameto de Seguridad de la Iformació y Comuicacioes CREACIÓN DE EQUIPOS DE TRATAMIENTO Y RESPUESTA A INCIDENTES

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones Terapias para la depresió resistete a tratamieto Revisió de las ivestigacioes Es apropiada si: Es esta iformació apropiada para mí o para la persoa a quie cuido? U médico u otro profesioal de salud le

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz ROBÓTICA. Sensor. Actuador

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz ROBÓTICA. Sensor. Actuador ROBÓTICA U robot es u sistema formado por sesores y actuadores cotrolados por u ordeador para realizar diferetes tareas. Tambié se puede defiir al robot como ua máquia co u alto grado de autoomía, diseñada

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

MINISTERIO DE EDUCACIÓN, CIENCIA Y TECNOLOGÍA DE LA NACIÓN ARGENTINA Istituto Nacioal de Formació Docete «2007 - Año de la seguridad vial» Los Campus Virtuales e la Educació Superior Presecial Cuaderos

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Este documento es propiedad de Basquetour, S.A. Prohibida su reproducción parcial o total sin autorización expresa.

Este documento es propiedad de Basquetour, S.A. Prohibida su reproducción parcial o total sin autorización expresa. Este documeto es propiedad de Basquetour, S.A. Prohibida su reproducció parcial o total si autorizació expresa. 218 Cuál es el motivo fudametal de visita a Hasta qué puto se cosulta iformació acerca del

Más detalles

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite 1. LUBRICACIÓN 1.1 Fialidad de la Lubricació La fialidad pricipal de la lubricació es reducir la fricció y el desgaste e el iterior de los rodamietos que podría causar fallos prematuros. Los efectos de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

Caracterización de redes Objetivos del capítulo

Caracterización de redes Objetivos del capítulo 1 Caracterizació de redes Objetivos del capítulo 4 4 4 4 4 4 4 Itroducir los coceptos básicos de redes de comuicacioes. Describir los pricipios de fucioamieto de las redes locales. Idetificar los distitos

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE FORMACIÓN DE LOS DIRECTIVOS SINDICALES. EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2016 Este maual

Más detalles

Ciclo de Vida completo de control de Costos en proyectos

Ciclo de Vida completo de control de Costos en proyectos Ciclo de Vida completo de cotrol de Costos e proyectos EcoSys EPC es la ueva geeració e solució de software para plaificació y cotrol de costos etregado las mejores prácticas e el ciclo de vida del proyecto,

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

CAPÍTULO 1 COMPUTADORA DIGITAL. Modelo De Von Neumann

CAPÍTULO 1 COMPUTADORA DIGITAL. Modelo De Von Neumann CAPÍTULO 1 COMPUTADORA DIGITAL Ua computadora digital es ua combiació de dispositivos y circuitos electróicos orgaizados de tal forma, que puede realizar ua secuecia programada de operacioes co u míimo

Más detalles

La sucesión de Fibonacci

La sucesión de Fibonacci La sucesió de Fiboacci María Isabel Viggiai Rocha Sea la sucesió {a } defiida por: a = a -1 + a -2 si 3 y a 1 = a 2 = 1. Esta sucesió es coocida como la sucesió de Fiboacci y la aparició de la misma brota

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

A. ASPECTOS TECNOLÓGICOS

A. ASPECTOS TECNOLÓGICOS A. ASPECTOS TECNOLÓGICOS - La tecología represeta u papel fudametal e la ueva ecoomía digital, llegado icluso a posibilitar la aparició de uevos egocios. - Iteret es, desde el puto de vista tecológico,

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera: GENERALIDADES I. DEFINICIÓN DE METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. 3. Movilizació social y resposabilidad de los medios de comuicació co la Primera

Más detalles

Ordenador personal Serie VGN-A/serie VGN-FS

Ordenador personal Serie VGN-A/serie VGN-FS Guía del usuario Ordeador persoal Serie VG-A/serie VG-FS 2 Coteido Ates del uso...6 Aviso...6 EERGY STAR...7 Documetació...8 Cosideracioes ergoómicas...11 Itroducció...13 Sobre los idicadores lumiosos...14

Más detalles

INFORMATIZACIÓN DEL INVENTARIO FORESTAL (INVENFOR)

INFORMATIZACIÓN DEL INVENTARIO FORESTAL (INVENFOR) Revista Forestal Baracoa vol. 29 (1), eero-juio 2010 ISSN: 0138-6441 Artículo cietífico, pp. 3-11 INFORMATIZACIÓN DEL INVENTARIO FORESTAL (INVENFOR) M.SC. RICARDO INTUYE-RODRÍGUEZ, M.SC. ILYA GARCÍA-CORONA,

Más detalles

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL EDU101 SOFTWARE INVENFOR 1.0 SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL Autor: 1 Ig. Ricardo Iouye Rodríguez Co-Autores: 2 MSc. Caridad Salazar Alea 3 Ig. Jua J. Ramos Herádez

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Para qué medir? Midiendo el Desempeño. M. Curiel 1. Midiendo el Desempeño. Qué variables se desea medir? Cuáles son las herramientas disponibles?

Para qué medir? Midiendo el Desempeño. M. Curiel 1. Midiendo el Desempeño. Qué variables se desea medir? Cuáles son las herramientas disponibles? Midiedo el Desempeño Mariela Curiel 009 (Alguas trasparecias so tomadas del libro de Juiz, Molero, etc) Para qué medir? teder el fucioamieto de u sistema o aplicació - cotrar los segmetos que se usa de

Más detalles

La desventaja de la media aritmética: cómo tratarla en clases

La desventaja de la media aritmética: cómo tratarla en clases http://www.siewto.org/umeros ISSN: 1887-1984 Volume 74, julio de 2010, págias 39 44 La desvetaja de la media aritmética: cómo tratarla e clases Carlos M. Rodríguez Arteaga (Cetro Uiversitario. Isla de

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Guía de usuario del ordenador portátil Sony. Series PCG-FX800

Guía de usuario del ordenador portátil Sony. Series PCG-FX800 Guía de usuario del ordeador portátil Soy Series PCG-FX800 Lea ésto primero Lea ésto primero Aviso 2002 Soy Corporatio. Todos los derechos reservados. Este maual y el software aquí descrito o puede, parcialmete

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. *

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. * TARIFA ÓPTIMA Y UBIDIO CRUZADO EN LO PEAJE POR EL UO DE LA REDE ELÉCTRICA. * Pedro CALERO PÉREZ José Igacio ÁNCHEZ MACÍA Departameto de Ecoomía Aplicada Uiversidad de alamaca ** REUMEN La regulació actual

Más detalles

Grandparents. Grandchildren. Disciplinando a sus nietos

Grandparents. Grandchildren. Disciplinando a sus nietos Gradparets Raisig Gradchildre Discipliado a sus ietos Cómo les eseña a los iños a comportarse, au cuado usted o está presete? La clave es emplear ua disciplia eficaz y cosistete. Los iños so más probables

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

LA SORPRENDENTE SUCESIÓN DE FIBONACCI

LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci debe su ombre a Leoardo de Pisa (.70-.40), más coocido por Fiboacci (hijo de Boaccio). A pesar

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

ECONOMÍA GUÍA DIDÁCTICA

ECONOMÍA GUÍA DIDÁCTICA ECONOMÍA GUÍA DIDÁCTICA Modalidad de Humaidades y Ciecias Sociales M.ª CARMEN BERNAL Y M.ª JOSÉ PIRLA 9 788483 086100 Teléfoo de ateció al profesorado: 902 10 70 69 www.almadrabadigital.com Direcció editorial:

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos Tratamieto para la apea del sueño Revisió de la ivestigació para adultos Es apropiada si: U médico le dijo que tiee "apea obstructiva del sueño (OSA por su sigla e iglés) de grado leve, moderata o grave.

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles