CORRIENTE CONTINUA II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CORRIENTE CONTINUA II"

Transcripción

1 CORRIENTE CONTINUA II Efecto Joule. Ya vimos en la primera parte de estos apuntes que en todos los conductores y dispositivos se produce una disipación calorífica de la energía eléctrica. En una resistencia eléctrica la energía que se disipa lo hace íntegramente en forma de calor, Q. La energía disipada por una carga q que se mueve por un conductor cuyos extremos están sometidos a una diferencia de potencial V AB, es igual a Q=V AB q=v AB It Si la resistencia del conductor óhmico es R, resulta, según la ley de Ohm: Q= RI 2 t Esta expresión se conoce como ley de Joule. Fuerza electromotriz y fuerza contraelectromotriz. Un generador de corriente eléctrica es un dispositivo que mantiene de forma indefinida la corriente. Los generadores transforman diversos tipos de energía (mecánica, solar, química) en energía eléctrica. La magnitud que mide la capacidad de un generador eléctrico para suministrar energía eléctrica es la fuerza electromotriz (fem), que es la energía que suministra el generador a la unidad de carga que pasa por él. ε= W q = W It donde W es el trabajo realizado por el generador, que es la energía transferida a las cargas eléctricas; I es la intensidad de corriente que circula por el conductor y t es el tiempo que tarda en transferir la energía a las cargas. En un circuito también puede haber dispositivos que transformen la energía eléctrica en otras formas de energía diferente de la térmica (mecánica, luminosa...). La fuerza contraelectromotriz, ε', de un receptor es la energía eléctrica, E', transformada por el receptor por cada unidad de carga que pasa por él, de modo que: Ley de Ohm generalizada. E '=ε' q=ε' It Los generadores poseen una resistencia eléctrica interna, r, y debido a ello, cuando se instalan en un circuito y circula por ellos una corriente, I, la energía que suministran al resto de elementos del circuito es ε It ri 2 t, inferior a ε q.

2 El balance energético de un circuito eléctrico es el siguiente: La energía suministrada por el generador, de fem ε y de resistencia interna r, es igual a la energía transformada por los receptores, con fcem ε', más la energía disipada en forma de calor en la resistencia interna del propio generador y en todas las demás resistencias del circuito. ε It=ε' It+rI 2 t+ri 2 t donde R es la resistencia equivalente a todas las del circuito, excepto r. Simplificando esta ecuación y despejando I, obtenemos la ley de Ohm generalizada: La intensidad de la corriente en un circuito es igual al cociente entre la suma de las fems y la suma de las resistencias. I = ε ε ' R+r = ε i R j donde se considera a las fcems como fems de signo negativo. Ejemplo 1. Energía suministrada por el generador Un circuito está formado por una batería de fem igual a 6 V y 0,3 Ω de resistencia interna, un pequeño motor de 2 V de fcem y 0,2 Ω, y una resistencia de 3,5 Ω acoplada en serie al motor. Dibújalo y calcula: a. La intensidad de corriente en el circuito. b. La tensión en los extremos de la resistencia. c. La tensión en los bornes de la batería. Energía transformada por los receptores en formas no térmicas Energía disipada por Efecto Joule en los dispositivos y conductores Solución: ε = 6 V r = 0,3 Ω ε' = 2 V M r = 0,2 Ω 3,5 Ω a. Aplicamos la ley de Ohm generalizada I = ε ε ' R+r = 6V 2V (3,5 Ω+0,2 Ω)+0,3 Ω =1A

3 b. V V ' =RI =3,5 Ω 1A=3,5 V c. La tensión (ddp) en los bornes de la batería es igual a la fem menos la caída de tensión en su interior. Ejercicio. V V ' =ε ri =6V 0,3Ω 1A=5,7V Una lámpara de incandescencia lleva la indicación 220 V, 60 W. Calcula su resistencia eléctrica y la energía que consume cada hora de funcionamiento. (Sol.: R = 807 Ω, E = 2, J) Resolución de circuitos complejos de corriente continua. Leyes de Kirchhoff. Conceptos previos: Nudos: puntos de un circuito donde concurren dos o más conductores. Mallas: trayectorias cerradas que se pueden seguir dentro de un circuito. Un tramo de malla situado entre dos nudos se denomina rama. malla 1 malla 2 NUDOS Ley de los nudos. MALLAS La suma algebraica de las intensidades de corriente que confluyen en un nudo es cero: I i =0 Las cargas que llegan a un nudo del circuito no se pueden acumular en él y, por tanto, lo abandonan con la misma rapidez con la que llegan. Para su aplicación, se consideran positivas las corrientes que entran en el nudo, y negativas las que salen de él. En la figura de arriba a la izquierda resultaría: Ley de las mallas. I 2 =0 La suma algebraica de las fem en una malla es igual a la suma de las caídas de tensión que se producen en las resistencias de la misma: ε i = I j R j

4 La energía suministrada por los generadores es igual a la suma de la energía que se transforma en los receptores y de la energía disipada por efecto Joule. Para su aplicación se elige un sentido arbitrario de circulación para recorrer las mallas (el mismo para todas). Una fem se considera positiva si se atraviesa desde el borne negativo al borne positivo, y negativa en caso contrario. Una caída de potencial, IR, se considera positiva si el sentido elegido para recorrer la malla coincide con el asignado inicialmente a la intensidad, y negativa en caso contrario. Ejemplo 2. R1 ε 1 ε 2 = (R 1 + R 2 +r 1 ) I 2 r 2 ε1, r1 R2 I5 ε2, r2 I6 I4 Aplicación de las leyes de Kirchhoff. Las leyes de Kirchhoff son un método para la resolución de circuitos; se pueden aplicar tanto a los circuitos sencillos como a los más complejos. En nuestro caso además, solo las utilizaremos para circuitos con generadores y resistencias únicamente. Al resolver las ecuaciones en nudos y mallas, los valores negativos obtenidos para las intensidades indican que el sentido asignado inicialmente es el contrario al real. Las intensidades de valor positivo tienen su sentido asignado correctamente. Si no respetamos el convenio de signos en las ecuaciones obtendremos soluciones incorrectas. Ejemplo 3. Halla los valores de las intensidades de corriente que circulan por los conductores en el circuito de la figura: 5Ω A 8V 0,5 Ω 6Ω 3V 0,5 Ω 3Ω Asignamos los sentidos de las corrientes I i, y el sentido de circulación en las mallas, tal y como se ve en la figura. La ley de los nudos aplicada en A da: B

5 =I 2 (En B obtenemos la misma ecuación) La ley de las mallas aplicada a las dos mallas señaladas da: 8=0, I =4I 2 6I 3 +0,5 I 2 Resolviendo el sistema de tres ecuaciones con tres incógnitas obtenemos: =0,57 A ; I 2 =0,04 A ; I 3 =0,53 A. Como todas las corrientes tienen signo positivo, el sentido que se les había asignado es correcto. Ejemplo 4. Halla la diferencia de potencial entre los puntos A y B del circuito de la figura. A Una vez más asignamos los sentidos de las corrientes y el de circulación de las mallas, como muestra la figura. La lay de los nudos aplicada a A da: 5V 1Ω B 5V 1Ω =I 2 La ley de las mallas aplicada a las dos mallas señaladas da: 5 5= I 3 Y resolviendo el sistema: 5=4I 2 I 3 2I 3 =0,2 A ; I 2 =0,8 A ; I 3 = 0,6 A El signo negativo de I 3 significa que el sentido de la corriente en el circuito es opuesto al asignado. La ddp entre A y B se puede calcular considerando la rama de la derecha de la figura: V A V B =4I 2 = 0,8 A=3,2 V

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

TEMA 5 RESOLUCIÓN DE CIRCUITOS

TEMA 5 RESOLUCIÓN DE CIRCUITOS TEMA 5 RESOLUCIÓN DE CIRCUITOS RESOLUCIÓN DE CIRCUITOS POR KIRCHHOFF Para poder resolver circuitos por Kirchhoff debemos determinar primeros los conceptos de malla, rama y nudo. Concepto de malla: Se llama

Más detalles

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la

Más detalles

Capítulo 4. Energía y Potencia

Capítulo 4. Energía y Potencia Capítulo 4 Energía y Potencia 4.1 ntroducción 4.2 Energía de la corriente eléctrica. Ley de Joule 4.3 Generador 4.4 Receptor 4.5 Diferencia de potencial entre dos puntos de un circuito 4.6 Ecuación del

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES CORRENTE CONTÍNU () GENERORES Y OTORES ES La agdalena. vilés. sturias En un circuito se pueden intercalar, además de resistencias, elementos activos tales como generadores y motores. Los generadores (o

Más detalles

Polo positivo: mayor potencial. Polo negativo: menor potencial

Polo positivo: mayor potencial. Polo negativo: menor potencial CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS .E.S. CÁ STULO 1 CRCUTOS ELÉCTRCOS 1. COMPONENTES DE UN CRCUTO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS Laboratorio Virtual de niciación al Estudio de la Electrocinética y Circuitos de Corriente EJECCOS ESUELTOS EJECCO La cantidad de carga q (en C) que pasa a través de una superficie de área cm varía con

Más detalles

CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA

CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EL CIRCUITO ELÉCTRICO Definición: Es un conjunto de elementos empleados para la transmisión y control de la energía eléctrica desde el generador hasta el receptor

Más detalles

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS CUSO: º DSOLLO D PODUCTOS LCTÓNICOS. MÓDULO: LCTÓNIC NLÓGIC TM: NÁLISIS D CICUITOS LÉCTICOS NÁLISIS D CICUITOS LÉCTICOS. INTODUCCIÓN.. LYS D KICHOFF.. NÁLISIS D CICUITOS N COINT CONTÍNU. 4. OTOS MÉTODOS

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una

1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una 1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una sección transversal cualquiera del conductor cada minuto?

Más detalles

2. Electrónica. 2.1. Conductores y Aislantes. Conductores.

2. Electrónica. 2.1. Conductores y Aislantes. Conductores. 2. Electrónica. 2.1. Conductores y Aislantes. Conductores. Se produce una corriente eléctrica cuando los electrones libres se mueven a partir de un átomo al siguiente. Los materiales que permiten que muchos

Más detalles

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1.

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1. Dos pilas de f.e.m. y resistencias internas diferentes se conectan en paralelo para formar un único generador. Determinar la f.e.m. y resistencia interna equivalentes. Denominamos E i a las f.e.m. de las

Más detalles

COLECCIÓN DE PROBLEMAS III. Leyes de Kirchhoff + Método de mallas

COLECCIÓN DE PROBLEMAS III. Leyes de Kirchhoff + Método de mallas COLECCIÓN DE PROBLEMAS III Leyes de Kirchhoff + Método de mallas 1. Utilizando las leyes de Kirchhoff, calcular las tensiones o diferencias de potencial entre los extremos de cada resistencia, una vez

Más detalles

Tema 1.- Análisis de circuitos de corriente continua

Tema 1.- Análisis de circuitos de corriente continua Tema 1.- nálisis de circuitos de corriente continua 1.1 Conceptos y leyes básicas de la conducción eléctrica Denominamos corriente eléctrica al fenómeno físico del movimiento de la carga eléctrica: cuando

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición

Más detalles

4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca Fuerza electromotriz Supóngase que se quiere conseguir una corriente estacionaria en la dirección

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

8. Tipos de motores de corriente continua

8. Tipos de motores de corriente continua 8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

Tema 1: Circuitos eléctricos de corriente continua

Tema 1: Circuitos eléctricos de corriente continua Tema 1: Circuitos eléctricos de corriente continua Índice Magnitudes fundamentales Ley de Ohm Energía y Potencia Construcción y aplicación de las resistencias Generadores Análisis de circuitos Redes y

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA.

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA. PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA. 1. OBJETIVOS. Seleccionar adecuadamente el amperímetro y el voltímetro

Más detalles

Tema 2 Introducción a los circuitos eléctricos

Tema 2 Introducción a los circuitos eléctricos Tema 2 Introducción a los circuitos eléctricos 2. Nociones Básicas. 2.Teoría electrónica Cualquier átomo está constituido por un núcleo, compuesto, por protones y neutrones; en torno a dicho núcleo giran

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

TEMA 3 TEOREMAS DE LA TEORÍA DE CIRCUITOS. 3.1.- Clases de circuitos eléctricos: Lineales, cuasilineales, no lineales.

TEMA 3 TEOREMAS DE LA TEORÍA DE CIRCUITOS. 3.1.- Clases de circuitos eléctricos: Lineales, cuasilineales, no lineales. TEM 3 TEOEMS DE L TEOÍ DE IUITOS 31- lases de circuitos eléctricos: Lineales, cuasilineales, no lineales 32- Propiedades de los circuitos lineales: Homogeneidad y aditividad 321- Proporcionalidad 322-

Más detalles

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente FEM y Circuitos DC Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción Las baterías proporcionan un

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Principios físicos y electrónicos

Principios físicos y electrónicos Principios físicos y electrónicos Tema 1 Dr. Óscar Ruano Índice Conceptos básicos Voltaje y diferencia de potencial Intensidad de corriente Resistencia Potencia Análisis de circuitos Ley de Kirchoff de

Más detalles

CALIDAD DE ENERGÍA. Introducción

CALIDAD DE ENERGÍA. Introducción CALIDAD DE ENERGÍA Introducción CALIDAD DE ENERGÍA Prof. Ing. Juan Carlos Jiménez Correo: juanjimenez@itcr.ac.cr Sitio W: www.ie.itcr.ac.cr/juanjimenez Recomendaciones Generales trabajar en grupo Resolver

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

CAPITULO 1 ANALISIS DE CIRCUITOS CON RESISTORES Y FUENTES DE TENSION O CORRIENTE CONTINUA

CAPITULO 1 ANALISIS DE CIRCUITOS CON RESISTORES Y FUENTES DE TENSION O CORRIENTE CONTINUA CAPITULO 1 ANALISIS DE CIRCUITOS CON RESISTORES Y FUENTES DE TENSION O CORRIENTE CONTINUA 1.1 Introducción. En este capítulo presentamos el sistema de unidades que usaremos en el texto. También estudiaremos

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Tema 5 Circuitos de Corriente Alterna 5.1. Introducción Dado que en el Tema 4 se han establecido algunas de las leyes físicas que rigen el comportamiento de los campos eléctrico y magnético cuando éstos

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

Unidad didáctica: Electricidad y Electrónica

Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica ÍNDICE 1.- El átomo y sus partículas. 2.- Materiales conductores, aislantes y semiconductores. 3.- Resistencia.

Más detalles

TEORIA DE CIRCUITOS. 2.- Métodos de análisis

TEORIA DE CIRCUITOS. 2.- Métodos de análisis TEORIA DE CIRCUITOS TEMA 2. MÉTODOS DE ANÁLISIS Josep Lluís Rosselló. Febrer 2011 2.- Métodos de análisis Leyes de Kirchoff } Corrientes Tensiones Métodos de resolución: Nudos Mallas Divisores de tensión

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PUEBAS DE ACCESO A A UNESDAD.O.G.S.E. CUSO 00-00 - CONOCATOA: EECTOTECNA E AUMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

PARALELO DE TRANSFORMADORES

PARALELO DE TRANSFORMADORES GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 2 PARALELO DE TRANSFORMADORES 1. Objetivos Estudio teórico y práctico de las condiciones que se deben cumplir para realizar el conexionado en paralelo de dos

Más detalles

CORRIENTES ALTERNAS TRIFASICAS

CORRIENTES ALTERNAS TRIFASICAS 1 CORRIENTES ALTERNAS TRIFASICAS. Sistemas polifásicos. El circuito de c.a. monofásico es adecuado para muchas aplicaciones, pero existen dos campos de la electrotecnia para los cuales no es apropiado:

Más detalles

EJERCICIOS DE ELECTROTECNIA (MÁQUINAS C.C.)

EJERCICIOS DE ELECTROTECNIA (MÁQUINAS C.C.) EJERCICIOS DE ELECTROTECNIA (MÁQUINAS C.C.) 1. El inducido de una dinamo Shunt tiene una resistencia de 0,04Ω y los inductores de 24 Ω. Si suministra una intensidad de corriente de 30 A con una tensión

Más detalles

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual Electricidad Ley de Coulomb Electrostática Sistemas de unidades d Campo eléctrico. Líneas de campo Potencial eléctrico creado por una carga puntual Estructura atómica Electrones Núcleo: protones y neutrones

Más detalles

CIRCUITO ELÉCTRICO ELEMENTAL

CIRCUITO ELÉCTRICO ELEMENTAL CIRCUITO ELÉCTRICO ELEMENTL Elementos que integran un circuito elemental. Los elementos necesarios para el armado de un circuito elemental son los que se indican en la figura siguiente; Figura 1 Extremo

Más detalles

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie Experimento 5 COMBINACIONES DE RESISTENCIAS Objetivos 1. Construir circuitos con baterías, resistencias, y cables conductores, 2. Analizar circuitos con combinaciones de resistencias en serie para verificar

Más detalles

F.A. (Rectificación).

F.A. (Rectificación). Ficha Temática F.A. (Rectificación). Circuito rectificador de media onda. Cuando se introduce una tensión de C.A. a la entrada del circuito, mostrado en la Figura 11.3, en la salida aparece una tensión

Más detalles

APLICACIONES DE LAS MATRICES Y LOS SISTEMAS LINEALES

APLICACIONES DE LAS MATRICES Y LOS SISTEMAS LINEALES APLICACIONES DE LAS MATRICES Y LOS SISTEMAS LINEALES Alumno: Grupo: Sobre cambios de moneda extranjera Problema nº 1.- Un empresario estadounidense necesita cantidades fijas de yenes japoneses, libras

Más detalles

Circuitos eléctricos Básicos

Circuitos eléctricos Básicos Circuitos eléctricos Básicos Escuela de Ingeniería Civil en Informática Universidad de Valparaíso, Chile http:// Fecha revisión: 02/09/2014 Modelos de sistemas eléctricos 2 Diagramas eléctricos v a 3 Cables

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

CAPITULO II RESISTENCIAS Y FUENTES

CAPITULO II RESISTENCIAS Y FUENTES CAPITULO II RESISTENCIAS Y FUENTES 2.1.-INTRODUCCION. Para determinar las propiedades de cualquier tipo de sistema es necesario conocer las características de los componentes básicos de dicho sistema.

Más detalles

UNIDAD 1 Máquinas eléctricas

UNIDAD 1 Máquinas eléctricas Página1 UNIDAD 1 Máquinas eléctricas 1.1 Introducción MÁQUINA Una máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o

Más detalles

TEMA 4: ELECTRICIDAD

TEMA 4: ELECTRICIDAD TEMA 4: ELECTRICIDAD 1. Origen de los fenómenos eléctricos 2. La corriente eléctrica a. Corriente continua b. Corriente alterna 3. Elementos de un circuito a. Generadores b. Receptores c. Conductores d.

Más detalles

ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA

ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA Instalaciones Eléctricas Electricidad Física ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA Aprendizaje Esperado Incorporan el concepto de error en la medición de magnitudes físicas (por ejemplo, a través de la

Más detalles

9 La corriente eléctrica

9 La corriente eléctrica Solucionario 9 La corriente eléctrica EJERCICIOS PROPUESTOS 9. Identifica qué tipo de corriente (continua o alterna) circula por los siguientes aparatos y dispositivos: a) Una linterna de pilas. b) Una

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

PROBLEMAS DE ELECTROTECNIA

PROBLEMAS DE ELECTROTECNIA PROBLEMAS DE ELECTROTECNIA MATERIAL DIDÁCTICO Ingenierías nº 23 Otros títulos de la colección. 1 Planos acotados: expresión gráfica (2ª ed.) Ricardo Bartolomé Ramírez 2003, 306 pags. ISBN 84-95301-74-1

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Seminario de Electricidad Básica

Seminario de Electricidad Básica Seminario de Electricidad Básica Qué es la Electricidad? Es una forma de energía natural que puede ser producida artificialmente y que se caracteriza por su poder de transformación; ya que se puede convertir

Más detalles

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad 1 PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA 5.1. Capacidad Es la propiedad que poseen los circuitos eléctricos que tiende a evitar los cambios de tensión. Cuando se aplica

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Sistemas electrónicos básicos de alimentación

Sistemas electrónicos básicos de alimentación Sistemas electrónicos básicos de alimentación 04 1. Etapa rectificadora de media onda.. Etapa rectificadora de doble onda con toma media. 3. Etapa rectificadora con puente de diodos. 4. Sistema de alimentación

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

INTRODUCCIÓN A LA ELECTRICIDAD

INTRODUCCIÓN A LA ELECTRICIDAD Dpto. Escultura.Facultad de Bellas Artes de Valencia Prof: Moisés Mañas Moimacar@esc.upv.es Todas las cosas están formadas por átomos Todas las cosas están formadas por átomos Protones (carga +) Neutrones

Más detalles

Tema 06: Tipos de sensores

Tema 06: Tipos de sensores Tema 06: Tipos de sensores Solicitado: Tarea 07 Mapa conceptual: Tipos de sensores M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom 1 Contenido

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Energía eléctrica. Elementos activos I

Energía eléctrica. Elementos activos I La corriente eléctrica con mucha chispa Elementos activos y pasivos Circuitos eléctricos Corriente continua y alterna, las chispas de nuestras casas Almacenamiento y producción de energía eléctrica ehículos

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

COMPONENTES Y CIRCUITOS (CC)

COMPONENTES Y CIRCUITOS (CC) COMPONENTES Y CIRCUITOS (CC) La asignatura Componentes y Circuitos (CC) tiene carácter troncal dentro de las titulaciones de Ingeniería Técnica de Telecomunicación, especialidad en Sistemas de Telecomunicación

Más detalles

Unidad 2 - Corriente Alterna Conceptos:

Unidad 2 - Corriente Alterna Conceptos: Unidad 2 - Corriente Alterna Conceptos: 1. Campo Magnético 2. Ley de inducción de Faraday 3. Inductor Campo Magnético (B) carga eléctrica E carga eléctrica Cargas eléctricas generan un campo eléctrico

Más detalles

Definimos así a la región del espacio donde se manifiestan acciones magnéticas.

Definimos así a la región del espacio donde se manifiestan acciones magnéticas. Unidad N 1 - TRANSFORMACION DE LA ENERGIA CAMPO MAGNETICO: Definimos así a la región del espacio donde se manifiestan acciones magnéticas. ELECTROMAGNETISMO Ley de Biot Savart En todo conductor recorrido

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 6 Tema: PUENTES DE CORRIENTE CONTINUA Y DE CORRIENTE ALTERNA. Q - METER Introducción Las mediciones de precisión de los valores

Más detalles

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología.

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología. Aplicaciones de las Matrices a la Solución de Problemas de Redes Eléctricas Resumen Se muestra como obtener, sistemas de ecuaciones lineales que permitan calcular intensidades de corrientes en los ramales

Más detalles

XIX OLIMPIADA ESPAÑOLA DE FÍSICA.

XIX OLIMPIADA ESPAÑOLA DE FÍSICA. P Exp. Estudio experimental de un generador de corriente Introducción; objetivos Según la ley de Faraday, cuando cambia el flujo magnético a través de un circuito se induce en él una fuerza electromotriz

Más detalles

Unidad didáctica: Electromagnetismo

Unidad didáctica: Electromagnetismo Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.

Más detalles

UNIDAD TEMÁTICA 6 UNIDAD TEMÁTICA 3: ELECTRÓNICA. CPR COLEXIO SAGRADO CORAZÓN DE XESÚS (Placeres). Pontevedra. http://www.pelandintecno.blogspot.

UNIDAD TEMÁTICA 6 UNIDAD TEMÁTICA 3: ELECTRÓNICA. CPR COLEXIO SAGRADO CORAZÓN DE XESÚS (Placeres). Pontevedra. http://www.pelandintecno.blogspot. UNIDAD TEMÁTICA 6 ELABORADO POR: Pedro Landín CPR COLEXIO SAGRADO CORAZÓN DE XESÚS (Placeres). Pontevedra PÁGINA 1 DE 18 I. INTRODUCCIÓN E stamos acostumbrados a utilizar aparatos eléctricos sin saber

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

Corriente continua y corriente alterna

Corriente continua y corriente alterna Electricidad ENTREGA 1 Corriente continua y corriente alterna Elaborado por Jonathan Caballero La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles