TEMA 2. CIRCUITOS ELÉCTRICOS.
|
|
- José Luis Acuña Pinto
- hace 5 años
- Vistas:
Transcripción
1 TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura atómica, la carga eléctrica, y las magnitudes eléctricas básicas. Tras esto, estudiaremos los circuitos eléctricos, la Ley de Ohm y el Efecto Joule, tras lo que podremos hacer problemas de resolución de circuitos. Puedes recurrir al siguiente enlace para ampliar tu conocimiento sobre los circuitos eléctricos: 2. ESTRUCTURA ATÓMICA. El átomo es una agrupación más o menos compleja de partículas elementales llamadas partículas subatómicas, entre las que destacan los protones (carga positiva), los neutrones (sin carga) y los electrones (carga negativa). Estos últimos orbitan alrededor del núcleo. En estado de reposo, cada átomo posee el mismo número de protones que de electrones. Como la carga de estas partículas es de igual valor pero de signo contrario, la materia resulta eléctricamente neutra. Si por algún procedimiento logramos extraer o añadir un electrón a la estructura de un átomo, habremos modificado el equilibrio de cargas, por lo que la materia quedará cargada positiva o negativamente. Se llama carga eléctrica de un cuerpo al exceso o defecto de electrones que posee. 3. EL CIRCUITO ELÉCTRICO. Definimos la corriente eléctrica como un desplazamiento de electrones a través de un medio conductor. Para que pueda establecerse es necesario disponer de un circuito eléctrico. Un circuito eléctrico es por tanto un conjunto de elementos conectados entre sí de manera que permiten la circulación de la corriente eléctrica. Los componentes fundamentales de un circuito eléctrico son: Generador. Es el encargado de transformar cualquier forma de energía en energía eléctrica. Son ejemplos habituales las pilas, baterías, dinamos, etc... Receptores. Son los encargados de transformar la energía eléctrica en otra forma de energía más útil, como mecánica, luminosa o térmica. Estos elementos son los motores, las lámparas y las resistencias respectivamente. Conductores. Son los cables que unen los elementos del circuito y permiten la circulación de la corriente, y suelen ser de cobre o aluminio. En la mayoría de los casos se encuentran aislados por medio de un material plástico. 1
2 Elementos de control. Permiten controlar el paso de corriente por el circuito o por los receptores. Destacan los interruptores, los conmutadores y los pulsadores. Elementos de protección. Protegen de sobrecargas a los elementos del circuito y a los usuarios. El más sencillo es el fusible, aunque en circuitos más complejos se utilizan interruptores magnetotérmicos y diferenciales. Para representar circuitos eléctricos se emplea una simbología normalizada, que es muy extensa. Los principales símbolos que emplearemos serán los siguientes: Componente Símbolo Pila Batería Conductor Lámpara Resistencia Motor Altavoz Interruptor Conmutador Pulsador Fusible 2
3 1. MAGNITUDES ELÉCTRICAS BÁSICAS. Las tres magnitudes fundamentales son la intensidad, la diferencia de potencial (también llamada tensión o voltaje) y la resistencia Intensidad de corriente. Es la cantidad de carga eléctrica (electrones), que atraviesa una sección de conductor por unidad de tiempo. Su unidad de medida es el Amperio (A). Un Amperio es la intensidad de corriente que circula por un conductor cuando por éste circula una carga de un Culombio cada segundo. I = Intensidad de corriente (A). Q = Carga eléctrica (C). t = Tiempo (seg). I = Q / t, donde: El aparato encargado de medir la corriente eléctrica es el amperímetro, que se conecta en serie con los demás elementos del circuito. Es importante recordar que el sentido real de la circulación es desde el polo negativo del generador (donde existe un exceso de electrones), hasta el polo positivo (donde existe un defecto de estos). Sin embargo, en el sentido convencional, que es el que se suele utilizar, los electrones circulan desde el polo positivo al negativo. Ejemplo. Calcula la intensidad de corriente que circula por un conductor sabiendo que se ha desplazado una carga de C durante 20 seg. Sol. 20 µa Diferencia de potencial. Cuando dos cuerpos cargados eléctricamente se unen mediante un conductor, se produce un flujo de electrones desde el que tiene mayor carga negativa, hasta el que la tiene menor. Este flujo de electrones se mantiene hasta que el nivel de carga eléctrica de ambos cuerpos se equilibra. Esta diferencia de nivel de carga se llama diferencia de potencial, voltaje o tensión eléctrica. Para que el flujo de electrones se mantenga de forma continuada, es necesario mantener constante esta diferencia de potencial. El elemento encargado de esta misión es el generador. Para mantener la diferencia de potencial, el generador consume una determinada cantidad de energía, a la que llamamos fuerza electromotriz. Tanto la fuerza electromotriz, como la tensión eléctrica se miden en Voltios (V). El aparato encargado de medir la tensión eléctrica es el voltímetro, que se conecta en paralelo con los elementos del circuito. 3
4 1.2. Resistencia eléctrica. La mayor o menor facilidad de circulación de los electrones a través de un determinado material dependerá de la estructura atómica de éste. A esto es a lo que se le denomina resistencia eléctrica. La resistencia eléctrica de un material es por tanto la magnitud que indica la mayor o menor dificultad que ofrece éste para permitir el paso de la corriente eléctrica. Se representa por medio de la letra R, y se mide en Ohmios (Ω). La resistencia depende de la longitud del conductor, de su sección y de la naturaleza del material. A mayor longitud, mayor resistencia. A mayor sección, menor resistencia. 2. LEY DE OHM. La Ley de Ohm es la relación matemática existente entre las magnitudes eléctricas fundamentales. Se puede comprobar que si establecemos una diferencia de potencial entre los extremos de un conductor, se producirá inmediatamente una corriente eléctrica a través de él, cuyo valor dependerá de la resistencia que ofrezca el conductor. La intensidad de corriente que circula por un conductor en un circuito cerrado es directamente proporcional a la tensión aplicada, e inversamente proporcional a la resistencia del conductor. R = Resistencia (Ω). I = Intensidad (A). U = Tensión (V). I = U / R, donde: Empleando la Ley de Ohm es fácil calcular cualquier magnitud eléctrica fundamental, conociendo las otras dos. Ejemplo. Calcula la resistencia de un conductor por el que circulan 0,36 A bajo una tensión de 18 V. Sol. 50 Ω. Ejemplo. Por un conductor de 200 Ω de resistencia circula una corriente de 0,1 A. Calcula la tensión entre sus extremos. Sol. 20 V. Ejemplo. Calcula la intensidad de corriente que circulará por un conductor de 100 Ω de resistencia sobre el que se aplica una tensión de 12 V. Sol. 0,12 A. 1. ENERGÍA ELÉCTRICA. EFECTO JOULE. La energía suministrada por un generador provoca la diferencia de potencial entre sus bornes. Como consecuencia se produce un desplazamiento de cargas eléctricas a través del circuito. A esta forma de energía se le denomina energía eléctrica. Para determinarla basta con multiplicar la carga eléctrica que se desplaza por la diferencia de potencial que se genera: 4
5 E = Energía suministrada (J). Q = Carga eléctrica (C). U = Diferencia de potencial (V). E = Q U, donde: Si tenemos en cuenta que I = Q / t, implica que Q = I t. Sustituyendo en la fórmula anterior, determinamos la energía consumida por un receptor en un tiempo determinado, de la siguiente forma: E = Energía suministrada (J). I = Intensidad (A). U = Diferencia de potencial (V). t = Tiempo (seg). E = U I t, donde: Según el tipo de receptor, la energía eléctrica se transforma en un tipo de energía o en otra: mecánica, luminosa, química, etc... En el caso de las resistencias, la energía eléctrica se disipa en forma de calor (esto en realidad ocurre en todos los elementos por donde circula corriente eléctrica, por el hecho de poseer cierta resistencia). A este fenómeno se le conoce con el nombre de Efecto Joule. Para calcular la energía que se transforma en calor, de la Ley de Ohm podemos deducir que U = I R. Sustituyendo en la expresión anterior, tenemos: E = Energía suministrada (J). I = Intensidad (A). R = Resistencia (Ω). t = Tiempo (seg). E = I 2 R t, donde: Ejemplo. Calcula la energía necesaria para trasladar una carga de 10 4 µc entre dos puntos cuya diferencia de potencial es de 125 V. Sol. 1,25 J. Ejemplo. Calcula la energía disipada por un calentador eléctrico conectado a una tensión de 230 V por el que circula una corriente de 4 A durante 4 horas. Sol kj. 1. POTENCIA ELÉCTRICA. Si queremos comparar la capacidad de consumo de dos receptores diferentes, sin tener en cuenta el tiempo de funcionamiento, tenemos que tener en cuenta la potencia eléctrica. Se llama potencia eléctrica a la energía consumida por un receptor por unidad de tiempo. P = Potencia eléctrica (W). E = Energía consumida (J). t = Tiempo (seg). P = E / t, donde: 5
6 Teniendo en cuenta las fórmulas anteriormente expuestas: P = E / t P = (Q U) / t P = (U I t) / t P = U I, donde: P = Potencia eléctrica (W). U = Tensión eléctrica (V). I = Intensidad (A). Otras posibles fórmulas para la potencia eléctrica se obtienen sustituyendo los valores de U y de I por dichos valores despejados de la Ley de Ohm: P = I 2 R P = U 2 / R Ejemplo. Calcula la potencia de una lámpara conectada a la red de 230 V por la que circula una corriente se 0,5 A. Sol. 115 W. Ejemplo. En la placa de características de una estufa eléctrica se indica: U = 230 V y P = W. Calcula la intensidad de corriente que circula por ella, el valor de la resistencia, y el coste de la energía consumida durante tres horas si el kwh cuesta 0,11. Sol. 10 A. 23 Ω. 0, CÁLCULO DE CIRCUITOS ELÉCTRICOS. La mayor parte de los circuitos no contiene un único receptor. El el caso de que existan varios receptores, existen tres formas fundamentales para conectarlos: en serie, en paralelo, o en montaje mixto Conexión en serie. Dos o más elementos están conectados en serie cuando el final de cada uno de ellos está unido con el principio del siguiente: Los circuitos serie se caracterizan por lo siguiente: Todos los elementos conectados en serie están atravesados por la misma corriente eléctrica. 6
7 I T = I 1 = I 2 = I 3 La tensión eléctrica entre los extremos de la asociación, es igual a la suma de las caídas de tensión en cada uno de los elementos. U T = U 1 + U 2 + U 3 La resistencia equivalente de un grupo de resistencias en serie es igual a la suma de las resistencias conectadas. Esto se desprende de la aplicación directa de la Ley de Ohm: U T = U 1 + U 2 + U 3 = I 1 R 1 + I 2 R 2 + I 3 R 3 (Como I T = I 1 = I 2 = I 3 ) I T R T = I T (R 1 + R 2 + R 3 ) U T = I T R T, por tanto: R T = R 1 + R 2 + R 3 Ejemplo. En un circuito se conectan en serie tres resistencias de 18 Ω, 9 Ω y 6 Ω. La tensión aplicada a la totalidad del circuito es de 66 V. Calcula la resistencia equivalente, la intensidad de corriente y la tensión en cada resistencia. Sol. R T = 33 Ω, I T = 2 A, U 1 = 36 V, U 2 = 18 V, U 3 = 12 V Conexión en paralelo. Dos o más elementos de un circuito están conectados en paralelo cuando todos sus orígenes se conectan a un mismo punto, y todos sus finales a otro. Los circuitos en paralelo se caracterizan por lo siguiente: La intensidad de corriente que recorre el circuito es igual a la suma de las intensidades que atraviesan cada uno de los componentes. I T = I 1 + I 2 + I 3 La diferencia de potencial es la misma entre los extremos de cada componente. 7
8 U T = U 1 = U 2 = U 3 Si aplicamos la Ley de Ohm, determinaremos cuál es la resistencia equivalente en una conexión en paralelo. I T = I 1 + I 2 + I 3 = U 1 / R 1 + U 2 / R 2 + U 3 / R 3 (Como U T = U 1 = U 2 = U 3 ) U T / R T = U T (1 / R / R / R 3 ), por tanto: 1 / R T = 1 / R / R / R 3 Ejemplo. En un circuito se conectan en paralelo tres resistencias de 40 Ω, 60 Ω y 120 Ω. La tensión aplicada a la totalidad del circuito es de 120 V. Calcula la resistencia equivalente, la intensidad de corriente y la tensión en cada resistencia. Sol. R T = 20 Ω, I T = 6 A, I 1 = 3 A, I 2 = 2 A, I 3 = 1 A Circuitos mixtos. Es un circuito en el que algunos elementos están conectados en serie, y otros en paralelo. La estrategia para determinar la resistencia equivalente en este tipo de circuitos, es deshacer primero las asociaciones en paralelo, para finalmente resolver las asociaciones de elementos en serie. Ejemplo. En un circuito se conecta una resistencia R 1 = 3 Ω en serie con dos resistencias R 2 = 6 Ω y R 3 = 4 Ω. El conjunto del circuito está sometido a una tensión de 27 V. Calcula la resistencia equivalente del circuito, y las intensidades y caídas de tensión en cada resistencia. Sol. R EQ = 5,4 Ω, I 1 = 5 A, V 1 = 15 V, V 2 = V 3 = 12 V, I 2 = 2 A, I 3 = 3 A. Ejemplo. Se conectan en serie tres resistencias de 8 Ω, 10 Ω y 12 Ω a una tensión total de 60 V. Dibuja el esquema del circuito y calcula la resistencia equivalente, la intensidad de corriente, y las caídas de tensión en cada resistencia. Sol. 30 Ω, 2A, 16 V, 20 V y 24 V. Ejemplo. Se conectan en paralelo dos resistencias de 6 Ω y 3 Ω a una tensión total de 12 V. Dibuja el esquema del circuito y calcula la resistencia equivalente y la intensidad de corriente que circula por cada resistencia. Sol. 2 Ω, 2 A y 4 A. Ejemplo. Dos resistencias de 60 Ω y 40 Ω se conectan entre sí en paralelo. El conjunto se conecta en serie con otra resistencia de 26 Ω. Calcula la resistencia equivalente y las intensidades y tensiones parciales sobre cada una de las resistencias cuando el conjunto se conecta a una tensión de 50 V. Sol. 50 Ω, 0,4 A, 24 V, 0,6 A, 24 V, 1 A, 26 V. 8
Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.
Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,
ELECTRICIDAD Secundaria
ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones
TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.
CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición
Electricidad y electrónica - Diplomado
CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales
U.T. 4.- CIRCUITOS ELÉCTRICOS
U.T. 4.- CIRCUITOS ELÉCTRICOS Un circuito eléctrico es un conjunto de operadores eléctricos que, conectados entre sí de forma adecuada, permite la circulación y el control de la corriente eléctrica. OPERADORES
INTRODUCCIÓN A LA ELECTRICIDAD
Dpto. Escultura.Facultad de Bellas Artes de Valencia Prof: Moisés Mañas Moimacar@esc.upv.es Todas las cosas están formadas por átomos Todas las cosas están formadas por átomos Protones (carga +) Neutrones
TEMA 4: ELECTRICIDAD
TEMA 4: ELECTRICIDAD 1. Origen de los fenómenos eléctricos 2. La corriente eléctrica a. Corriente continua b. Corriente alterna 3. Elementos de un circuito a. Generadores b. Receptores c. Conductores d.
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial
ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES
ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.
Unidad didáctica: Electricidad y Electrónica
Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica ÍNDICE 1.- El átomo y sus partículas. 2.- Materiales conductores, aislantes y semiconductores. 3.- Resistencia.
Polo positivo: mayor potencial. Polo negativo: menor potencial
CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica
En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.
3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las
Tema 2 Introducción a los circuitos eléctricos
Tema 2 Introducción a los circuitos eléctricos 2. Nociones Básicas. 2.Teoría electrónica Cualquier átomo está constituido por un núcleo, compuesto, por protones y neutrones; en torno a dicho núcleo giran
Seminario de Electricidad Básica
Seminario de Electricidad Básica Qué es la Electricidad? Es una forma de energía natural que puede ser producida artificialmente y que se caracteriza por su poder de transformación; ya que se puede convertir
Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS
Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta
CIRCUITOS ELÉCTRICOS
.E.S. CÁ STULO 1 CRCUTOS ELÉCTRCOS 1. COMPONENTES DE UN CRCUTO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes
Los Circuitos Eléctricos
Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales
Circuitos de corriente continua
nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente
ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA.
ACTIVIDADES DE LA UNIDAD 8. ELECTRICIDAD Y ENERGÍA. 1.- Indica el nombre, el símbolo y la aplicación de los siguientes dispositivos eléctricos: COMPONENTE NOMBRE SÍMBOLO APLICACIÓN FUSIBLES Protege un
P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:
La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.
1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,
2. Electrónica. 2.1. Conductores y Aislantes. Conductores.
2. Electrónica. 2.1. Conductores y Aislantes. Conductores. Se produce una corriente eléctrica cuando los electrones libres se mueven a partir de un átomo al siguiente. Los materiales que permiten que muchos
Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.
1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos
3.1 En el circuito de la figura, calcular la resistencia total, la intensidad que circula y las caidas de tensión producidas en cada resistencia.
1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. Aplicamos la ley de Ohm: El resultado será, despejando la
CALIDAD DE ENERGÍA. Introducción
CALIDAD DE ENERGÍA Introducción CALIDAD DE ENERGÍA Prof. Ing. Juan Carlos Jiménez Correo: juanjimenez@itcr.ac.cr Sitio W: www.ie.itcr.ac.cr/juanjimenez Recomendaciones Generales trabajar en grupo Resolver
Temas de electricidad II
Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo
ELEMENTOS DE MANIOBRA
Circuito eléctrico. Circuito eléctrico. Circuito eléctrico Un circuito eléctrico es un conjunto de operadores o elementos que, unidos entre sí, permiten una circulación de electrones (corriente eléctrica).
Medidas de Intensidad
Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección
CORRIENTE CONTINUA II
CORRIENTE CONTINUA II Efecto Joule. Ya vimos en la primera parte de estos apuntes que en todos los conductores y dispositivos se produce una disipación calorífica de la energía eléctrica. En una resistencia
Energía eléctrica. Elementos activos I
La corriente eléctrica con mucha chispa Elementos activos y pasivos Circuitos eléctricos Corriente continua y alterna, las chispas de nuestras casas Almacenamiento y producción de energía eléctrica ehículos
TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)
TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula
Magnitudes eléctricas
Magnitudes eléctricas En esta unidad estudiaremos las principales magnitudes eléctricas: intensidad de corriente, voltaje, resistencia, potencia y energía, que resumimos en esta tabla: Magnitud eléctrica
SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.
SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores
TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA
TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto
8. Tipos de motores de corriente continua
8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga
EJERCICIOS DE ELECTRICIDAD
DEPARTAMENTO DE TECNOLOGÍA I.E.S. Iturralde EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS 1. Los cables que normalmente utilizamos están hechos con cobre
Contenidos Didácticos
INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7
Tema 1: Circuitos eléctricos de corriente continua
Tema 1: Circuitos eléctricos de corriente continua Índice Magnitudes fundamentales Ley de Ohm Energía y Potencia Construcción y aplicación de las resistencias Generadores Análisis de circuitos Redes y
Guía del docente. 1. Descripción curricular:
Guía del docente. 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Fuerzas entre cargas. - Palabras claves: fuerza eléctrica, cargas eléctricas, electrones,
Automatismos eléctricos
Automatismos eléctricos Circuito de Mando: representa el circuito auxiliar de control. Compuesto de : Contactos auxiliares de mando y protección Circuitos y componentes de regulación y control Equipos
UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO
DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.
CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN
CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1
UNIDAD TEMÁTICA 6 UNIDAD TEMÁTICA 3: ELECTRÓNICA. CPR COLEXIO SAGRADO CORAZÓN DE XESÚS (Placeres). Pontevedra. http://www.pelandintecno.blogspot.
UNIDAD TEMÁTICA 6 ELABORADO POR: Pedro Landín CPR COLEXIO SAGRADO CORAZÓN DE XESÚS (Placeres). Pontevedra PÁGINA 1 DE 18 I. INTRODUCCIÓN E stamos acostumbrados a utilizar aparatos eléctricos sin saber
REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO
REPASO EJERCICIOS ELECTRICIDAD DE 3º ESO 1. Calcula la intensidad de una corriente eléctrica si por un conductor pasaron 180 C en 30 segundos. Solución: 6A 2. Qué intensidad tiene una corriente si por
3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:
CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra
Tema 1: Electricidad y electrónica
Tema 1: Electricidad y electrónica 1.- La corriente eléctrica Cualquier trozo de materia está formado por una cantidad enorme de unas partículas pequeñísimas, a las que los científicos han dado el nombre
APUNTE: ELECTRICIDAD-1 COMPONENTES DE UN CIRCUITO ELÉCTRICO
APUNTE: ELECTICIDAD-1 COMPONENTES DE UN CICUITO ELÉCTICO Área de EET Página 1 de 9 Confeccionado por: Ximena Nuñez Derechos eservados Titular del Derecho: INACAP N de inscripción en el egistro de Propiedad
TEMA 3: ELECTRICIDAD Y ELECTRÓNICA
TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica
corriente eléctrica. 1. Conductores y aislantes.
1. Conductores y aislantes. Tanto los materiales conductores como los aislantes son de una gran importancia en electricidad, mientras los primeros dejan pasar la corriente eléctrica con mucha facilidad,
ENERGÍA Y ELECTRICIDAD Circuitos eléctricos
Física y Química: guía interactiva para la resolución de ejercicios ENERGÍA Y ELECTRICIDAD I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 El cuadro siguiente muestra distintos materiales. Clasifica
7.- Para construir un circuito eléctrico utilizamos 150 metros de hilo de cobre. Si su sección es de 0 8 mm 2 Cuánto valdrá su resistencia?
1. Calcula la Resistencia de un hilo de hierro (resistividad del mm 2 hierro ρ Fe = 0.1 Ω ) de longitud 3 m y sección de 10 m mm 2. 2. Ahora disponemos de dos hilos, uno de cobre (resistividad del cobre
CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES
CORRENTE CONTÍNU () GENERORES Y OTORES ES La agdalena. vilés. sturias En un circuito se pueden intercalar, además de resistencias, elementos activos tales como generadores y motores. Los generadores (o
Guía de ejercicios 5to A Y D
Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular
Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.
1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar
LOS CIRCUITOS ELÉCTRICOS
LOS CIRCUITOS ELÉCTRICOS La electricidad está presente en casi todos los momentos de la vida cotidiana; bombillas, frigoríficos, estufas, electrodomésticos, aparatos de música, maquinas, ordenadores y
Capítulo 4. Energía y Potencia
Capítulo 4 Energía y Potencia 4.1 ntroducción 4.2 Energía de la corriente eléctrica. Ley de Joule 4.3 Generador 4.4 Receptor 4.5 Diferencia de potencial entre dos puntos de un circuito 4.6 Ecuación del
EJERCICIOS DE ELECTRICIDAD 3º ESO
EJERCICIOS DE ELECTRICIDAD 3º ESO 1. Enumera los elementos que componen estos circuitos: 2. Dibuja, utilizando los símbolos correspondientes, los siguientes circuitos eléctricos. Cuáles funcionan? Por
PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS.
PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. Repaso de electricidad (1). Circuito eléctrico. Arranca Crocodile Clips y presta atención a la explicación del profesor. Él te guiará y te enseñará la electricidad,
TECNOLOGIA IES Gonzalo Anaya XIRIVELLA
TOOG S Gonzalo naya XV ctividad º SO: Problemas de ircuitos eléctricos.- alcula la esistencia de un hilo de hierro (resistividad del hierro ρ e = 0, sección de 0 mm. mm Ω m ) de longitud m y mm.- hora
ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales:
El circuito eléctrico Está formado por cuatro elementos fundamentales: Generador de corriente: pila. Conductor de la corriente: los cables. Control de la corriente: los interruptores. Receptores: bombillas,
TEMA 4 CONDENSADORES
TEMA 4 CONDENSADORES CONDENSADORES Un condensador es un componente que tiene la capacidad de almacenar cargas eléctricas y suministrarlas en un momento apropiado durante un espacio de tiempo muy corto.
INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO
INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la
Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas.
PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B ELECTROTECNIA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: No se permitirá
PROBLEMAS DE TRANSFORMADORES
PROBLEMAS DE TRANSFORMADORES Problema 1: Problemas de transformadores Un transformador tiene N 1 40 espiras en el arrollamiento primario y N 2 100 espiras en el arrollamiento secundario. Calcular: a. La
Nota Técnica Abril 2014
LÁMPARAS LED QUE QUEDAN SEMIENCENDIDAS O PARPADEAN: En ocasiones ocurre que al realizar una sustitución en donde antes teníamos una halógena por una lámpara LED, la nueva lámpara se queda semiencendida
TEMA 1: LA ELECTRICIDAD
TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no
Contenido avalado por Intecap Revisión técnica ENERGUATE Ing. Gustavo Pacheco
Contenido avalado por Intecap Revisión técnica ENERGUATE Ing. Gustavo Pacheco 1 Circuitos Eléctricos Por sí misma, la electricidad no es más que un fenómeno interesante. Para aprovecharla en algún uso
Instalaciones de electrificación en viviendas y edificios 1
UF0885 Montaje y mantenimiento de instalaciones eléctricas de baja tensión en edificios de viviendas Instalaciones de electrificación en viviendas y edificios 1 Qué? Para realizar un montaje y un mantenimiento
CALENTAMIENTO DE LOS CONDUCTORES
ELECTROTÈCNIA E3d3.doc Pàgina 1 de 5 CALENTAMIENTO DE LOS CONDUCTORES Uno de los efectos perjudiciales del efecto Joule es el calentamiento que se produce en los conductores eléctricos cuando son recorridos
Unidad didáctica: Electromagnetismo
Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.
Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos
Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,
FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.
1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;
F.A. (Rectificación).
Ficha Temática F.A. (Rectificación). Circuito rectificador de media onda. Cuando se introduce una tensión de C.A. a la entrada del circuito, mostrado en la Figura 11.3, en la salida aparece una tensión
Unidad Didáctica. Transformadores Trifásicos
Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION
CIRCUITO ELÉCTRICO ELEMENTAL
CIRCUITO ELÉCTRICO ELEMENTL Elementos que integran un circuito elemental. Los elementos necesarios para el armado de un circuito elemental son los que se indican en la figura siguiente; Figura 1 Extremo
ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad
ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura
Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2
2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,
TEMA 5: APLICACIONES DEL EFECTO TÉRMICO
Elementos de caldeo TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Son resistencias preparadas para transformar la energía eléctrica en calor (Figura). Se utilizan para la fabricación de estufas, placas de cocina,
Instalación eléctrica para un Centro de Procesamiento de Datos
Instalación eléctrica para un Centro de Procesamiento de Datos Teoría y Serie de Trabajo Práctico 12 Redes de Altas Prestaciones Curso 2010 Conceptos sobre energía eléctrica Corriente Alterna (AC) Distribución
CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA
CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EL CIRCUITO ELÉCTRICO Definición: Es un conjunto de elementos empleados para la transmisión y control de la energía eléctrica desde el generador hasta el receptor
P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:
ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.
ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la
4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...
TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4
LA ELECTRICIDAD: UN RIO INVISIBLE DE ENERGÍA.
LA ELECTRICIDAD: UN RIO INVISIBLE DE ENERGÍA. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. Te imaginas un mundo sin electricidad? La electricidad es muy importante hoy en día. Con ella funcionan
TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.
TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros
Relación de Problemas: CORRIENTE ELECTRICA
Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento
ELECTRICIDAD BÁSICA EJERCICIOS DE ELECTROTECNIA 2º BACHILLERATO
ELECTROTECNIA 2º BACHILLERATO EJERCICIOS DE ELECTRICIDAD BÁSICA EJERCICIO 1 Calcula la intensidad que circula por un cable si le atraviesan 12,6 x 10 18 e - cada 2 segundos. EJERCICIO 2 Calcula la intensidad
TEMA 5 RESOLUCIÓN DE CIRCUITOS
TEMA 5 RESOLUCIÓN DE CIRCUITOS RESOLUCIÓN DE CIRCUITOS POR KIRCHHOFF Para poder resolver circuitos por Kirchhoff debemos determinar primeros los conceptos de malla, rama y nudo. Concepto de malla: Se llama
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
Introducción ELECTROTECNIA
Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,
Bloque II: Principios de máquinas
Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto
Corriente continua y corriente alterna
Electricidad ENTREGA 1 Corriente continua y corriente alterna Elaborado por Jonathan Caballero La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se
Introducción a la electrotecnia
Unidad didáctica 1 Introducción a la electrotecnia + Electrón libre Resumen del contenido 1.1 Qué es la electrotecnia? 1.2 Principios fundamentales de la electricidad 1.3 El átomo 1.4 Cargas eléctricas.
Conceptos y determinaciones aplicables a transformadores de intensidad
Definiciones: Error de Calibración de un instrumento o Error de Clase: es el mayor error absoluto que acusa un instrumento en algún punto de la escala Cuando este error se expresa referido al máximo valor
FOLLETO DEL PRIMER PARCIAL DE MAQUINARIA ELÉCTRICA I
FOLLETO DEL PRIMER PARCIAL DE MAQUINARIA ELÉCTRICA I 1- UN MOTOR INTERPOLAR SHUNT DE 7.5HP Y 220V TIENE ARMADURA Y CAMPO DE DERIVACION CON UNA RESISTENCIA DE 0.5 OHM Y 200 OHM RESPECTIVAMENTE, LA CORRIENTE
Equivalencia financiera
Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común
Matemática aplicada a circuitos eléctricos básicos
Matemática aplicada a circuitos eléctricos básicos Gilberto Vargas Mathey 1 Resumen: con el presente minicurso, analizaremos circuitos electricos básicos (resistivos) poniendo en evidencia el uso de matemática
CORRIENTES ALTERNAS TRIFASICAS
1 CORRIENTES ALTERNAS TRIFASICAS. Sistemas polifásicos. El circuito de c.a. monofásico es adecuado para muchas aplicaciones, pero existen dos campos de la electrotecnia para los cuales no es apropiado:
Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia
Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y
TRABAJO POTENCIA Y ENERGÍA
TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;