Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó"

Transcripción

1 Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor nternaconal de ADEN Profesor de la Unversdad de Calforna (Irvne Extenson) Soco Fundador de MasConsultng (www.masconsultng.com.ar) Pág. 1 de 9

2 COMPARACION ENTRE DISTINTOS CRITERIOS DE DECISIÓN INDICE COMPARACION ENTRE, PRI Y TIR... 3 I. INTRODUCCION... 3 II. VALOR ACTUAL NETO No exsten restrccones de captal Exsten restrccones de captal Proyectos mutuamente excluyentes...4 III. PERIDODO DE RECUPERO DE LA INVERSION... 5 IV. TASA INTERNA DE RETORNO Invertr cuando TIR > Invertr cuando TIR < Proyectos mutuamente excluyentes Proyectos donde exste más de una TIR Proyectos que no tenen TIR...8 V. CONCLUSIONES... 9 Pág. 2 de 9

3 COMPARACION ENTRE, PRI y TIR I. INTRODUCCION El objeto de esta nota técnca es comparar algunas reglas de decsón generalmente utlzadas para decdr cuando un proyecto de nversón debe llevarse a cabo o no. Estas reglas de decsón son el valor actual neto (), el perodo de recupero de la nversón (PRI) y la tasa nterna de retorno (TIR). En prmer lugar es necesaro defnr estos ndcadores aclarando que no se explcarán en detalle porque se asume que el lector ya está famlarzado con estos térmnos. 1) = BN 1 + BN BNn - I, donde (1+) 1 (1+) 2 (1+) n BN : benefco neto (ngresos menos egresos) del perodo I: nversón ncal : tasa de descuento (costo de oportundad del captal) 2) PRI = cuanto tempo debe transcurrr (ej.: años) para que la acumulacón de benefcos netos alcancen a cubrr la nversón ncal. En otros térmnos: T Σ BN n = I, n=1 donde T es el número de perodos necesaros para recuperar la nversón. 3) TIR = es aquella tasa de descuento que hace el gual a cero. En térmnos matemátcos: = BN 1 + BN BNn - I = 0, por lo tanto (1+TIR) 1 (1+TIR) 2 (1+TIR) n BN 1 + BN BNn = I (1+TIR) 1 (1+TIR) 2 (1+TIR) n En los próxmos capítulos se explcará cuál es la regla de decsón a utlzar para evaluar la vabldad económca de un proyecto de nversón. En el capítulo II el crtero del será explcado para los casos en que exste y no exste restrccón de captal, como así tambén para el caso de proyectos Pág. 3 de 9

4 susttutos entre sí. Luego, en el capítulo III se analzará la regla del PRI y se la comparará con el. En el capítulo IV se defnrá el crtero de la TIR y se lo comparará con el del. Fnalmente, en el capítulo V se arrbará a las conclusones. II. VALOR ACTUAL NETO 1. No exsten restrccones de captal Por un lado, s no exsten restrccones de fondos para nvertr, la regla de decsón del dce que todo proyecto de nversón deberá llevarse a cabo cuando el es postvo ( > 0). Utlzando el ejemplo de la Tabla adjunta Proyecto Inversón y suponendo que todos los proyectos A B ndcados tenen gual duracón y resgo, C la adopcón de este crtero de decsón D mplcaría que los proyectos A, B, C y D E deberían llevarse a cabo. Por lo tanto, el Nota: los valores son mllones de pesos monto total a nvertr en estos cuatro proyectos ascendería a $200 mllones. 2. Exsten restrccones de captal Por otro lado, cuando exsten restrccones de captal para fnancar proyectos, ya sea por falta de captal propo y/o ajeno, el crtero que dce que hay que ejecutar todos los proyectos con >0 ya no es aplcable. Por ejemplo, sguendo con el ejemplo de la tabla anteror, s sólo dsponemos de $100 mllones para nvertr, vamos a tener que elegr entre realzar el proyecto A o realzar los proyectos B,C y D. En este caso en partcular, la segunda alternatva, nvertr en los proyectos B,C,D, es lo más convenente, ya que el de los tres proyectos en conjunto ascende a $130m mentras que el de A por sí solo es solamente de $100m. 3. Proyectos mutuamente excluyentes Se dce que dos proyectos son mutuamente excluyentes cuando la realzacón de uno de ellos no permte llevar a cabo el otro. Este sería el caso, por ejemplo, del proyecto de construccón de un hotel donde una alternatva es construrlo con hormgón elaborado y otra alternatva sería armarlo con cemento en seco. S a cada una de estas alternatvas se las consdera como proyectos ndvduales, la mplementacón de uno mplca que no se puede ejecutar el otro. En el caso de proyectos susttutos entre sí, la regla de decsón para nvertr será elegr aquella alternatva de mayor. Sguendo con nuestro Pág. 4 de 9

5 ejemplo, s todos los proyectos fueran susttutos entre sí, la mejor opcón será nvertr en el proyecto A por ser la más redtuable (=100m). Por ejemplo, cuando se lleva a cabo el proyecto A en lugar del B el nversor es $20m más rco ($100 - $80); o s se elgera el proyecto C en lugar del A el nversor sería $70m más pobre ($30m - $100m); y así se podría contnuar el análss para las demás alternatvas. Esto explca porqué la mejor opcón es nvertr en el proyecto A. III. PERIDODO DE RECUPERO DE LA INVERSION Este crtero de decsón dce que la nversón en un proyecto deberá ser recuperada al cabo de T perodos (años, meses, días). El valor que se fje para T es arbtraro y depende exclusvamente de las característcas de cada proyecto y de cada nversor en partcular. Por ejemplo, en la Tabla a contnuacón se puede observar que s el nversor qusera recuperar la nversón en un año (PRI = 1) sólo llevaría a cabo el proyecto B. Sn embargo, el proyecto B tene un <0, por lo tanto sería una mala decsón económca nvertr en el msmo. Se puede ver claramente que el crtero de decsón del PRI puede llevar a elegr proyectos que no se llevarían a cabo s se aplcara la regla del. Proyecto Año 0 Año 1 Año 2 Año 3 PRI 1 (=10%) A B C Además, sguendo con el msmo ejemplo, la regla del PRI nos está ndcando que los proyectos A y C son gual de atractvos porque en ambos se recupera la nversón en 2 años. Sn embargo, s ambos proyectos fueran mutuamente excluyentes entre sí, el crtero del nos está ndcando que el proyecto C es mejor que A. Por lo tanto, tambén en este caso, la regla del PRI se contradce con la regla del. Como hemos vsto, la regla del PRI no sempre da la msma recomendacón que la regla del. Por ende, s se utlza solamente la regla del PRI para decdr que tpo de nversón se debe llevar a cabo, se podrían cometer errores, ya que esta regla podría decr que es bueno nvertr en un proyecto no rentable como el B; o nvertr en un proyecto que no sea el mejor (nvertr en A en lugar de C). Resumendo, es preferble utlzar la regla del en lugar del PRI para llevar a cabo decsones de nversón. 1 En realdad, es más apropado calcular el PRI tenendo en cuenta el valor actual del flujo de fondos, en lugar de utlzar su valor nomnal. Sn embargo, aunque se utlce el PRI con flujos descontados, las conclusones a las que se arrba son las msmas que con el PRI que utlza valores nomnales. Pág. 5 de 9

6 IV. TASA INTERNA DE RETORNO La regla de la TIR no es sempre gual ya que depende de cuál es la estructura del flujo de fondos del proyecto. Por ejemplo, s un proyecto tene flujos de fondos negatvos al nco (nversón) y postvos en los perodos subsguentes, el crtero de la TIR dce que se debe nvertr en aquellos proyectos que tengan una TIR >. Por otro lado, s un proyecto tene flujos de fondos postvos al nco (ej: pedr un préstamo) y negatvos en los otros perodos (ej: devolucón del préstamo), la regla de la TIR dce que se debe nvertr en el proyecto s la TIR <. Además, el crtero de la TIR no debería ser utlzado cuando: se quera comparar entre dstntos proyectos mutuamente excluyentes el proyecto tene múltples TIR no exste TIR A contnuacón se explcará la regla de decsón de la TIR medante la utlzacón de ejemplos. Para los cnco casos que se van a utlzar el supuesto es que no exste restrccón de fondos para nvertr. 1. Invertr cuando TIR > Para analzar este caso supongamos un proyecto con la sguente estructura de flujo de benefcos netos (FBN). Año 0 Año 1 Año 2 Año 3 FBN Como se puede observar, el proyecto tene un flujo de fondos negatvo al nco del proyecto (-$5.000 en el año 0) y valores postvos para los demás perodos ($1.000, $3.000 y $4.000, a fnes del año1, 2 y 3 respectvamente). S se calcula el de este flujo de fondos para dstntas tasas de descuento (), se obtendrá una relacón negatva entre el e. En otras palabras, en este tpo de proyectos el dsmnuye cuando aumenta. En proyectos con una estructura de flujos de fondos de este tpo, el crtero de la TIR es el sguente: "llevar a cabo el proyecto cuando la TIR sea superor a la tasa de descuento", o sea TIR>. Este crtero nos llevaría a la msma recomendacón que el del ya que cuando TIR> tambén se da que >0. $3.500 $3.000 $2.500 $2.000 $1.500 TIR=22% $1.000 $500 $0 -$500 0% 5% 10% 15% 20% 25% 30% -$1.000 Pág. 6 de 9

7 2. Invertr cuando TIR < Supongamos ahora que el proyecto consste en, por ejemplo, tomar un préstamo con una estructura de flujo de fondos como la sguente. Año 0 Año 1 Año 2 Año 3 FBN $2.000 $1.500 $1.000 TIR=6% En este proyecto exste un flujo $500 postvo al comenzo (me otorgan $5.000) y todos flujos negatvos para los perodos subsguentes (devolucón del -$1.000 préstamo). S se calcula el de este proyecto para dstntas tasas de, se obtene que hay una relacón postva entre e. $0 0% 5% 10% 15% 20% 25% 30% -$500 Cuando los proyectos tenen esta estructura de fondos, la regla de decsón para evaluar la nversón es la sguente: "nvertr cuando la TIR sea menor que la tasa de descuento", o sea TIR<. Una vez más, s se sgue este crtero de decsón la recomendacón será gual que el, ya que cuando TIR< tambén se da que >0. Por lo tanto, s se aplca en forma apropada la regla de la TIR, o sea TIR> o TIR< según como sea la estructura del flujo de fondos del proyecto en partcular, el crtero de decsón para llevar a cabo o no una nversón será el msmo que s se utlza el crtero del >0. 3. Proyectos mutuamente excluyentes Cuando los proyectos son mutuamente excluyentes, la regla de decsón de la TIR no srve para elegr al mejor proyecto. En otras palabras, en este caso, no se puede decr que el proyecto con la mayor TIR es el que debería llevarse a cabo. Año 0 Año 1 Año 2 Año 3 TIR Proyecto A -$5.000 $1.000 $3.000 $ % Projecto B -$4.000 $500 $5.000 $ % $3.500 $3.000 $2.500 $2.000 $1.500 $1.000 (A) > (B) A B (B) > (A) TIR (B) = 27% Por ejemplo, s tenemos dos proyectos como los de la tabla, se puede observar que el proyecto B es el de mayor TIR (27%). $500 $0 0% -$500 5% 10% 12% 15% 20% 25% 30% -$1.000 TIR (A) = 22% Pág. 7 de 9

8 Sn embargo, como se puede observar en el gráfco el proyecto B tene un superor al de A sólo cuando >12%. Para tasas de descuento nferores al 12% (<12%) se observa que el del proyecto A supera al de B. En este caso partcular, cuando <12% el crtero de elegr el proyecto con mayor TIR sería contraro al del. Por ende, s los proyectos son mutuamente excluyentes, la regla de elegr el proyecto de mayor TIR no debería ser utlzada para selecconar entre proyectos. En su lugar debería utlzarse el crtero de selecconar aquel proyecto de mayor. 4. Proyectos donde exste más de una TIR Supongamos un proyecto que tene un FBN como el de la sguente tabla. Año 0 Año 1 Año 2 FBN S grafcamos el de este proyecto para dstntas tasas de descuento, se observa que en este caso partcular el proyecto tene dos TIR. En otras palabras el del proyecto es gual a cero para una tasa de descuento de 0% u 11%. En este caso no sería posble aplcar el crtero de la TIR $3 ya que no estaría claro cual $2 de ambas TIR es la que se $1 debe usar como referenca para comparar con la tasa de $0 descuento (). Este caso de proyectos con múltples TIR se puede dar cuando el flujo de fondos del proyecto camba de sgno más de una vez. -$1 -$2 -$3 -$4 -$5-4% -2% 0% TIR1=0% 2% 4% 6% 8% 10% 12% TIR2=11% Una vez más, para proyectos con esta estructura de flujo de fondos, es recomendable aplcar el crtero del para decdr s nvertr o no. 14% 16% 18% 20% 5. Proyectos que no tenen TIR Por últmo, podría darse el caso en que un proyecto no tenga TIR. Por ejemplo, este sería el caso del proyecto que se presenta a contnuacón. Año 0 Año 1 Año 2 FBN Pág. 8 de 9

9 S el proyecto no tene TIR, es obvo que será mposble utlzar este crtero para decdr s nvertr o no en el msmo. $600 $500 $400 $300 $200 $100 $0 0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% V. CONCLUSIONES Cuando los proyectos son ndependentes entre sí, el crtero del dce que deben llevarse a cabo todos aquellos cuyo sea postvo. Por otro lado, s los proyectos son mutuamente excluyentes, se debe elegr el que tenga mayor. Por su parte, el PRI no es un buen ndcador para selecconar las mejores nversones y a veces podría llevar a elegr nversones que no son económcamente rentables. En el caso de proyectos ndependentes que tenen una únca TIR, este crtero de decsón nos daría la msma recomendacón que el. Sn embargo, es muy mportante tener en claro que el crtero de la TIR varía según cual sea la estructura de fondos del proyecto. Para proyectos con flujos de fondos negatvos al nco y luego flujos postvos, el crtero de decsón es nvertr en aquellos proyectos cuya TIR sea superor a la tasa de descuento. Mentras que s la estructura del flujo de fondos es la nversa, o sea prmero flujos postvos y luego negatvos, el crtero de decsón será el de nvertr en aquellos proyectos cuya TIR sea nferor a la tasa de descuento. S los proyectos son mutuamente excluyentes, el crtero de elegr aquel proyecto de mayor TIR podría ser contrapuesto al crtero del. En estos casos, debería utlzarse el como crtero de seleccón entre proyectos, o sea, elegr aquel proyecto de mayor. Por últmo, se puede conclur que por lo general el mejor ndcador para decdr que proyectos deben llevarse a cabo es el del : "nvertr en aquellos proyectos que tengan postvo" o "selecconar aquel proyecto de mayor " Pág. 9 de 9

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

DISTRIBUCION DE COSTOS EN EL PLANEAMIENTO DE LA TRANSMISION USANDO EL VALOR BILATERAL DE SHAPLEY.

DISTRIBUCION DE COSTOS EN EL PLANEAMIENTO DE LA TRANSMISION USANDO EL VALOR BILATERAL DE SHAPLEY. Ing EDGAR M. CARREÑO * M.Sc ANTONIO ESCOBAR ** Ph.D. HERMAN J. SERRANO ** Ph.D. RAMON A. GALLEGO ** Unversdad Tecnológca de Perera Grupo de Investgacón en Planeamento de Sstemas Eléctrcos Perera Colomba.

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL 27 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 2003 YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL J. Guad, J. Larrañeta, L. Oneva Departamento de Organzacón Industral

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

DETERMINACIÓN DEL NIVEL DE PRECIOS PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO

DETERMINACIÓN DEL NIVEL DE PRECIOS PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO DETERMINACIÓN DEL NIVEL DE PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO Galo Nna Análss y Control RESUMEN El obetvo de este trabao es

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Lo que necesito saber de mi Tarjeta de Crédito

Lo que necesito saber de mi Tarjeta de Crédito Lo que necesto saber de m Tarjeta de Crédto Informatvo tarjetas de crédto bancaras Cómo obtener una 3 Qué es una La tarjeta de crédto es un medo de pago que permte a los clentes utlzar una línea de crédto

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS

MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS 118b MEDIDAS DE RENTABILIDAD AJUSTADAS AL RIESGO EN EL ÁMBITO DE LAS ENTIDADES BANCARIAS Eduardo Trgo Martínez. Profesor Colaborador. Departamento de Fnanzas y Contabldad. Unversdad de Málaga. Plaza de

Más detalles

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013 Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

La planificación financiera

La planificación financiera Tema 5 La planfcacón fnancera 5.1 El paso de prevsones económcas a prevsones fnanceras Entre el plan fnancero de una empresa y su plan económco hay dferencas de la msma naturaleza que las estentes conceptualmente

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE La reforma del FCI ante las nuevas Perspectvas Fnanceras de la UE Mara CUBEL (cubel@ub.edu) Crstna de GISPERT (crsdegspert@ub.edu) Unverstat de Barcelona Insttut d Economa de Barcelona Abstract En este

Más detalles

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción A t f l E D T A C l f l N UMITAS ACUERDO DE ACREDITACIÓN IST 184 Programa de Magster en Cencas mencón Oceanografía Unversdad de Concepcón Con fecha 10 de octubre de 2012, se realza una sesón del Consejo

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA.

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. SEGUNDA PARTE. (TRABAJO PRESENTADO EN EL CONGRESO DE LA SOCIEDAD ARGENTINA DE ESTADISTICA)

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2.

PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2. Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6. Problemas de Anualdades Antcpadas 7. Problemas

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE Revsta UNIVERSUM Nº 25 Vol. 2 2010 Unversdad de Talca Partcpacón laboral de las mujeres en las regones de Chle Luz María Ferrada Bórquez Plar Zarzosa Espna Pp. 79 a 99 PARTICIPACIÓN LABORAL DE LAS MUJERES

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09

I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09 Problemas resueltos de matemátcas fnancera Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6.

Más detalles

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia Gaceta de Economía Año 16, Número Especal, Tomo I Incentvos económcos de las empresas a partcpar en acuerdos ambentales voluntaros: análss del Programa de Industra Lmpa Vcente Ruíz 1, Marsol Rvera-Planter

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS

OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS OFICIN DE CPCITCIÓN, PRODUCCIÓN DE TECNOLOGÍ Y COOPERCIÓN TÉCNIC CURSO FUNDMENTOS DE MTEMÁTICS FINNCIERS IH: 30 HORS DURCIÓN: 5 SEMNS MODLIDD: PRESENCIL INICIO Grupo 01: INICIO Grupo 02: martes 4 de novembre

Más detalles

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos Desgualdad de oportundades y el rol del sstema educatvo en los logros de los jóvenes uruguayos Cecla Llambí Marcelo Perera Pablo Messna Febrero de 2009 Esta nvestgacón fue fnancada por el Fondo Carlos

Más detalles

El análisis de desviaciones sobre el resultado previsto

El análisis de desviaciones sobre el resultado previsto Tema 6 El análss de desvacones sobre el resultado prevsto Trabajar con presupuestos supone, como fase fnal lógca, el comparar las cfras prevstas con las reales, y proceder a un «análss de desvacones».

Más detalles

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I* Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola

Más detalles

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS HUMANISTICAS Y ECONOMICAS INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO Resumen: Las decsones de

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL

LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL LA NUEVA TEORÍA DEL COMERCIO INTERNACIONAL* I. INTRODUCCIÓN Felx Jmenez Erck Lahura ** La teoría económca nos dce que exsten dos razones por las que puede surgr el comerco entre países: la prmera razón

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Un matrimonio difícil:

Un matrimonio difícil: S E R I E fnancamento del desarrollo 199 Un matrmono dfícl: la convvenca entre un seguro públco soldaro y seguros de salud compettvos Marcelo Tokman Crstóbal Marshall Consuelo Espnosa Undad de Estudos

Más detalles

AMPLIFICADORES CON BJT.

AMPLIFICADORES CON BJT. Tema 5 MPLIFICDORES CON BJT..- Introduccón...- Prncpo de Superposcón...- Nomenclatura..3.- Recta de Carga Estátca..4.- Recta de Carga Dnámca..- Modelo de pequeña señal del BJT...- El cuadrpolo y el modelo

Más detalles

Patrimonio en planes de pensiones privados individuales, nivel educativo y hábitos financieros de las familias en España

Patrimonio en planes de pensiones privados individuales, nivel educativo y hábitos financieros de las familias en España Patrmono en planes de pensones prvados ndvduales, nvel educatvo y hábtos fnanceros de las famlas en España José Sánchez Campllo jsanchez@ugr.es Manuel Salas Velasco msalas@ugr.es Dolores Moreno Herrero

Más detalles

"DETERMINANTES DE LA ELECCIÓN Y DESERCIÓN EN LA CARRERA DE PEDAGOGÍA"

DETERMINANTES DE LA ELECCIÓN Y DESERCIÓN EN LA CARRERA DE PEDAGOGÍA Fondo de Investgacón y Desarrollo en Educacón - FONIDE Departamento de Estudos y Desarrollo. Dvsón de Planfcacón y Presupuesto. Mnstero de Educacón. "DETERMINANTES DE LA ELECCIÓN Y DESERCIÓN EN LA CARRERA

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

9. Mantenimiento de sistemas de dirección y suspensión

9. Mantenimiento de sistemas de dirección y suspensión 9. Mantenmento de sstemas de dreccón y suspensón INTRODUCCIÓN Este módulo de 190 horas pedagógcas tene como propósto que los y las estudantes de cuarto medo desarrollen competencas relatvas a los sstemas

Más detalles

Modelado de Contratos en Modalidad de Take Or Pay

Modelado de Contratos en Modalidad de Take Or Pay Modelado de Contratos en Modaldad de Tae Or ay Enrque Brgla, UTE Elías Carnell, UTE Fernando Ron, UTE Resumen-- El objetvo del trabajo es modelar en el software de smulacón de sstemas eléctrcos SIMSEE,

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming

TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming TEMA 6. La produccón, el tpo de nterés y el tpo de cambo: el modelo Mundell-Flemng Anhoa Herrarte Sánchez Dpto. de Análss Económco: Teoría Económca e Hstora Económca Curso 2010-2011 Bblografía 1. Blanchard,

Más detalles

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración.

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración. Título: Dos métodos de dagnóstco de crcutos dgtales de alta y muy alta escala de ntegracón. Autor: Dr. Ing. René J. Díaz Martnez. Profesor Ttular. Dpto. de Automátca y Computacón. Fac. de Ingenería Eléctrca.

Más detalles

Jordi Esteve Comas. Monográfico sobre inestabilidad financiera.

Jordi Esteve Comas. Monográfico sobre inestabilidad financiera. Jord Esteve Comas Cclos, tendencas y estaconaldad en la bolsa española Monográfco sobre nestabldad fnancera. Quaderns de Polítca Econòmca. Revsta electrònca. 2ª época. Vol. 10, Mayo -Agosto 2005 Edta:

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO GOBIERNO DE CHILE MINISTERIO DE HACIENDA Dreccón de Presupuestos ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO Dvsón de Control de Gestón Santago, Mayo 2009 CHILE PRESENTACIÓN * El anexo que a contnuacón se

Más detalles

DOCUMENTOS DE TRABAJO Serie Economía

DOCUMENTOS DE TRABAJO Serie Economía Nº 233 SUSTITUCIÓN ENTRE TELEFONÍA FIJA Y MÓVIL EN CHILE M. SOLEDAD ARELLANO - JOSÉ MIGUEL BENAVENTE DOCUMENTOS DE TRABAJO Sere Economía M. Soledad Arellano 2 José Mguel Benavente 3 Abrl 2007 Resumen Susttucón

Más detalles