TEMA 2. CÁLCULO DE PROBABILIDADES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2. CÁLCULO DE PROBABILIDADES"

Transcripción

1 TEM 2. CÁLCULO DE PROILIDDES 2.1. Introducción 2.2. Conceptos básicos Espacio muestral. Sucesos Operaciones con sucesos 2.3. Concepto de Probabilidad. Propiedades Definición clásica de la Probabilidad Diagramas de árbol Definición axiomática de la Probabilidad Propiedades de la Probabilidad 2.4. Probabilidad condicionada. Independencia de Sucesos Probabilidad condicionada Independencia de sucesos 2.5. Teorema de la probabilidad total. Teorema de ayes Teorema de la probabilidad total Teorema de ayes 55

2 TEM 2. CÁLCULO DE PROILIDDES 2.1 Introducción La probabilidad refleja las expectativas de que un suceso determinado ocurra Fenómeno determinista: Se conoce con certeza el resultado del experimento Fenómeno aleatorio: No se puede predecir el resultado del experimento La probabilidad de un suceso es un número comprendido entre 0 y 1 (ambos incluidos) 56

3 2.2. Conceptos básicos Espacio muestral. Sucesos Suceso elemental: Cada uno de los posibles resultados, que no se pueden descomponer en otros más simples, de un experimento aleatorio Espacio muestral, E: Conjunto de los sucesos elementales Suceso: Subconjunto del espacio muestral Suceso seguro: Es el suceso formado por todos los sucesos elementales Suceso imposible, ningún suceso elemental : Es el suceso que no contiene 57

4 Operaciones con sucesos a b c d e f g = {a, b, c, d}, = {c, d, e, f, g} Unión de sucesos : Todos los sucesos elementales de ó = {a, b, c, d, e, f, g} 58

5 a b c d e f g = {a, b, c, d}, = {c, d, e, f, g} Intersección de sucesos : Sucesos elementales que pertenecen simultáneamente a y a = {c, d} 59

6 Diferencia de sucesos : Sucesos elementales que pertenecen al suceso pero no al = {a, b, c, d} ; = {c, d, e, f, g} = {a, b} a b c d e f g Ejemplo: Se están utilizando 7 árboles, numerados del 1 al 7, para un experimento. Definir el Espacio muestral: E = {1, 2, 3, 4, 5, 6, 7} E Sean y los sucesos: = {1,3, 5}, = {2, 3, 7} Obtener los sucesos:,, = {1, 2, 3, 5, 7}; = {3}; = {1, 5} 60

7 Sucesos Complementarios C : Es el suceso formado por todos los sucesos de E que no están en C = E E = {a, b, c, d, e}, = {b, c}, C = {a, d, e} E C a b c d e Ejemplo: : Tener el grupo sanguíneo O C : Tener el grupo sanguíneo,, ó E C =, C o/ o/ = E 61

8 Sucesos Incompatibles Los sucesos y son incompatibles o mutuamente excluyentes si no pueden ocurrir simultáneamente = {a, b}, = {d, e} E a b c d e Ejemplo: : Ser un reptil, : Ser un león 62

9 Propiedades de la unión de sucesos sociativa: ( C) = ( ) C Conmutativa: = =, C = E Propiedades de la intersección de sucesos sociativa: ( C) = ( ) C Conmutativa: = =, C = 63

10 Propiedades conjuntas de la unión e intersección de sucesos Distributiva: ( C) = ( ) ( C) ( C) = ( ) ( C) Ejemplo E a b c d e f g C = {a, b, c}, = {b, c, d, e}, C = {c, e, f, g} ( C) = {a, b, c} {b, c, d, e, f, g} = {b, c} ( ) ( C) = {b, c} {c} = {b, c} 64

11 2.3. Concepto de Probabilidad. Propiedades Definición clásica de la probabilidad Espacio muestral equiprobable: Todos los sucesos elementales tienen igual probabilidad de ocurrir En estas condiciones se define la probabilidad del suceso como: P ( ) Nº Casos Favorables al Suceso CF = = Nº Total de Casos Posibles C P 65

12 Ejemplo En una pareja, cada uno de sus miembros posee genes para ojos castaños y azules. Teniendo en cuenta que cada uno tiene la misma probabilidad de aportar un gen para ojos castaños que para ojos azules y que el gen para ojos castaños es dominante, obtener la probabilidad de que un hijo nacido de esta pareja tenga los ojos castaños. Solución Gen de la madre Gen del padre E = {C C, C, C, } Casos favorables = {C C, C, C} Casos posibles = {C C, C, C, } ( ) P Ojos Castaños CF = = CP

13 Diagramas de árbol El diagrama de árbol es un método para obtener los resultados posibles de un experimento cuando éste se produce en unas pocas etapas. Cada paso del experimento se representa como una ramificación del árbol. Trayectorias 67

14 Ejemplo Una mujer es portadora de hemofilia. unque la mujer no tenga la enfermedad, puede transmitirla a sus 3 hijos. Obtener las trayectorias para este experimento mediante un diagrama de árbol. Primer Segundo Tercer Trayectoria hijo hijo hijo S S N S S S S S N S N S N S N S S N N N S N S NS S N N S N S N N S N N N N Suponiendo que es igualmente probable que se trasmita o no la enfermedad. Obtener las probabilidades de los siguientes sucesos: 1.- Ningún hijo tenga la enfermedad, (suceso ) 2.- Dos hijos tengan la enfermedad, (suceso ) CF 1 CF 3 P ( ) = P ( ) CP = 8 = CP = 8 68

15 Definición axiomática de la probabilidad Álgebra de sucesos, β : Es el conjunto de todos los sucesos del Espacio Muestral xiomas de la probabilidad Consideremos una aplicación, P, del álgebra de sucesos en el conjunto de los números reales. β P R P β, P ( ) R Esta aplicación es una probabilidad si verifica los tres axiomas siguientes: xioma 1 β, 0 P ( ) xioma 2 xioma 3 P ( E ) = 1 Sean 1, 2,..., n, sucesos mutuamente incompatibles, i j = para i j. Entonces se verifica P ( n ) = P ( 1 ) + P ( 2 ) P ( n ) 69

16 Ejemplo Tres caballos,,, y C están siendo tratados con tres métodos experimentales distintos para aumentar la velocidad con la que pueden correr. Después del tratamiento intervienen en una carrera. El caballo C tiene doble probabilidad de ganar que, y doble que. Calcular las probabilidades de que gane cada uno. Solución E = {,, C } P ( ) = k P ( ) = 2k P ( C ) = 4k x. 3 x. 2 P ( C) = P () + P () + P (C) = P (E) = 1 = = k + 2k + 4k = 7k =1 k = 1 7 P ( ) = 1 7 P ( ) = 2 7 P ( C ) =

17 Si suponemos que el espacio muestral es equiprobable, la definición axiomática de la probabilidad coincide con la definición clásica En el ejemplo anterior, supongamos que los tres caballos tienen la misma probabilidad de ganar Solución: E = {,, C } P ( ) = P ( ) = P ( C ) = k x. 3 x. 2 P ( C) = P () + P () + P (C) = P (E) = 1 = = k + k + k = 3k = 1 k = 1 3 P ( ) = P ( ) = P ( C ) =

18 Propiedades de la probabilidad 1. β, P ( C ) = 1 - P ( ) Ejemplo. Se sabe que la probabilidad de curar la leucemia infantil es de 1/3. Por lo tanto, la probabilidad de que no se cure la enfermedad será de 1 1 / 3 = 2 /3 2. P ( ) = 0 Ejemplo. Consideramos el experimento de lanzar un dado. La probabilidad de obtener 9 en una cara es igual a cero 3. Si P ( ) P( ) E Β Α Ejemplo. En el experimento anterior, sea el suceso obtener un numero mayor que 4, y obtener un número mayor que 2 C F 2 C F P ( ) = =, P ( ) = = C P 6 C P

19 4. P ( ) = P ( ) P ( ) E Α Β Ejemplo. En el experimento anterior, sea el suceso obtener un numero menor que 5 y el suceso obtener un numero par = {1, 2, 3, 4}, = {2, 4, 6}, - = {1, 3}, = {2, 4} P ( ) = P ( ) P ( ) = = P ( ) = P ( ) + P ( ) P ( ) E 73

20 Ejemplo. En una población el 4% de las personas son daltónicas, el 18% hipertensas y el 0.5% daltónicas e hipertensas. Cuál es la probabilidad de que una persona sea daltónica ó hipertensa? Α = { Daltónico }, = { Hipertenso } P ( ) = 4, P( ) = 18, P( ) = P ( ) = P ( ) + P ( ) P ( ) = = + = P ( C ) = P ( ) + P ( ) + P ( C ) P ( ) P ( C ) P ( C ) + + P ( C ) E C C C C 74

21 Ejemplo. En un parque natural se detectan tres plagas. El 25% de los árboles tienen la enfermedad, el 20% la y el 30% la C. El 12% la y la, el 10% la y la C, el 11% la y la C y el 5% tienen las tres enfermedades. Calcular las probabilidades siguientes: 1. Un árbol tenga alguna de las enfermedades 2. Un árbol tenga la enfermedad pero no la 3. Un árbol tenga la enfermedad y C pero no la P ( ) = 0.25; P ( ) = 0.2; P ( C ) = 0.3; P ( ) = 0.12; P ( C ) = 0.1; P ( C ) = 0.11; P ( C ) = 0.05; 1. P ( C ) = P ( ) + P ( ) + P ( C ) P ( ) P ( C ) P ( C ) + P ( C ) = = , , = 0.47 E C C 75

22 P ( ) = 0.25; P ( ) = 0.2; P ( C ) = 0.3; P ( ) = 0.12; P ( C ) = 0.1; P ( C ) = 0.11; P ( C ) = 0.05; 2. Un árbol tenga la enfermedad pero no la P ( ) = P ( ) P ( ) = = 0.13 E ( C ) C 3.- Un árbol tenga la enfermedad y C pero no la P (( C ) ) = P ( C ) P ( C ) = = =

23 2.4. Probabilidad condicionada. Independencia de Sucesos Probabilidad condicionada Probabilidad de que ocurra el suceso, condicionado a que el suceso haya ocurrido ya Sean dos sucesos y β, con P ( ) > 0 Si P ( ) > 0 ( / ) P ( / ) P = = ( ) ( ) P P ( ) ( ) P P ( / ) C = ( C / ) P ( C / ) = 1 P ( / ) P ( ) = P ( ) P ( / ) = P ( ) P ( / ) P ( ) = P ( 1 ) P ( 2 / 1 ) P ( 3 / 1 2 ) 77

24 Ejemplo. Una familia tiene tres hijos. Construir un diagrama de árbol y calcular las siguientes probabilidades: 1. El primer hijo sea niña,, ( ) 2. Exactamente dos sean niñas,, ( ) 3. Se cumplan ambas condiciones 4. Exactamente dos sean niñas, si el primero es niña 1º 2º 3º Trayectoria hijo hijo hijo M M H M H M H M M M M M H M H M M H H H M H M H M H H M M H M H H H M H H H P ( ) = 4 / 8, P ( ) = 3 / 8, P ( ) = 2 / 8 ( / ) P ( ) ( ) P = = P =

25 Independencia de sucesos El suceso es independiente del suceso si y sólo si se verifica: P ( / ) = P ( ) Si P ( / ) P ( ) el suceso es dependiente de La independencia es una propiedad recíproca El suceso es independiente del suceso El suceso es independiente del suceso Dos sucesos son independientes sii P ( ) = P ( ) P ( ) Si los sucesos y son independientes, se verifica: Los sucesos y C son independientes Los sucesos C y son independientes Los sucesos C y C son independientes Decimos que n sucesos son independientes si se verifica: P ( n ) = P ( 1 ) P ( 2 )...P ( n ) 79

26 Ejemplo. Se analizan muestras de agua para detectar plomo y mercurio. El 38% de las muestras presentan niveles tóxicos de plomo o mercurio, el 32% de plomo y el 10% de ambos metales. a. Son independientes los sucesos: Nivel tóxico de plomo y Nivél tóxico de mercurio b. Calcular las probabilidades de que una muestra tenga: 1. Niveles tóxicos de mercurio si tiene niveles tóxicos de plomo 2. Niveles tóxicos solamente de plomo : Nivel tóxico plomo, : Nivel tóxico mercurio P ( ) = 0.38; P ( ) = 0.32; P ( ) = 0.10 a. P ( ) = P ( ) + P ( ) P ( ) P ( ) = P ( ) P ( ) + P ( ) = = = 0.16 P ( ) P ( ) = 0.32 x 0.16 = = P ( ) Los sucesos y no son independientes b 1. P ( / ) = P ( ) / P ( ) = 0.10 / 0.32 = b 2. P ( ) = P ( ) P ( ) = =

27 Ejemplo. Se están estudiando tres mutaciones no relacionadas,, y C, en un grupo de monos. La probabilidad de tener la mutación es 0.13, la es 0.11 y la C es Calcular las probabilidades: 1. Un mono no tenga ninguna de las mutaciones 2. Un mono tenga alguna de las mutaciones 3. Un mono tenga la mutación y C, pero no la P ( ) = 0.13; P ( ) = 0.11; P ( C ) = 0.14 Los sucesos, y C son independientes P ( C C C C ) = P ( C ) P ( C ) P ( C C ) = = (1 P ( )) (1 P ( )) (1 P ( C )) = = 0.87 x 0.89 x 0.86 = P ( C ) = P ( ) + P ( ) + P ( C ) P ( ) P ( C ) P ( C ) + P ( C ) = = x x x x 0.11 x 0.14 = P ( C ) = 1 P ( C C C C ) = P ( C C ) = P ( ) P ( C ) P ( C ) = = P ( ) (1 P ( )) P ( C ) = = 0.13 x 0.89 x 0.14 =

28 2.5. Teorema de la probabilidad total. Teorema de ayes Teorema de la probabilidad total Sean los sucesos 1, 2,..., n, que verifican: i j = θ si i j n = E Los sucesos i, para i = 1,, n son incompatibles dos a dos y exhaustivos Sea un suceso, con P ( ) > 0 Se conocen: P( i) y P( / i), i = 1,..., n n n En las condiciones anteriores, este teorema nos proporciona la probabilidad total de que ocurra el suceso : n P( ) = P( ) P( / ) i= 1 i i 82

29 Teorema ayes Sean los sucesos 1, 2,..., n, que verifican: i j = θ si i j n = E Los sucesos i, para i = 1,,n, son incompatibles dos a dos y exhaustivos Sea un suceso, con P ( ) > 0 Se conocen: P( i) y P( / i), i = 1,..., n El Teorema de ayes nos expresa la probabilidad de que ocurra un suceso determinado, j, condicionado a que el suceso ya ha ocurrido ( j / ) P ( j ) ( j) ( / j) P( ) n P( ) ( / ) i P i P P P = = i= 1 Las probabilidades P( j ) se designan probabilidades a priori, o probabilidades de las causas. Las probabilidades P ( j / ) se designan probabilidades a posteriori, si el suceso ya ha ocurrido, probabilidad de que sea debido a la causa 83

30 Ejemplo. Una empresa farmacéutica tiene tres delegaciones, Madrid, arcelona y Granada. De un determinado fármaco se produce el 45% en la delegación de Madrid, el 30% en arcelona, y el 25% en Granada. Del total de los fármacos, son defectuosos el 5% de los producidos en Madrid, el 3% en arcelona y el 4% en Granada. Calcular: 1. Probabilidad de que un fármaco sea defectuoso 2. Si un fármaco es defectuoso, cuál es la probabilidad de que haya sido producido por la delegación de Granada? 1 : Producido Madrid, 2 : Producido arcelona 3 : Producido Granada, : Defectuoso P ( 1 ) = 0.45; P( 2 ) = 0.30; P( 3 ) = 0.25 P (/ 1 ) = 0.05; P ( / 2 ) = 0.03; P( / 3 ) = P ( ) = P ( ) P ( / ) + P ( ) P ( / ) + P ( ) P ( / ) = = P ( 3) P ( / 3) P ( 3 / ) = = = P ( )

31 Ejemplo. En una población el 51% de las personas son mujeres, el 18% tienen la tensión alta y el 10% ambas cosas. Obtener: 1. Probabilidad de que una persona tenga la tensión alta si es mujer 2. Probabilidad de ser hombre si se tiene la tensión alta 3. Probabilidad de ser mujer si no se tiene la tensión alta : Ser Mujer, : Tener la tensión alta P ( ) = 0.51; P ( ) = 0.18; P ( ) = P ( ) 2. P P ( ) P ( ) P 0.10 / = = = ( C ) P( ) / = 1 / = = ( ) ( ) P ( ) P 0.10 / = = = ( C P ) P ( C ) ( C P ) P / = = = ( ) ( C) ( ) ( C P P / ) P( ) 1 P( / ) = = = = 0.51 ( ) =

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

Notas sobre combinatoria y probabilidad [segunda parte]

Notas sobre combinatoria y probabilidad [segunda parte] Notas sobre combinatoria y probabilidad [segunda parte] Tercer artículo de una serie dedicada a la estadística y su aplicación en las aulas, el texto es la segunda parte de un análisis acerca del uso de

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Probabilidad Es la posibilidad numérica de que ocurra un evento. La probabilidad de un evento es medida por valores comprendidos entre 0 y 1. Entre mayor sea la probabilidad de que ocurra un evento, su

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

PROBABILIDAD. Departamento Estadística e IO II (Métodos de Decisión) Universidad Complutense de Madrid

PROBABILIDAD. Departamento Estadística e IO II (Métodos de Decisión) Universidad Complutense de Madrid ROILIDD DEFINICIONES Fenómeno Determinista: se conoce el resultado del experimento antes de producirse. Fenómeno leatorio: no es posible conocer con certeza el resultado del experimento hasta que no se

Más detalles

Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B

Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B Métodos Estadísticos de la Ingeniería Tema 5: Cálculo de Probabilidades Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2010 Contenidos...............................................................

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad

Matemáticas aplicadas a las Ciencias Sociales II Probabilidad Matemáticas aplicadas a las Ciencias Sociales II Índice 1. Experimentos aleatorios 2 1.1. Espacio muestral...................................... 2 1.2. Los sucesos.........................................

Más detalles

Diana del Pilar Cobos del Angel. Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación.

Diana del Pilar Cobos del Angel. Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación. Diana del Pilar Cobos del Angel Términos básicos Experimento: Es una prueba o ensayo. Es el proceso de obtener una observación. Eventos Simples: Cualquier resultado básico de un experimento. Un evento

Más detalles

P R O B A B I L I D A D

P R O B A B I L I D A D P R O B A B I L I D A D INTRODUCCIÓN: El nacimiento del cálculo de probabilidades estuvo ligado a los juegos de azar. Cardano (que tenía una afición desordenada por el ajedrez y los dados, según reconoce

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:

CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale: CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

Conceptos Básicos de Probabilidad

Conceptos Básicos de Probabilidad Conceptos Básicos de Probabilidad Debido a que el proceso de obtener toda la información relevante a una población particular es difícil y en muchos casos imposible de obtener, se utiliza una muestra para

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas

PROBABILIDAD. 2.1. Experimentos aleatorios. 2.2. Definiciones básicas Capítulo 2 PROBABILIDAD La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad en todos los aspectos y ciencias,

Más detalles

Probabilidad: problemas resueltos

Probabilidad: problemas resueltos Probabilidad: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Experimentos aleatorios. Espacio muestral

Experimentos aleatorios. Espacio muestral Experimentos aleatorios. Espacio muestral Def.- Un fenómeno o experimento decimos que es determinista si podemos conocer su resultado antes de ser realizado. Si dejamos caer un objeto desde cierta altura

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Probabilidad Para Ingenieros Apuntes EII-346. Ricardo Gatica Escobar, Ph.D.

Probabilidad Para Ingenieros Apuntes EII-346. Ricardo Gatica Escobar, Ph.D. Probabilidad Para Ingenieros Apuntes EII-346 Ricardo Gatica Escobar, Ph.D. 5 de noviembre de 2003 Capítulo 1 Introducción 1.1. Definiciones y Conceptos Básicos Definiciones Fenómeno: Cualquier ocurrencia

Más detalles

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1 Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en

Más detalles

Introducción al Cálculo de Probabilidades a través de casos reales

Introducción al Cálculo de Probabilidades a través de casos reales MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Introducción al Cálculo de Probabilidades a través de casos reales Paula Lagares Barreiro * Federico Perea

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2

PROBABILIDAD. 2. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1 2 PROBABILIDAD 1. Blanca y Alfredo escriben, al azar, una vocal cada uno en papeles distintos. Determine el espacio muestral asociado al experimento. Calcule la probabilidad de que no escriban la misma vocal.

Más detalles

LAS PROBABILIDADES Y EL SENTIDO COMÚN

LAS PROBABILIDADES Y EL SENTIDO COMÚN LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes

Más detalles

Propuesta didáctica: Juego de azar

Propuesta didáctica: Juego de azar Propuesta didáctica: Juego de azar Clase: 5º año Contenido programático: Experimento aleatorio. Sucesos: probable, seguro, imposible. Autor: Ernst Klett Verlag - Adaptado por la maestra Esther Moleri Tiempo

Más detalles

Glosario. 1. Para cada resultado experimental E i. , 0 P( E i. ) 1; y 2. P ( E 1 ) + P ( E 2. ) +... + P ( E n ) = 1.

Glosario. 1. Para cada resultado experimental E i. , 0 P( E i. ) 1; y 2. P ( E 1 ) + P ( E 2. ) +... + P ( E n ) = 1. Glosario Ejercicios Propuestos Probabilidad: Una medida numérica de la posibilidad de que ocurra un evento. Experimento: Cualquier proceso que genere resultados bien definidos. Espacio muestral: El conjunto

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N Profesor: Hugo S. Salinas. Segundo Semestre 200. Unos transductores

Más detalles

TEMA 1. VECTORES Y MATRICES

TEMA 1. VECTORES Y MATRICES TEMA 1. VECTORES Y MATRICES 1.1. Definición de vector. Operaciones elementales 1.2. Matrices. Operaciones elementales 1.3. Traza y Determinante 1.4. Aplicaciones 1.1. DEFINICIÓN DE VECTOR. OPERACIONES

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular:

PARTE 1 PROBLEMAS PROPUESTOS FACTORIAL. 2. 31 Calcular: PARTE 1 FACTORIAL 2. 31 Calcular: PROBLEMAS PROPUESTOS i. 9!, (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880 ii. 10! (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3628800 iii. 11! (11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 39916800

Más detalles

Estadística Computacional Guía Nº2. 10 de Abril de 2003

Estadística Computacional Guía Nº2. 10 de Abril de 2003 Universidad Técnica Federico Santa María Departamento de Informática Contenidos Análisis Combinatorio Teoría Básica de Probabilidades Estadística Computacional Guía Nº2 10 de Abril de 2003 Profesor: Dr.

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Notas de Probabilidades y Estadística

Notas de Probabilidades y Estadística Notas de Probabilidades y Estadística Capítulos 1 al 12 Víctor J. Yohai vyohai@dm.uba.ar Basadas en apuntes de clase tomados por Alberto Déboli, durante el año 2003 Versión corregida durante 2004 y 2005,

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO (Modalidad: Humanidades y Ciencias Sociales) Desarrollado en Decreto 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008. PROGRAMACIÓN

Más detalles

Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática

Profesor Miguel Ángel De Carlo PROBABILIDAD. Tercer año del Profesorado de Matemática Profesor Miguel Ángel De Carlo PROBABILIDAD Tercer año del Profesorado de Matemática 2 Probabilidad 3er año M.A.D.C Cap.I Definiciones de Probabilidad 3 Introducción La probabilidad es uno de los instrumentos

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

Vectores en el plano con punto inicial fijo

Vectores en el plano con punto inicial fijo Vectores en el plano con punto inicial fijo bjetivos. Considerar el conjunto V 2 () de los vectores en el plano euclidiano (también llamados segmentos dirigidos o flechas) con un punto inicial fijo. Definir

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

La área en A o B es igual a la suma de las dos áreas. Entonces, interpretando probabilidad como área, concluimos que P (A o B) =P (A)+P (B).

La área en A o B es igual a la suma de las dos áreas. Entonces, interpretando probabilidad como área, concluimos que P (A o B) =P (A)+P (B). La probabilidad P (A o B) Si A y B son sucesos incompatibles, tenemos el siguiente diagrama de Venn. Ω A B La área en A o B es igual a la suma de las dos áreas. Entonces, interpretando probabilidad como

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

Ejercicios Resueltos de Estadística: Tema 3: Cálculo de Probabilidades

Ejercicios Resueltos de Estadística: Tema 3: Cálculo de Probabilidades Ejercicios Resueltos de Estadística: Tema : Cálculo de robabilidades . Se lanzan 0 monedas en las que la probabilidad de cara es de 0,6. Calcular cual es el número mas probable de caras y qué probabilidad

Más detalles

2.- PROBABILIDAD. En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por el azar.

2.- PROBABILIDAD. En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por el azar. 1 II. 2.- PROBABILIDAD 0.-Combinatoria. Una razonable probabilidad es la única certeza. (Howe). En este tema se estudian los sucesos aleatorios y la probabilidad de los mismos. Estos sucesos se rigen por

Más detalles

Genética de las Neurofibromatosis

Genética de las Neurofibromatosis Genética de las Neurofibromatosis Cuaderno núm. 3 El texto de este cuaderno, ha sido cedido por The Neurofibromatosis Association (UK) y traducido por la Asociación Catalana de las Neurofibromatosis (Barcelona

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Clase 3: Introducción a las Probabilidades

Clase 3: Introducción a las Probabilidades Clase 3: Introducción a las Probabilidades Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Introducción

Más detalles

Matemáticas, juego,...fortuna: Jugamos?

Matemáticas, juego,...fortuna: Jugamos? Matemáticas, juego,...fortuna: Jugamos? Blaise Pascal y Pierre de Fermat en Wikimedia Commons Una de las ramas de la matemática más novedosas es la teoría de probabilidades, que estudia las probabilidades

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

Estadística y probabilidad para niños. Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012

Estadística y probabilidad para niños. Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012 Estadística y probabilidad para niños Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012 GEOMETRÍA ESTADÍSTICA ARITMÉTICA PROBABILIDAD LAS MATEMÁTICAS Mañana

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Repaso de Cálculo de Probabilidades Básico

Repaso de Cálculo de Probabilidades Básico Repaso de Cálculo de Probabilidades Básico 1.2. Introducción Se comienza este tema con la noción de probabilidad y la terminología subyacente. La probabilidad constituye por sí misma un concepto básico

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Estadística. Soluciones ejercicios: Probabilidad. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Probabilidad. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Probabilidad Versión 8 Emilio Letón 1. Nivel 1 1. Demostrar las propiedades siguientes relativas a las operaciones con sucesos Unión Intersección Conmutativa A [ B =

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

Tema 1 Función lineal. Industria química y repercusión ambiental

Tema 1 Función lineal. Industria química y repercusión ambiental Tema 1 Función lineal. Industria química y repercusión ambiental 1.1.-Tabla de datos Una tabla es una representación de datos, mediante pares ordenados, expresan la relación existente entre dos magnitudes

Más detalles

TEORIA DE LA PROBABILIDAD

TEORIA DE LA PROBABILIDAD TEORIA DE LA PROBABILIDAD 2.1. Un poco de historia de la teoría de la probabilidad. Parece evidente que la idea de probabilidad debe ser tan antigua como el hombre. La idea es muy probable que llueva mañana

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

proporción de diabetes = 1.500 = 0.06 6 % expresada en porcentaje 25.000.

proporción de diabetes = 1.500 = 0.06 6 % expresada en porcentaje 25.000. UNIDAD TEMATICA 3: Tasas Razones y proporciones Objetivo: Conocer los indicadores que miden los cambios en Salud, su construcción y utilización La información que se maneja en epidemiología frecuentemente

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

PROBABILIDAD ELEMENTAL

PROBABILIDAD ELEMENTAL PROBABILIDAD ELEMENTAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles.. Una caja con una docena de huevos contiene dos

Más detalles

BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR.

BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR. BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR. TEMA 7: HERENCIA MENDELIANA. CEA GARCÍA ALIX TRANSMISIÓN DEL MATERIAL HEREDITARIO Tema 7.- Herencia Mendeliana. 1.- Leyes de Mendel (Uniformidad de la primera

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Departamento de Economía Aplicada I FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ESTADÍSTICA I Relación de Ejercicios nº 4 PROBABILIDAD Curso 007-008 1) Describir el espacio muestral

Más detalles

CRITERIOS DE EVALUACIÓN 4º PRIMARIA MATEMÁTICAS

CRITERIOS DE EVALUACIÓN 4º PRIMARIA MATEMÁTICAS Fundado en 1920 Colegio La Presentación Linares C/ Don Luis, 20 23700-LINARES Telf: 953693600 FAX: 953653901 www.lapresentacion.com CRITERIOS DE EVALUACIÓN 4º PRIMARIA MATEMÁTICAS Curso 2011/12 Página

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Una introducción a la ESTADÍSTICA INFERENCIAL

Una introducción a la ESTADÍSTICA INFERENCIAL Una introducción a la ESTADÍSTICA INFERENCIAL José Chacón Esta obra está bajo una licencia Reconocimiento No comercial Compartir bajo la misma licencia.5 de Creative Commons. Para ver una copia de esta

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

CONTENIDOS 1.- MAPA CONCEPTUAL

CONTENIDOS 1.- MAPA CONCEPTUAL CONTENIDOS 1.- MP CONCEPTUL...2 2.- INTRODUCCIÓN...2 3.- EXPERIMENTOS...2 4.- ESPCIO MUESTRL. SUCESOS. ESPCIO DE SUCESOS...3 5.- EXPERIMENTOS COMPUESTOS. ESPCIO PRODUCTO...5 6.- FRECUENCIS DE UN SUCESO...6

Más detalles

TEORÍA DE DECISIONES (Versión Preliminar)

TEORÍA DE DECISIONES (Versión Preliminar) Facultad de Ciencias Exactas y Tecnologías - UNSE Apuntes de Cátedra: Investigación Operativa Año: 2008 TEORÍA DE DECISIONES (Versión Preliminar) Introducción: Decisión e Investigación Operativa: La mayoría

Más detalles

Introducción a la Genética Cuantitativa Javier Cañón jcanon@vet.ucm.es

Introducción a la Genética Cuantitativa Javier Cañón jcanon@vet.ucm.es Introducción a la Javier Cañón jcanon@vet.ucm.es La genética cuantitativa tiene por objeto el estudio de los caracteres cuantitativos. En este contexto, se entiende por carácter cuantitativo aquel que

Más detalles