Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA."

Transcripción

1 Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad de Cecas co ua duracó de 0 horas. Bblografía La bblografía es la recomedada por la SO: * MLC Sudy Maual 009, Lucer, Sear, Seeby, Hasse * MLC Sudy Maual 009, Samuel. Broerma * cuaral Mahemacs Neo L.Boers, Gerber, Hcma, Joes, Nesb Programa: Sesó Moraldad y supereca horas Probabldades de moraldad y supereca. Se defó la fucó de supereca paredo desde la perspeca probablísca fucoes de desdad hasa darle u sedo acuaral. Se emarcaro las caraceríscas ue ua fucó de supereca debe cumplr: F 0 0 S0 lm F lm S 0 F Es ua fucó o decrecee y S es ua fucó o crecee Se defero las arables aleaoras T y K y las prcpales relacoes ue guarda ere sí: P P K / p K T Poserormee se defó el cocepo de fuerza de moraldad y de dedujo la probabldad de supereca e érmos de la fuerza de moraldad, se realzaro alguos ejemplos y ejerccos para reforzar el cocepo de T empo resae de da para ua persoa de edad ue cluía el cálculo de la fucó de supereca y de la fuerza de moraldad.

2 Tabla de Vda Se defó de maera bree la oacó de ua abla de da así como las prcpales relacoes: l d l l p, l l l Se do éfass al maejo de la abla de moraldad ue se ulza durae el eame MLC, se eplcaro sus compoees y la fucoaldad de ésa. Meda y Varaza de T y K Se defó la esperaza complea de da de como el alor esperado de T y ambé la esperaza de los años compleos dos por como el alor esperado de K, e ese puo se hzo éfass e las relacoes ue ésas guarda así como su epresó de maera recursa pues muchas de ésas gualdades perme resoler los problemas e u empo meor. Modelos de supereca Dero del eame MLC se maeja alguos supuesos sobre la dsrbucó del empo de da de, a esos supuesos se les cooce como modelos de supereca y debdo a ue se dspoe de muy poco empo para la resolucó de los problemas es recomedable hacer ua asocacó medaa de sus prcpales caraceríscas como so: la fuerza de moraldad, la probabldad de fallecmeo dferda, la esperaza de empo compleo de da, la araza y la esperaza de da emporal -años. Los modelos más recurrees so: De More supoe ue T se dsrbuye uforme, De More Geeralzado, Modelo de Fuerza cosae de moraldad supoe ue T se dsrbuye epoecal y Modelo Hperbólco. Supuesos e edades fraccoaras Cuado se maeja u modelo de supereca dscreo es posble ue erese coocer la probabldad de muere de u dduo e u puo ermedo del año, para ue eso sea posble se debe de asumr algú supueso ue os perma obeer dcho alor, se ero los res prcpales supuesos ue se maeja e la leraura: Dsrbucó uforme de muere e cada año erpolacó leal, fuerza cosae de moraldad e cada año de da erpolacó epoecal falmee erpolacó hperbólca e cada año de da hpóess de Balducc. E ese puo se efazó e la comparacó cuaaa ere los res modelos pues es u ema recurree e los eámees SO. Tablas selecas de moraldad demás de su defcó se buscó dar ua erpreacó ua para faclar el uso de las ablas selecas, se hzo especal hcapé e las desgualdades ue se maee ere

3 ua persoa ue se ecuera e el perodo de seleccó dgamos de -años y ua ue ya ha saldo del msmo..e. [ ] < sempre ue,,..., 0 y [ ]. Sesó Seguros Báscos horas E esa sesó se defó el seguro alco pagadero al fal del año de muere co ua asa de erés aual como el alor esperado de la arable aleaora K así como su araza. Se subrayó el hecho de ue el segudo momeo de la arable aleaora se puede er como u seguro alco pero co ua asa de erés,.e. 0 / 0 / Var E E De maera aáloga se defero los seguros báscos del modelo dscreo, ue so: Seguro emporal de u año pagadero al fal del año de muere. Seguro emporal -años pagadero al fal del año de muere. Seguro doal y doal puro pagadero al fal del año de muere. Seguro dferdo -años pagadero al fal del año de muere. Seguro crecee y decrecee y sus relacoes. E el caso del seguro doal se presó especal aecó al cálculo de su araza pues al erse como la suma de dos seguros u doal puro más uo emporal -años hay ue cosderar la coaraza de las dos arables aleaoras. Seguros pagaderos al momeo de la muere defdos como el alor esperado de la arable aleaora T e. Fórmulas de Seguros Modelo De More y modelo de fuerza cosae de moraldad Modelo De More : a a a : Modelo de fuerza cosae de moraldad p

4 Se defero las epresoes de los seguros crecees y decrecees además de epresarlos e fucó de seguros ya coocdos. També se ero las relacoes de recursó de los seguros, ue es u gra faclador cuado los ejerccos solo da formacó secudara. E ocasoes solo coocemos el alor de u seguro de da dscreo pero os eresa el alor del eualee couo, e ese caso es mporae recordar ue bajo el supueso de UDD podemos hacer las sguees afrmacoes: : : Coaraza ere pares de seguros: U ema recurree del eame MLC es precsamee el cálculo de la araza de u deermado seguro, a eces alguos seguros puedes ser sos como la combacó de aros seguros, es por ello ue es ecesaro coocer la coaraza mplíca. Seguro Valco Seguro emporal -años Coaraza : Seguro emporal -años Doal puro -años - Seguro doal -años Seguro alco dferdo -años : : : Sesó 3 ualdades Cogees horas Se defó la arable aleaora Y como Y, cuya esperaza es jusamee ua d aualdad cogee acpada. Para las aualdades cogees se plaearo los dos efoues: agregae payme form y curre payme form y se puualzaro las eajas de usar dferees perspecas depededo de los reuermeos de los problemas. E odos los casos se dedujo la araza de Y y las relacoes ue ésas guarda co la arable aleaora raada e la seguda sesó. Relacoes de las aualdades cogees co los seguros: d a&& Var Y d d a&& dode d d d

5 Se dero éccas y ejerccos para el cálculo de la araza de Y, decompoedo la arable de erés hasa lograr poerla e fucó de o be la combacó de dos arables coocdas e cuyo caso se efazó o oldar la coaraza mplíca. Se cluyero las prcpales fórmulas de recurreca e las aualdades cogees acpadas y sus relacoes co las aualdades ecdas. Se abordaro éccas de resolucó de problemas ípcos dádole u sedo uo al plaeameo, dero de ésos resala el cálculo del alor presee de u seguro cuyo beefco es el alor presee de la deuda o cubera por el asegurado de u présamo co pagos auales ecdos. S supoemos ue el pago aual ue el asegurado eía pagado era B, eemos ue el alor presee de ése seguro esa dado por: PV B a& 0 B a a / : De maera aáloga al ema aeror se esuemazaro las fórmulas para las aualdades cuado el empo de da se dsrbuye uforme o epoecal los dos prcpales modelos. demás de defrse odas las aualdades couas se hcero ejerccos para ue el alumo relacoara odos los emas sos: Recursó de aualdades, relacoes ere las couas y las dscreas bajo el supueso de UDD, aualdades dferdas y/o pagaderas m eces al año. Sesó 4 Prmas horas Fucó de pérdda. Se defó ua uea arable aleaora L Q Y ue represea la fucó de pérdda desde el puo de sa del asegurador dode Q represea la prma pagada por el asegurado. L VBeefcos pagados VPrmas Recbdas E L E QE Y Var L Var Q Var Y QCo, Y E el recuadro aeror se obsera ue para obeer la araza de la fucó de pérdda se debe coocer la coaraza ere y Y, co el propóso de opmzar el empo de resolucó se propuso poer a Y e fucó de, lo cual smplfca la epresó aeror: Q Q Var L Var d d Se hzo hcapé e ue ésa epresó sólo es álda e los sguees casos: a Seguro alco co prmas pagaderas de por da dscreo y couo. b Seguro doal de -años co prmas pagadas durae -años dscreo y couo.

6 Cálculo de Prmas Se eplcaro los dos prcpales méodos del cálculo de prmas, ue so los sguees: a Medae el Prcpo de eualeca Beef premum,.e. E E L 0 Q. E Y Se epuso la oacó de prmas así como las dferees epresoes ue relacoa a las prmas co los seguros y las aualdades cogees, ejemplo: Para u seguro alco co pago del beefco al momeo de la muere, pagadero de maera coua ambé de maera alca, la prma pura esá dada por: a a Co relacó a la oacó de la prma, podemos obserar ue P os dca la maera e ue el asegurado paga las prmas, es decr, respode a la pregua Cómo esoy pagado el seguro? De maera aáloga, el érmo dero del paréess respode a la pregua Qué po de seguro esoy comprado? b Porcel Premum E ese caso se busca el alor de la prma Q alue la probabldad de ue la pérdda sea posa es c. Q al ue L > 0 c Se efazó la dfereca ere los érmos Corac premum y Beef premum a f de ear hacer supuesos falsos durae el eame. Relacoes mporaes Las esraegas de resolucó para ese eame so de suma mporaca, por ello es recomedable recordar ue ua aualdad cogee o be u seguro se puede poer e érmos de la prma y la asa de erés: a Se epusero las epresoes de las prmas para los prcpales modelos del empo de da T y las prcpales relacoes ere las prmas pagadas de maera dscrea y las ue se paga de maera coua. Se ero ejerccos de reafrmacó y se ejemplfcó el po de ejerccos dode u seguro emporal -años paga al momeo de la muere u reembolso adcoal de las prmas pagadas hasa ese momeo s ereses acumulados. La ecuacó geérca para el cálculo de dcha prma es: Qa& Q : [ I ]

7 Sesó 5 Reseras horas Recordado la defcó de la fucó de pérdda sa e la sesó aeror, se do ua bree eplcacó sobre el porué de las reseras, su uldad y la dea ua para el cálculo de las msmas, se defó The -h year ermal beef resere como sgue: V { L T > }, 0 0 E V Que es e realdad la dfereca ere el alor presee de los beefcos fuuros y las fuuras prmas a recbr. Para u seguro alco co pago del beefco al momeo de la muere co prmas pagaderas de maera coua se ee ue: V a De maera aáloga al ejemplo aeror se defero los prcpales pos de reseras, es decr, co los dferees pos de seguros sos hasa el momeo así como las reseras mas dode el pago del beefco se oorga de maera coua pero los pagos de las prmas es dscreo o ceersa. Se dedujero las sguees epresoes para el cálculo de reseras: a V a Dcha epresó es muy úl, ya ue, como se obsera, perme poer a la resera e érmos sólo o be de la aualdad cogee o be del seguro o sólo de la prma, se puualzó el hecho de ue ésas epresoes solo se puede ulzar e el caso del seguro alco co pagos co la msma emporaldad o del seguro doal a -años, eso se puede probar fáclmee por cosruccó. També se hzo éfass e la eaja de usar ceras epresoes para el cálculo de reseras, ere ellas las de Premum-Dferece Formula, Pad-up surace formula y la fórmula rerospeca. Para el caso de la fórmula rerospeca eemos ue la resera ueda defda como la dfereca ere el alor acumulado de prmas al fal del año y el coso acumulado del seguro al fal del año, recordado ue le facor de acumulacó es: E P També se defero las reseras para oros pos de pólzas semcouas y las apromacoes perees cuado asummos el supueso de uformdad. Varaza de la fucó de pérdda prospeca Dado ue L PY Var L Var P Var Y PCo, Y, se dedujo ua epresó ue smplfca e mucho los cálculos pero ue sólo es álda para el seguro de da alco y el seguro doal: Var L T > Var

8 Recursó de Reseras Se eplcaro de maera ua las epresoes recursas de Reseras y se do la defcó del Ne Cash Loss y del Ne mou Rs. V π b h h h h h h Dode la epresó bh h V es jusamee el Ne amou Rs, de ésa epresó se dedujero oras dos, el uso de ua sobre ora depede báscamee del plaeameo del problema y los daos ue se coozca. La sguee fórmula de reseras es úl e alguos casos de pólzas especalzadas: m m m V π && sm bh h V 0 Esa epresó asume ue se paga ua prma cosae aual por año π y es usada cuado el beefco por muere cluye la resera cosuda. Cuado ocurre ue el beefco por muere es jusamee la resera eoces: V π& s& V V

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 UN SISTEMA BASADO EN CASOS PARA LA TOMA DE DECISIONES EN CONDICIONES DE INCERTIDUMBRE Ilaa Guérrez Maríez, Rafael E. Bello Pérez y Adrés Tellería Rodríguez

Más detalles

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS MOF - OMPETENIA FUNDAMENTOS DE LAS OPERAIONES FINANIERAS apalzacó ompuesa. apalzacó Smple. Acualzacó ompuesa y Smple. Equvalecas Faceras. Aplcacoes de la apalzacó y del Descueo. Valores Medos: Ufcacó de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos:

Trabajos. Temario. Tema 6. El diodo. Tema 6: El diodo. Tema 6. El diodo. Introducción. Objetivos: emaro rabajos. odo 7. El rassor. Magesmo 9. duccó elecromagéca. rcuos de corree alera. Odas elecromagécas. lcacoes ócas odo. odo Zeer. odo LE 3. Foododo. odo úel 5. odo Schoky El rassor. El JFE, fudameos

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Métodos Actuariales de Primas de Fianzas

Métodos Actuariales de Primas de Fianzas Méodos Acuaales de mas de Fazas o Ac. edo Agula Belá * pagula@csf.gob.mx Resume: La faza ee macadas dfeecas co las opeacoes de seguos. Los pocedmeos acuaales paa el cálculo de pmas de seguos, esula muy

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel Volume 4 - º / dcembre 0 estmacó de la estructura de Tasas omales de chle: aplcacó del modelo dámco elso-segel Rodrgo Alaro A. * Sebasá Becerra C. ** Adrés Sager T. *** I. IroduccIó La esmacó de la esrucura

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA DISEÑO DE UN SISTEM DE REPRTO DOMIILIO ON VENTNS DE TIEMPO INMEDITS MEDINTE MODELION ONTINU Robero Puldo Subercaeau. Ecuela de Igeería, Pofca Uverdad aólca de hle. Jua arlo Muñoz bogabr. Ecuela de Igeería,

Más detalles

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística

Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística lmae Varably ad hage Hydrologcal Impacs Proceedgs of he Ffh FRIND World oferece held a Havaa uba November 006 IAHS Publ. 308 006. 6 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

RIESGO DE INTERÉS DE LAS OPERACIONES ACTUARIALES CLÁSICAS: UNA VALORACIÓN A TRAVÉS DE LA DURACIÓN

RIESGO DE INTERÉS DE LAS OPERACIONES ACTUARIALES CLÁSICAS: UNA VALORACIÓN A TRAVÉS DE LA DURACIÓN RIEGO ITERÉ A OPERACIOE ACTUARIAE CÁICA: UA VAORACIÓ A TRAVÉ A URACIÓ J. Iñak e a Peña Eeba Iuo de Eudo Facero-Acuarale Uerdad del Paí Vaco REUE E el reee rabajo o rooemo realzar u efoque acuaral a la

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

Metodología Índice de Precios de Edificaciones Nuevas

Metodología Índice de Precios de Edificaciones Nuevas Meodología Ídce de recos de Edfcacoes Nuevas COLECCIÓN DOCUMENTOS - ACTUALIZACIÓN 29 Núm. 66 DEARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA HÉCTOR MALDONADO GÓMEZ Drecor CARLOS EDUARDO SEÚLVEDA RICO

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Prelar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcebre de 2007 CHDA/GGM/GMA/VM ÍNDCE. roduccó...3 2. Marco

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

A2.1 SUMA PRESENTE A SUMA FUTURA

A2.1 SUMA PRESENTE A SUMA FUTURA A2. APÉNDICE MATEMÁTICAS FINANCIERAS E este apédce se preseta las fórmulas tradcoales para hallar las sumas equvaletes e el tempo y ua coleccó de fórmulas para equvaleca de tasas omales y efectvas. Para

Más detalles

Sistemas Productivos

Sistemas Productivos Ssemas Producvos º Elemeos de dseño del proceso producvo A la hora de dseñar ua udad producva, hay que realzar ua sere de decsoes esraégcas que cluye ecesaramee:. Localzacó de la plaa: lugar dode físcamee

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Años I0 t (base 1992 = 100)

Años I0 t (base 1992 = 100) Esadísca y Meodología de la vesgacó Dada cualquer varable de la que coocemos los valores referdos a dsos perodos emporales, eedemos por úmero ídce de esa varable e dchos perodos el resulado de dvdr los

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS Coceptos (cotedos soporte) Udad de trabajo sexta: Geeraldades. Retas auales costates. Retas costates fraccoadas. Retas varables. Udad de trabajo séptma Geeraldades. mortzacó de u préstamo por el sstema

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Preelmar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcembre de 2007 CHDA/GGM/GMA/VM ÍNDCE Págas. roduccó 3 2.

Más detalles

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes ropuesta para actualzar la Nota Técca de Daños aterales y Robo Total del Seguro de Autoóvles Resdetes Israel Avlés Torres Novebre 99 Sere Docuetos de Trabajo Docueto de Trabajo No. 0 Ídce. Estructura Técca

Más detalles

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA SECRETARÍA GENERAL TÉCNICA MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE SUBDIRECCIÓN GENERAL DE ESTADÍSTICA ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA INTRODUCCIÓN: La Ecuesa de Salaros Agraros

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

CIRO MARTINEZ BENCARDINO

CIRO MARTINEZ BENCARDINO CIRO MARTINEZ BENCARDINO Nacdo e Covecó (Norte de Satader - Colomba). Ecoomsta de la Uversdad Jorge Tadeo Lozao de Bogotá, D.C. Bo-estadístca (Uversdad de los Ades, Bogotá, D.C.). Téccas Estadístcas (CIENES-Satago

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles