ecuación que representa el movimiento armónico simple, con una frecuencia angular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ecuación que representa el movimiento armónico simple, con una frecuencia angular"

Transcripción

1 FUNDAMENTOS FÍSICOS DE LA INGENIERÍA. CURSO 2003/2004. PRIMERO INGENIERO DE TELECOMUNICACIÓN. SEGUNDA PRUEBA DE SOBRENOTA: OSCILACIONES Y ONDAS SOLUCIÓN DETALLADA 1. Una partícula realiza oscilaciones armónicas suspendida del techo mediante un resorte ideal. El periodo de las oscilaciones es T 0 cuando el experimento se realiza en la Tierra. Si el experimento se realiza en la Luna, donde la intensidad del campo gravitatorio es seis veces menor que en la Tierra, el periodo del movimiento sería: Nota: Considérese que los sistemas de referencia ligados a la luna y a la Tierra son inerciales. T 0 ; 6T 0 ; 6T0 Llamaremos g T a la gravedad en la superficie de la Tierra, y g L a la correspondiente a la superficie de la Luna. Consideremos las oscilaciones terrestres. Tomando un eje OX en la dirección vertical y cuyo sentido positivo es el de la gravedad se tiene, aplicando la segunda ley de Newton y considerando que el resorte tiene uno de sus extremos fijo en O y el otro en contacto con la partícula kx + mg T = mẍ ẍ + ω 2 0x = ω 2 0x eq, ecuación que representa el movimiento armónico simple, con una frecuencia angular k ω 0 = m, alrededor de la posición de equilibrio x eq = mg T /k. Vemos que la gravedad no tiene ninguna influencia sobre la frecuencia de las oscilaciones, y por tanto el periodo es independiente de ella. Si el experimento se repite en la superficie de la Luna, la ecuación de movimiento que se obtendría al aplicar la segunda ley de Newton (considerando que el sistema de referencia ligado a la Luna es inercial), sería: kx + mg L = mẍ ẍ + ω 2 0x = ω 2 0x eq, k/m, alrede- ecuación que representa oscilaciones armónicas con una frecuencia angular ω 0 = dor de la posición de equilibrio x eq = mg L /k. Vemos que la gravedad no tiene ninguna influencia sobre la frecuencia de las oscilaciones, y por tanto el periodo es independiente de ella. Por tanto, si el periodo es T 0 en la superficie de la Tierra, será también T 0 en la superficie de la Luna. 2. Una masa puntual, unida mediante un hilo ideal de longitud L/4 a un punto fijo O, realiza pequeñas oscilaciones en torno a su posición de equilibrio sometida a la acción del campo gravitatorio lunar (péndulo simple). Sabiendo que la gravedad en la superficie de la Luna es g/6, donde g es la aceleración de la gravedad en la superficie de la Tierra, cuánto vale el periodo del movimiento? Nota: Considérese que el sistema de referencia ligado a la luna es inercial. 1

2 π 6L/g ; 2π 2L/g ; 2π 3L/g Consideremos las oscilaciones en la superficie de la Luna. Llamaremos θ al ángulo que forma el péndulo con la vertical. Las fuerzas que actúan sobre la masa son su peso, de módulo mg L, y la tensión del hilo, la cual es normal a la trayectoria del punto. Aplicando la segunda ley de Newton, y proyectando ésta en la dirección tangente, tenemos: ma T = mg L senθ ml θ = mg L senθ, donde hemos llamado l a la longitud del hilo. Ahora, teniendo en cuenta que las oscilaciones son pequeñas, realizamos la aproximación senθ θ. Queda: θ + g L l θ = 0, ecuación que corresponde a un movimiento armónico simple de frecuencia angular ω = Teniendo en cuenta que l = L/4, se tiene g L /l. ω = 2 gl L. Ahora, teniendo en cuenta que g L = g/6, tenemos El periodo vendría dado por g ω = 2 6L. 6L T = π g. 3. Sea Ω la frecuencia a la que la amplitud de la velocidad en régimen permanente de un oscilador forzado amortiguado es máxima. Si se aumenta el amortiguamiento: Ω aumenta. Ω disminuye. Ω no cambia. Sea x(t) = A(ω)cos(ωt + φ(ω)) la posición del oscilador forzado en régimen permanente. La velocidad será ẋ(t) = ωa(ω)sen(ωt + φ(ω)), es decir, un m.a.s. de frecuencia angular ω y amplitud v(ω) = ωa(ω) = ω m (ω0 2 ω 2 ) 2 + γ 2 ω. 2 Dividiendo el numerador y el denominador por ω y realizando operaciones sencillas, se llega a la expresión: 2

3 v(ω) = m (ω 2 0 ω 2 ) 2 ω 2 + γ 2. Nótese que v(ω) es máxima cuando el denominador de la expresión anterior es mínimo, situación que se tiene cuando es mínimo el primer sumando del radicando. Esto ocurre para ω = ω 0, frecuencia para la cual se tiene resonancia en velocidad. Como ω 0 es la frecuencia angular de las oscilaciones libres sin amortiguamiento, y es independiente de γ, la respuesta correcta es la tercera. 4. Se tienen 2 muelles ideales de constante elástica k conectados en paralelo. Cada muelle tiene un extremo fijo al origen de coordenadas, y el otro unido a una misma masa puntual M que se encuentra sobre el eje OX. La partícula realiza oscilaciones forzadas en régimen permanente sometida a una fuerza excitadora F = cosωt ı. Cuál debe ser el valor de ω (diferente de cero) para que la amplitud del movimiento coincida con la elongación estática del sistema de muelles al aplicar sobre la partícula una fuerza constante ı? Nota: Supóngase que existe un amortiguamiento pequeñísimo, pero suficiente para hacer despreciable el término transitorio con el paso del tiempo. 2 2k M ; 2k M ; 2 k M La amplitud en el régimen permanente es, considerando despreciable el amortiguamiento: A(ω) = M ω 2 0 ω 2. (1) Nos preguntan por el valor de ω para el cual la amplitud coincide con la elongación estática que experimentaría el sistema de los dos muelles al someter a la partícula a una fuerza constante ı. Ésta se calcula igualando a cero la suma de ı y la resultante de las fuerzas que ejercen los muelles ( kx eq kx eq ) ı = 2kx eq ı. Tenemos: 2kx eq ı + ı = 0 x eq = 2k. (2) Nos falta por calcular la frecuencia natural no amortiguada ω 0. Aplicando la segunda ley de Newton al movimiento libre (no forzado) del oscilador, tenemos Mẍ = kx kx = 2kx ẍ + 2k M x = 0, ecuación que corresponde a un m.a.s. de frecuencia angular Sustituyendo (2) y (3) en (1), tenemos: ω 0 = 2k M. (3) 2k = M 2k M ω2 3 2k M ω2 = 2k M.

4 La ecuación anterior tiene dos soluciones. Una es ω 1 = 0, y la otra ω2 2 = 22k M = 4k k M ω 2 = 2 M. 5. Una partícula P de masa unidad puede deslizar sin rozamiento por el eje OX de un sistema inercial, estando unida al origen del mismo mediante un resorte ideal de constante k = 4π 2. Sobre P actúa la fuerza F = cos(πt) ı, siendo constante. En el instante t = 0 la partícula se encuentra en la posición x(0) = 3, estando en reposo. En el instante t = 1 la partícula se encuentra en la posición x(1) = 1. Cuánto vale? 3π 2 ; 2π 2 ; π 2 La ley de movimiento de las oscilaciones forzadas sin amortiguamiento es x(t) = m(ω0 2 ω 2 ) cosωt + C 1cosω 0 t + C 2 senω 0 t, donde ω = π, m = 1, y ω 0 = k/m = 2π. Sustituyendo tenemos: x(t) = 3π 2 cosπt + C 1cos2πt + C 2 sen2πt, Para determinar C 1 y C 2 aplicamos las condiciones en t = 0: x(0) = 3π 2 + C 1 C 1 = x(0) 3π 2. Sustituyendo en la expresión de x(t) se tiene: ẋ(0) = 0 C 2 = 0. x(t) = 3π 2 cosπt + (x(0) 3π 2 )cos2πt. Ahora, para determinar el valor de impondremos la condición para la posición en t = 1: x(1) = 3π 2 + x(0) 3π 2 = 3π2 2 (x(0) x(1)) = 3π2. 6. Dos ondas viajeras armónicas de la misma amplitud, g 1 (x, t) y g 2 (x, t), con velocidad de propagación v, se superponen. Se sabe que el movimiento ondulatorio resultante (g(x, t) = g 1 (x, t) + g 2 (x, t)) se puede expresar como g(x, t) = F (x)g(t). Entonces: Las dos ondas viajan en el mismo sentido. Las dos ondas viajan en sentidos contrarios. 4

5 No hay datos suficientes para saber si las dos ondas viajan en el mismo sentido o en sentidos contrarios. Si la onda resultante de la superposición se expresa a partir del producto de una función del tiempo por una función de la posición, esta situación corresponde a la aparición de ondas estacionarias, resultado de la superposición de ondas que se propagan en sentidos contrarios. Por tanto, la respuesta correcta es la segunda. 7. Dos ondas armónicas de la misma amplitud, g 1 (x, t) y g 2 (x, t), se propagan en el mismo sentido del eje OX. Sea g(x, t) = g 1 (x, t) + g 2 (x, t). En general, podemos afirmar que: Las otras respuestas son falsas. g(x, t) es una onda armónica si g 1 y g 2 tienen la misma longitud de onda. g(x, t) es una onda armónica si g 1 y g 2 tienen la misma velocidad y frecuencia. Si las dos ondas tienen la misma amplitud, se propagan en el mismo sentido, y además tienen la misma velocidad y frecuencia, entonces g(x, t) es una onda armónica de la misma frecuencia y velocidad, y propagándose en el mismo sentido que las ondas que se superponen. Por tanto la respuesta correcta es la tercera. La segunda no es correcta porque en principio las dos ondas no tienen porqué tener la misma velocidad, y si esto no ocurre, entonces la superposición de dos ondas de velocidades distintas no es una onda viajera, aun cuando las ondas se propaguen en el mismo sentido, y tengan la misma amplitud y longitud de onda. 8. Una onda armónica plana g( r, t) = Acos[θ( r, t)], siendo θ( r, t) la fase, se propaga en la dirección y sentido del vector unitario u = (1/3)(2 ı + 2 j + k). Su longitud de onda vale 2 y su periodo 1. Además, se sabe que θ( 0, 0) = π/2. Cuál es el valor de la onda en el punto (0, 0, 6) en el instante t = 0? A ; 0 ; A/2 La onda viene dada por la expresión g( r, t) = Acos[θ( r, t)] = Acos( 2π λ Sustituyendo los datos del enunciado obtenemos: Por tanto: g( r, t) = Acos( 2π 2 g(x = 0, y = 0, z = 6, t = 0) = Acos( 2π 2 u r 2π T t + φ). 1 3 (2x + 2y + z) 2πt + π 2 ) π 2 ) = Acos(2π + π 2 ) = 0.

6 9. g(x, t) es una onda viajera de la que se sabe que g(0, 2) = 2. Además, se sabe que cierto frente de ondas que en el instante t = 1 se encontraba en el punto x = 1, en el instante t = 2 estaba en el punto x = 2. En cuál de los siguientes puntos ocurre que g = 2 en el instante t = 1? x = 1 ; x = 3 ; x = 2 La velocidad de la onda es v = = 1. Nos preguntamos por el valor de x para el cual g(x, 1) = 2 = g(0, 2). Teniendo en cuenta que deducimos que x = v = 1. g(0, 2) = g(0 v(2 1), 1) = g( v, 1), 10. Una onda plana se propaga según la dirección y sentido del vector (1/ 3)( ı + j + k) siendo la velocidad de propagación igual a 2. Se sabe que la dependencia temporal de la onda en el origen de coordenadas es g( 0, t) = e t2. Cuál es el valor de la onda en el punto P 0 (4, 0, 0) en el instante t = 3? e 1/3 ; e 100/3 ; e 16/3 Los frentes de onda son planos perpendiculares a la dirección u = (1/ 3)( ı + j + k). Como nos dan el valor de la onda en el origen de coordenadas para todo instante de tiempo, este es valor que toma la onda en todos los puntos del plano perpendicular a u que pasa por el origen. Cuál es el valor de la onda en punto r, en cierto instante t? 1 La respuesta es que es igual al que tomó en todos los puntos del frente de onda que pasa por el origen, en un instante igual a t menos el tiempo que haya tardado la onda en desplazarse una distancia igual a la distancia entre los dos planos, la cual es igual a r u. Es decir: g( r, t) = g( r = 0, t u r v ) = g( 0, t x 2 3 y 2 3 z 2 3 ). En el punto P 0 (4, 0, 0) en el instante t = 3 tendremos: g(4, 0, 0, t) = g( 0, ) = 3 4 e ( 2 3 )2 = e Para hacer el siguiente razonamiento supondremos que r u > 0, aunque la expresión que obtendremos para g( r, t) es independiente de esta consideración. 6

Fundamentos Físicos de la Ingeniería. Ingeniería Industrial. Prácticas de Laboratorio

Fundamentos Físicos de la Ingeniería. Ingeniería Industrial. Prácticas de Laboratorio Fundamentos Físicos de la Ingeniería Ingeniería Industrial Prácticas de Laboratorio Práctica 16 Ley de Hooke 1 Objetivos El objetivo fundamental de esta práctica es medir la constante elástica de un muelle.

Más detalles

1. Dado un sistema de N partículas de masas m i (i =1,..., N), el conocimiento de todas las fuerzas externas en cada instante ( F i

1. Dado un sistema de N partículas de masas m i (i =1,..., N), el conocimiento de todas las fuerzas externas en cada instante ( F i 01 02 03 04 05 06 07 08 09 10 11 12 FÍSICA. CURSO 2014/2015. GRADO EN INGENIERÍA DE TECNOLOGÍAS DE TELECOMUNICACIÓN PRIMER PARCIAL: MECÁNICA, TERMODINÁMICA Y OSCILACIONES Primer apellido... Segundo apellido...

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación:

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación: PROBLEMAS Ejercicio 1 Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Numericamente idénticas, pero conceptualmente distintas en Mecánica Clásica. Numérica y conceptualmente distintas en Relatividad General.

Numericamente idénticas, pero conceptualmente distintas en Mecánica Clásica. Numérica y conceptualmente distintas en Relatividad General. FUNDAMENTOS FÍSICOS DE LA INGENIERÍA. CURSO 22/23. PRIMERO INGENIERO DE TELECOMUNICACIÓN. PRIMERA PRUEBA DE SOBRENOTA: MECÁNICA SOLUCIÓN DETALLADA. Las masas inerte y gravitatoria son: Numérica y conceptualmente

Más detalles

Resúmenes y tipos de problemas de movimiento armónico simple y péndulo

Resúmenes y tipos de problemas de movimiento armónico simple y péndulo Resúmenes y tipos de problemas de movimiento armónico simple y péndulo Campillo Miguel Hernández, 5 30011 Murcia 22 de noviembre de 2011 c 2011 Índice 1. Movimiento armónico simple 1 2. Péndulo simple

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

Física 2º Bach. Repaso y ondas 12/11/08

Física 2º Bach. Repaso y ondas 12/11/08 Física 2º Bach. Repaso y ondas 12/11/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Una partícula de 1,54 g inicia un movimiento armónico simple en el punto de máxima elongación, que se encuentra

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

TEMA: MOVIMIENTO ARMÓNICO SIMPLE TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A. Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud

Más detalles

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS 1. 1.- Comenta si la siguiente afirmación es verdadera o falsa: En un movimiento armónico simple dado por x = A senωt las direcciones

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

Tema 5: Movimiento Armónico Simple.

Tema 5: Movimiento Armónico Simple. Tema 5: Movimiento Armónico Simple. 5.1 Oscilaciones y vibraciones Movimientos periódicos de vaivén alrededor de la posición de equilibrio. Oscilaciones (amplitud apreciable) y vibraciones (amplitud inapreciable)

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido Pregunta 1 Considere un péndulo formada por una masa de,

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

Sistemas Newtonianos - Preparación Control 2

Sistemas Newtonianos - Preparación Control 2 Sistemas Newtonianos - Preparación Control 2 Profesor: Roberto Rondanelli Auxiliares: Álvaro Aravena, Cristián Jáuregui, Felipe Toledo November 11, 2013 1 Resumen teórico 1.1 Movimiento Circular Uniforme

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

TEMA 8: MOVIMIENTO OSCILATORIO Introducción

TEMA 8: MOVIMIENTO OSCILATORIO Introducción TEMA 8: MOVIMIENTO OSCILATORIO 8..-Introducción Decimos que una partícula realiza un movimiento periódico cuando a intervalos iguales de tiempo, llamados periodo T, su posición, x, velocidad, v, y aceleración,

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 )

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 ) PROBLEMAS DE FÍSICA º BACHILLERATO (PAU) Vibración y ondas 4/09/03. Pueden tener el mismo sentido el desplazamiento y la aceleración en un oscilador armónico simple?. En un oscilador armónico que tiene

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Nos dicen la relación entre las celeridades de las partículas. Sustituyendo en las expresiones conocidas:

Nos dicen la relación entre las celeridades de las partículas. Sustituyendo en las expresiones conocidas: FUNDAMENTOS FÍSICOS DE LA INGENIERÍA.CURSO 01/02. PRIMERO INGENIERO DE TELECOMUNICACIÓN PRIMERA PRUEBA DE SOBRENOTA: MECÁNICA SOLUCIÓN DETALLADA 1. Dos partículas A y B se mueven sobre una curva C en el

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

Física 2º Bach. Ondas 10/12/04

Física 2º Bach. Ondas 10/12/04 Física º Bach. Ondas 10/1/04 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [6 PTOS.] 1. Una partícula de 600 g oscila con M.A.S. Se toma como origen de tiempos el instante en que pasa por el origen

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini ONDAS MECANICAS Docente Turno 4: MOVIMIENTO ONDULATORIO: CONSTRUCCION DEL MODELO: MATERIA DEFORMABLE O ELASTICA POR DONDE SE PROPAGAN LAS ONDAS MECANICAS Las ondas de agua las ondas sonoras son ejemplos

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Dinámica de Rotación UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TRABAJO Y ENERGÍA EN EL MOVIMIENTO En la unidad anterior se ha estudiado con

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Solucionario de las actividades propuestas en el libro del alumno 4.. MOVIMIENOS PERIÓDICOS Página 75. Conocido el período de rotación de la Luna en torno a la ierra y sabiendo que la Luna no emite luz

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016 2016-Septiembre A. Pregunta 2.- Un cuerpo que se mueve describiendo un movimiento armónico simple a lo largo del eje X presenta, en el instante inicial, una aceleración nula y una velocidad de 5 i cm s

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 67 70 11 1 Junio 006 Dos cargas puntuales q1 = + 0 nc y q = 1 0 nc están fijas y separadas una distancia de 8 cm. Calcular: a) El campo eléctrico en el punto T situado en el punto medio entre las cargas

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 4.- DINÁMICA DE LA PARTÍCULA 4 Dinámica de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

2. Obtener la posicion x desde la que se ha emitido la señal Resp : :::::::::::::

2. Obtener la posicion x desde la que se ha emitido la señal Resp : ::::::::::::: EXAMEN 2 o PARCIAL DE MECANICA Y ONDAS (Teoria) 6 Julio de 2005 _ Apellidos: Nombre: Grupo: _ Instrucciones : Cada cuestión se puntuará con 10=14 puntos, si la respuesta es completamente correcta. Y entre

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

CUADRO GLOBAL DE RESPUESTAS

CUADRO GLOBAL DE RESPUESTAS CUADRO GLOBAL DE RESPUESTAS Preguntas 01 02 03 04 05 06 07 08 09 10 11 12 Respuestas No olvide rellenar este cuadro. Pase las respuestas -con bolígrafo- al cuadro global. encuentren de izquierda a derecha

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

RECUPERACIÓN DE FÍSICA 1ª EVALUACIÓN. ENERO 2006

RECUPERACIÓN DE FÍSICA 1ª EVALUACIÓN. ENERO 2006 RECUPERACIÓN DE FÍSICA 1ª EVALUACIÓN. ENERO 2006 CUESTIONES 1.- a) Defina energía potencial a partir del concepto de fuerza conservativa. b) Explique por qué, en lugar de energía potencial en un punto,

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

CUADRO GLOBAL DE RESPUESTAS

CUADRO GLOBAL DE RESPUESTAS CUADRO GLOBAL DE RESPUESTAS Preguntas 01 02 03 04 05 06 07 08 09 10 11 12 Respuestas No olvide rellenar este cuadro. Pase las respuestas -con bolígrafo- al cuadro global. encuentren de izquierda a derecha

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1. Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 013 Problemas Dos puntos por problema. Problema 1 Primer parcial: El radio de una noria de feria mide 5 m y da una vuelta en 10 s. a Hállese

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Este test se recogerá una hora y media después de ser repartido. El test se calificará sobre 10 puntos. Las respuestas correctas puntúan positivamente y las incorrectas negativamente, resultando la calificación

Más detalles

Ejercicios de Movimiento Ondulatorio de PAU, PAEG y EVAU

Ejercicios de Movimiento Ondulatorio de PAU, PAEG y EVAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio 1. Introducción Se llama onda a la propagación de energía sin transporte neto de la materia. En cualquier caso se cumple que: - Una perturbación inicial se propaga sin transporte

Más detalles

SOLUCIONES HOJA EJERCICIOS NAVIDAD

SOLUCIONES HOJA EJERCICIOS NAVIDAD SOLUCIONES HOJA EJERCICIOS NAVIDAD 1 - Un cuerpo realiza un movimiento vibratorio armónico simple. Escriba la ecuación del movimiento si la aceleración máxima es, el período de las oscilaciones 2 s y la

Más detalles

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen.

CUESTIONES DE ONDAS. 2) Explique la doble periodicidad de las ondas armónicas e indique las magnitudes que las describen. CUESTIONES DE ONDAS 2017 1) Considere la siguiente ecuación de las ondas que se propagan en una cuerda: y(x,t) = A sen (Bt ± Cx). Qué representan los coeficientes A, B y C? Cuáles son sus unidades en el

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2012 Problemas (Dos puntos por problema). Problema 1: Una bola se deja caer desde una altura h sobre el rellano de una escalera y desciende

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2017

PRUEBA ESPECÍFICA PRUEBA 2017 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2017 PRUEBA SOLUCIONARIO Aclaraciones previas: Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42

Contenido. 1. Pequeñas oscilaciones. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido 1. Pequeñas oscilaciones 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/42 42 Contenido: Tema 02 1. Pequeñas oscilaciones 1.1 Oscilador armónico 1.2 Oscilador armónico

Más detalles

transparent MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016

transparent   MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016 transparent www.profesorjrc.es MECÁNICA CLÁSICA 9 de septiembre de 2016 MECÁNICA CLÁSICA MECÁNICA CLÁSICA 1 CINEMÁTICA 2 DINÁMICA 3 ENERGÍA Y TRABAJO 4 DINÁMICA DE ROTACIÓN MECÁNICA CLÁSICA www.profesorjrc.es

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles