Resolución de problemas. Temas: VOR e ILS

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resolución de problemas. Temas: VOR e ILS"

Transcripción

1 Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST

2 Índice 1. Problema tema 5: VOR Problema tema 7: ILS Referencias..12 2

3 1. Problema tema 5: VOR Sea un avión que se aproxima a una estación VOR por un radial θ = 20 respecto al norte magnético en el sentido de las agujas del reloj: a) Demostrar que el equipo de a bordo VOR le indica al piloto que se está dirigiendo hacia la estación VOR b) Supongamos que el piloto desea aproximarse a la estación VOR por un radial situado 5 a la derecha del que navega actualmente. Explicar lo que el piloto debe indicar al equipo de a bordo VOR para ser guiado al radial seleccionado y las indicaciones que le dará el equipo de a bordo hasta situarse en el radial deseado. c) Supongamos que el piloto desea aproximarse a la estación VOR por un radial situado 5 a la izquierda del que navegaba en el apartado (a). Explicar lo que el piloto debe indicar al equipo de a bordo VOR para ser guiado al radial seleccionado y las indicaciones que le dará el equipo de a bordo hasta situarse en el radial deseado. d) Supongamos que nos hemos aproximado a la estación VOR por el radial θ = 20, ya hemos sobrevolado la estación y continuamos en la misma dirección. Demostrar que el equipo de a bordo VOR nos indica que nos estamos alejando de la estación. NOTAS: Los dibujos no están a escala exacta con respecto a los ángulos, se considera más importante el entendimiento de la resolución del problema que la perfección en la realización de los dibujos. 3

4 a) Para poder comprobar que el equipo de a bordo le indica al piloto que se está dirigiendo hacia la estación VOR aplicaremos la regla 1, en la cual supondremos k una constante mayor que cero. Con ángulo θ tomado desde el N norte magnético (N), y en sentido horario, trazamos una línea, radial, con una inclinación de 20 sobre ese norte magnético hacia el radiofaro VOR (origen de coordenadas), es decir, indicador a TO (X), que es lo que se nos pide que demostremos. Sobre el radial fijado (dirección hacia el origen de coordenadas) tomamos un norte magnético ficticio (N), y sobre estos trazamos un ángulo, hasta que unamos ambos, α en sentido de las agujas del reloj, el cual nos dará aplicando las reglas de trigonometría básica un ángulo α = 200, ya que (ángulos complementarios) = 200. Con estos datos ya podemos calcular δ mediante la regla 1: δ = k sen (θ 90 α) = k sen ( ) = k sen ( 270 ) = k 1 Lo que nos lleva a que δ > 0, por lo que el equipo de a bordo le indica al piloto que se está dirigiendo a la estación VOR (indicador en TO), véase la Ilustración 1. Ilustración 1: Indicación del equipo de a bordo en función de la situación relativa del avión. [3] b) En este caso el piloto desea aproximarse al radiofaro VOR por un radial situado a 5 a la derecha del que navega en el apartado a). Para explicar las indicaciones del piloto al equipo VOR e interpretar su respuesta tomamos la regla 2, en la cual tomamos k como una constante mayor que cero. Desplazamos el ángulo θ unos 5 N hacia la derecha del radial trazado en el apartado a), fijémonos en que nos estamos dirigiendo desde el primer cuadrante al tercer cuadrante, por lo que la derecha se encuentra hacia el norte magnético. 4

5 E igual que hacíamos antes fijamos un norte magnético ficticio sobre el nuevo radial y obtenemos el ángulo α, que nos dará haciendo la suma de (ángulos complementarios, ya que el nuevo radial es de 15 con respecto al norte) unos 195. Con estos datos ya podemos calcular ε mediante la regla 2: ε = k sen (θ α) = k sen ( ) = k sen ( 175 ) = k 0,0871 Lo que nos lleva a que ε < 0, reflejando que la aguja de la instrumentación VOR está hacia la derecha, véase la Ilustración 2. Esto nos indica que estamos a la izquierda del rumbo seleccionado, por lo que viramos hacia la derecha. O dicho de otra manera, el piloto tendrá que girar a la derecha porque estamos a la izquierda del radial deseado. Ilustración 2: Indicación del equipo de a bordo en función de la situación relativa del avión. [3] c) En este caso el piloto desea aproximarse al radiofaro VOR por un radial situado a 5 a la izquierda del que navega en el apartado a). Para explicar las indicaciones del piloto al equipo VOR e interpretar su respuesta tomamos la regla 2, en la cual tomamos k como una constante mayor que cero. Desplazamos el ángulo θ unos 5 N hacia la izquierda del radial trazado en el apartado a), fijémonos en que nos estamos dirigiendo desde el primer cuadrante al tercer cuadrante, por lo que la izquierda se encuentra hacia el eje horizontal. E igual que hacíamos antes fijamos un norte magnético ficticio sobre el nuevo radial y obtenemos el ángulo α, que nos dará haciendo la suma de (ángulos complementarios, ya que el nuevo radial es de 25 con respecto al norte) unos 205. Con estos datos ya podemos calcular ε mediante la regla 2: ε = k sen (θ α) = k sen ( ) = k sen ( 185 ) = k 0,0871 Lo que nos lleva a que ε > 0, reflejando que la aguja de la instrumentación VOR está hacia la izquierda, véase la Ilustración 3. Esto nos indica que estamos a la derecha del rumbo seleccionado, por lo que viraremos hacia la izquierda. O dicho de otra manera, el piloto tendrá que girar a la izquierda porque estamos a la derecha del radial deseado. 5

6 Ilustración 3: Indicación del equipo de a bordo en función de la situación relativa del avión. [3] d) Aquí consideramos que hemos sobrevolado el radiofaro VOR con el ángulo θ del apartado a) y continuamos en esa misma dirección. Para poder comprobar que el equipo de a bordo le indica al piloto que se está alejando de la estación VOR aplicaremos la regla 1, en la cual supondremos k una constante mayor que cero. N En este caso θ será el ángulo medido desde el norte magnético (N) hasta su intersección con el radial seguido, pero habiendo pasado la estación VOR, es decir, el tercer cuadrante, por lo que θ = 200, cifra que sale de sumar los 90 del primer cuadrante más los 90 del cuarto más 20 por ángulos complementarios. E igual que hacíamos antes fijamos un norte magnético ficticio sobre el nuevo radial y obtenemos el ángulo α, que nos dará haciendo la suma de (ángulos complementarios) unos 200. Con estos datos ya podemos calcular δ mediante la regla 1: δ = k sen (θ 90 α) = k sen ( ) = k sen ( 90 ) = k 1 Lo que nos lleva a que δ < 0, por lo que el equipo de a bordo le indica al piloto que se está alejando de la estación VOR (indicador en FROM), véase la Ilustración 4. Ilustración 4: Indicación del equipo de a bordo en función de la situación relativa del avión. [3] 6

7 2. Problema tema 7: ILS Sea la senda de planeo del sistema ILS formado por tres antenas. La antena inferior, situada a una altura h, está alimentada por una señal v CSB = (1+ m senω 1 t + m senω 2 t) senω 0 t. Las antenas superiores, situadas a las alturas h y h (h <h ), están alimentadas respectivamente por las señales v SBO,1 = k 1 (senω 1 t senω 2 t) senω 0 t y v SBO,2 = k 2 (senω 1 t senω 2 t) senω 0 t. a) Deduzca las expresiones de las alturas a las que deben estar situadas las antenas superiores (h y h ) y la relación entre ellas para que el plano de descenso esté situado en un ángulo de 2,5 respecto de la superficie terrestre. b) Deduzca la relación entre las alturas de las antenas (h, h y h ) para eliminar el primer eje falso. NOTA: Suponer k 1 = k 2. a) La senda de planeo sitúa el avión en el plano de descenso en el guiado vertical. Trabajaremos con pares de antenas, una vertical situada encima de la tierra y otra simulada, vertical bajo tierra, mediante reflexión total (ρ = 1) de la misma señal. Tomaremos el centro de los pares de antenas como referencia de fase y no consideraremos el desfase debido al trayecto PO (punto de avión y origen vertical de las antenas respectivamente). Véase la configuración completa de la senda de planeo en la Ilustración 7. Partimos de cómo son las señales de las antenas: Antena inferior, señal CSB: v CSB = (1+ m senω 1 t + m senω 2 t) senω 0 t Antena media, señal SBO: v SBO,1 = k 1 (senω 1 t senω 2 t) senω 0 t; h <h Antena superior, señal SBO: v SBO,2 = k 2 (senω 1 t senω 2 t) senω 0 t 1º) Señal recibida en P de la antena CSB: v CSB = (1+ m senω 1 t + m senω 2 t)[sen(ω 0 t + α) sen(ω 0 t α)] El signo negativo se debe a la reflexión, ρ = 1, α es el desfase como consecuencia de la distancia x y h es la altura a la que se encuentra la antena. Aplicando la relación trigonométrica: sen a sen b = 2cos x h sen = ; x = h sen Siendo α = = v 1 = (1 + m senω 1 t + m senω 2 t) 2 sen cosω 0 t 7

8 2º) Señal recibida en P por la antena SBO1: v SBO,1 = k 1 (senω 1 t senω 2 t)[sen(ω 0 t + α ) sen(ω 0 t α )] El signo negativo se debe a la reflexión, ρ = 1, α es el desfase como consecuencia de la distancia x y h es la altura a la que se encuentra la antena. Aplicando la relación trigonométrica: sen a sen b = 2cos x h sen = ; x = h sen Siendo α = = v 2 = 2 k 1 (senω 1 t senω 2 t) sen cosω 0 t 3º) Señal recibida en P por la antena SBO2: v SBO,2 = k 2 (senω 1 t senω 2 t)[sen (ω 0 t + α ) sen (ω 0 t α )] El signo negativo se debe a la reflexión, ρ = 1, α es el desfase como consecuencia de la distancia x y h es la altura a la que se encuentra la antena. Aplicando la relación trigonométrica: sen a sen b = 2cos x h sen = ; x = h sen Siendo α = = v 3 = 2 k 2 (senω 1 t senω 2 t) sen cosω 0 t La señal total que se recibe en P es la suma de todas las señales: v = v 1 + v 2 + v 3 Siendo k 1 = k 2 = k, sumamos y agrupamos términos: v = 2 cosω 0 t [k senω 1 t (sen α + sen α ) k senω 2 t (sen α + sen α ) + sen α + m senω 1 t sen α + m senω 2 t sen α] Agrupamos las constantes en k y operamos: v = k [1 + senω 1 t + senω 2 t] cosω 0 t v es una señal modulada en amplitud (AM) por dos tonos, uno de 150 Hz y otro de 90 Hz, los cuales modulan a la portadora (cosω 0 t) con índices de modulación m 150 y m 90. m 150 = m 90 = 8

9 En el equipo de a bordo del sistema ILS se mide la Diferencia de Profundidad de Modulación (DDM), es decir, la diferencia entre los dos índices de modulación. DDM = m 150 m 90 = = Ya que el ángulo que nos interesa es el de 2,5, y sabiendo que en el plano de descenso la profundidad de modulación será igual para ambos tonos, entonces el numerador de la expresión DDM tiene que anularse. En caso de que no se anule, y como se ha dicho antes, el equipo de a bordo mide la DDM y una aguja nos indicará, véase Ilustración 5 y 6, si el avión está por encima o por debajo del plano de descenso, dependiendo de cuál de los tonos tenga más intensidad. Por la parte superior del plano de descenso se recibirá con mayor intensidad el tono de 90 Hz y en la parte inferior el tono de 150 Hz de la onda electromagnética emitida por la senda de planeo. El numerador de la DDM se anula en dos posibles casos: 1. sen α = sen α ; lo que nos lleva a que h = h, lo cual no es coherente con lo definido en la senda de planeo ya que h < h y físicamente no es aceptable una altura negativa. 2. sen α = 0 y sen α = 0; sen = 0 = n ; con n=0, 1, 2,.. El primer nulo se produce en n = 0, lo que nos lleva a que entonces 0, ángulo que se corresponde con la superficie terrestre y no nos interesa ya que el ángulo que nos interesa es el de 2,5. Veamos pues lo que se produce para el siguiente nulo n = 1, segundo nulo: = h = ; por lo que habrá que emplear el 2º nulo. = 0 = n ; con n=0, 1, 2,.. El primer nulo se produce en n = 0, lo que nos lleva a que entonces 0, ángulo que se corresponde con la superficie terrestre y no nos interesa ya que el ángulo que nos interesa es el de 2,5. Veamos pues lo que se produce para el siguiente nulo n = 1, segundo nulo: = h = ; lo que nos lleva a que h = h, lo cual es, según hemos definido las alturas, imposible (ya que h < h ). Veamos entonces lo que pasa para el siguiente nulo, n = 2, 3º nulo: = 2 h = ; por lo que habrá que emplear el 3º nulo 9

10 Todo ello nos lleva a que h = 2h, debido a que es una constante y el sen también lo es, porque queremos un ángulo de 2,5. Ilustración 5: Sistema de aguja para el posicionamiento vertical (A) y horizontal (B) del avión en el plano de descenso. [2] Ilustración 6: Agujas de posicionamiento vertical y horizontal situadas en la pantalla del ILS del panel de instrumentos. [2] b) Vamos a tener falsos ejes en el caso de la senda de planeo. El falso eje más problemático se producirá cuando el numerador de la DDM se haga cero debido a un, por lo que habrá que intentar eliminarlo. sen sen = 0; donde es el ángulo para el cual la DDM se hace cero en un falso eje. Para h tomaremos un n = 2, ya que, como vimos en el apartado a), es el n más pequeño de los posibles, debido a que no sea ni el plano de tierra (n = 0) ni el plano de descenso (n = 1). Como veíamos antes llegaremos a la expresión: = 2 = Para solucionar este problema haremos que el denominador de la DDM se anule también, con lo que tendremos una indeterminación 0/0 y se detectará el eje falso. sen = 0 = n ; con n=0, 1, 2,.. 10

11 El primer nulo se produce en n = 0, lo que nos lleva a que entonces 0, ángulo que se corresponde con la superficie terrestre y no nos interesa. Veamos pues lo que se produce para n = 1, segundo nulo: = = Igualando las expresiones obtenidas llegamos a la conclusión de que: = h = 2h Debido a todo esto llegamos a la relación de la altura de las tres antenas: 4h = 2h = h Ilustración 7: Senda de planeo del ejercicio ILS, formado por tres antenas. [3 modificado] 11

12 3. Referencias Ampliación de Sistemas de Telecomunicación II [1] Navegación VOR, VOR, última visita 5 de mayo de [2] La aproximación ILS, última visita 12 de mayo de [3] Ampliación de Sistemas de Telecomunicación II. Curso Tema 5: VOR, Maria García Gadañón, ETSIT ITT ST. 12

PROPUESTAS COMERCIALES

PROPUESTAS COMERCIALES PROPUESTAS COMERCIALES 1. Alcance... 2 2. Entidades básicas... 2 3. Circuito... 2 3.1. Mantenimiento de rutas... 2 3.2. Añadir ofertas... 5 3.2.1. Alta desde CRM... 5 3.2.2. Alta desde el módulo de Propuestas

Más detalles

Clase de apoyo de matemáticas Ángulos Escuela 765 Lago Puelo Provincia de Chubut

Clase de apoyo de matemáticas Ángulos Escuela 765 Lago Puelo Provincia de Chubut Clase de apoyo de matemáticas Ángulos Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la escuela 765 de

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

Figura 5.1 a: Acimut de una dirección de mira

Figura 5.1 a: Acimut de una dirección de mira Tema N 5 Determinación del Acimut de una dirección 5.1- Acimut de una dirección El acimut de una línea cualquiera es el ángulo que forma el meridiano del lugar con el plano vertical que contiene dicha

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

U.D.5: Diagramas de Gantt y PERT

U.D.5: Diagramas de Gantt y PERT U.D.5: Diagramas de Gantt y PERT 57 Diagrama de Gantt INTRODUCCIÓN El diagrama de Gantt consiste en una representación gráfica sobre dos ejes; en el vertical se disponen las tareas del proyecto y en el

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

UNIDAD 6 Fotogrametría

UNIDAD 6 Fotogrametría UNIDAD 6 Fotogrametría La fotogrametría es la técnica de obtener mediciones reales de un objeto por medio de la fotografía, tanto aérea como terrestre Las fotografías se las realiza con una cámara métrica

Más detalles

Traslaciones, Homotecias, Giros y Simetrías

Traslaciones, Homotecias, Giros y Simetrías Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre

Más detalles

REGULACIÓN AUTOMATICA (7)

REGULACIÓN AUTOMATICA (7) REGULACIÓN AUTOMATICA (7) (Respuesta en frecuencia Bode) Escuela Politécnica Superior Profesor: Darío García Rodríguez CONCEPTOS UTILES Definición de Decibelios.- La necesidad de comparar magnitudes en

Más detalles

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e. Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES 1.1 Ecuación de onda. Las ecuaciones de Maxwell se publicaron en 1864, su principal función es predecir la propagación de la energía en formas de Onda.

Más detalles

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO 19 EL OSCILOSCOPIO OBJETIVO Familiarizarse con el manejo del osciloscopio. Medida del periodo y del valor eficaz y de pico de una señal alterna de tensión. Visualización de las figuras de Lissajous. MATERIAL

Más detalles

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez Valderrebollo 20, 1 A 28031 MADRID 1ª Edición Ninguna parte de esta publicación, incluido

Más detalles

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

PRÁCTICAS DE GESTIÓN GANADERA:

PRÁCTICAS DE GESTIÓN GANADERA: PRÁCTICAS DE GESTIÓN GANADERA: MANEJO DE HOJA DE CÁCULO (EXCEL) 1. INTRODUCCIÓN AL MANEJO DE EXCEL La pantalla del programa consta de una barra de herramientas principal y de una amplia cuadrícula compuesta

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles

Impress : Programa de presentaciones de OpenOffice.

Impress : Programa de presentaciones de OpenOffice. Impress : Programa de presentaciones de OpenOffice. Básicamente Impress es un programa de presentaciones proyectadas a través de diapositivas (pantallas completas) que un orador o ponente puede utilizar

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

MONITOR DE PESO CALIBRADO POR PESO CONOCIDO Y POR SENSIBILIDAD CONOCIDA MS 3.3.2

MONITOR DE PESO CALIBRADO POR PESO CONOCIDO Y POR SENSIBILIDAD CONOCIDA MS 3.3.2 MONITOR DE PESO CALIBRADO POR PESO CONOCIDO Y POR SENSIBILIDAD CONOCIDA MS 3.3.2 1 CONEXIONADO DEL EQUIPO: 2 3 El menú principal consta de las siguientes opciones: 1.- CALIBRACIÓN 2.- RELÉS 3.- SALIDA

Más detalles

EDWIN KÄMMERER ORCASITA INGENIERO ELECTRÓNICO

EDWIN KÄMMERER ORCASITA INGENIERO ELECTRÓNICO Identifica los tipos de datos y funciones - Tipos de Datos: Excel soporta 5 tipos de datos, estos son: a) Numéricos: Están formados por cualquiera de los 10 dígitos (del 0 al 9) y pueden estar acompañados

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004

MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 EL TIO DE CAMBIO REAL El tipo de cambio nominal expresa el precio de una moneda en términos de otra. or ejemplo, el tipo

Más detalles

Introducción al diseño híbrido con ZW3D

Introducción al diseño híbrido con ZW3D Introducción al diseño híbrido con ZW3D Con este tutorial podrá aprender el diseño 3D con un programa CAD 3D híbrido de modelado de sólidos y superficies combinadas. El objetivo es dibujar un grifo en

Más detalles

Manual de usuario de Solmicro BI. Página 1

Manual de usuario de Solmicro BI. Página 1 Manual de usuario de Solmicro BI Página 1 Índice 1. Estructura general del sistema, 2. Estructura de presentación de la información, 3. Acceso a Solmicro BI y los diferentes cuadros de mando, 4. Partes

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad TRIGONOMETRÍA EJERCICIOS PROPUESTOS.. Indica la medida de estos ángulos en radianes. a) º c) º b) º d) º a) º rad c) rad º rad b) rad º rad d) rad rad º º Epresa en grados los siguientes ángulos. a) rad

Más detalles

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial. Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2008 AÑO 2008 1).. a) Principio de conservación de la energía mecánica b) Desde el borde de un acantilado de altura h se deja caer libremente

Más detalles

6.1. Conoce la papelera

6.1. Conoce la papelera Unidad 6. La papelera de Reciclaje 6.1. Conoce la papelera La papelera no es más que un espacio en el disco duro reservado para almacenar la información que eliminamos, evitando que esta información aparezca,

Más detalles

Fórmulas y funciones

Fórmulas y funciones 05... Fórmulas y funciones En este tema vamos a profundizar en el manejo de funciones ya definidas por Excel, con el objetivo de agilizar la creación de hojas de cálculo, estudiando la sintaxis de éstas

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Módulo II - PowerPoint

Módulo II - PowerPoint Módulo II - PowerPoint Índice Copiando diapositivas Menú Edición... 2 Copiando diapositivas utilizando la barra de herramientas... 3 Copiando diapositivas utilizando el menú contextual... 3 Copiando diapositivas

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

GUIA PARA PRESENTAR EN SÉNECA PROYECTOS DE FP DUAL

GUIA PARA PRESENTAR EN SÉNECA PROYECTOS DE FP DUAL GUIA PARA PRESENTAR EN SÉNECA PROYECTOS DE FP DUAL A continuación se describen los pasos para realizar la adecuada presentación de proyectos de FP Dual a través de Séneca. La presentación de un proyecto

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas

Más detalles

MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL

MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL MICROSOFT EXCEL 2007 Qué es y para qué sirve Excel2007? Excel 2007 es una hoja de cálculo integrada en Microsoft Office. Esto quiere decir que si ya conoces otro programa de Office, como Word, Access,

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V Ejercicio resuelto Nº 1 En un punto de un campo eléctrico, una carga eléctrica de 12. 10-8 C, adquiere una energía potencial de 75. 10-4 J. Determinar el valor del Potencial Eléctrico en ese punto. En

Más detalles

2. GRAFICA DE FUNCIONES

2. GRAFICA DE FUNCIONES . GRAFICA DE FUNCIONES En vista de que el comportamiento de una función puede, en general, apreciarse mu bien en su gráfica, vamos a describir algunas técnicas con auda de las cuales podremos hacer un

Más detalles

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

El callejón de potencia en aplicaciones de refuerzo de sonido.

El callejón de potencia en aplicaciones de refuerzo de sonido. El callejón de potencia en aplicaciones de refuerzo de sonido. José Brusi, DAS Audio, Departamento de Ingeniería A menudo recibimos consultas sobre los cajones de sub-bajos en aplicaciones de directo,

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Teclado sobre una PDA para Personas con Parálisis Cerebral

Teclado sobre una PDA para Personas con Parálisis Cerebral Manual de Usuario - 1 - - 2 - Teclado sobre una PDA para Personas con Parálisis Cerebral Capítulo 1. MANUAL DE USUARIO 12.1 Descripción de la aplicación Este programa le permitirá llevar a cabo las siguientes

Más detalles

Como dibujar las vistas de una pieza en Autocad

Como dibujar las vistas de una pieza en Autocad El problema de las vistas de una pieza. Una vez que he dibujado la pieza en el espacio modelo (página con el fondo en negro). Haz el render a un archivo. Elige el fondo blanco. Abro una presentación. Para

Más detalles

USO ACADÉMICO DE HOJAS ELECTRÓNICAS. Segunda Sesión

USO ACADÉMICO DE HOJAS ELECTRÓNICAS. Segunda Sesión Control de notas USO ACADÉMICO DE HOJAS ELECTRÓNICAS Segunda Sesión El portal académico nos permite ingresar las notas de nuestros estudiantes y tenemos la facilidad de que podemos exportar las notas a

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente.

Este programa mueve cada motor de forma independiente, y cuando termina una línea pasa a la siguiente. 1 Programa 1 Utilizando el icono añadimos un movimiento a por cada línea de programa. Podremos usar 8 posibles líneas de programa (Base, Hombro, Codo, Muñeca, Pinza, Salida 1, Salida 2 y línea en blanco).

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles