MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):"

Transcripción

1 Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos de reni: (, puntos) Crterístis generles y modliddes de estos préstmos. Explir rzondmente ómo se resuelve el so de un préstmo mortizr por el método frnés y que tiene reni totl durnte los s primeros ños. b) Práti. L empres K h obtenido un préstmo del bno H mortizr en 0 ños, medinte nuliddes onstntes (método frnés), un tipo de interés nul onstnte del 6% nul. Se sbe que los intereses orrespondientes l 4º ño importn ,6027 euros. Obtener rzondmente: 2. Empréstitos: ) Anulidd onstnte que lo mortiz y untí del pitl prestdo por el bno. (, puntos). 2) Cuot de mortizión orrespondiente l 6º ño. (0, puntos). 3) Tnto efetivo l que result el préstmo sbiendo que h pgdo un omisión de pertur del % y un omisión de estudio del 3 de l untí prestd (solo plntemiento numério si no se dispone de luldor finnier). (0, puntos). ) Teorí. Empréstitos no mortizbles: Crterístis, denominión undo lo emiten los estdos, untí del término mortiztivo y vlor de merdo de un de ests obligiones si pg upones l tnto i y el tipo de interés de merdo en este momento es i. (, puntos) b) Práti: L empres XYZ h emitido un empréstito formdo por obligiones de.000 euros nominles d uno mortizr en 0 ños por sorteo medinte nuliddes onstntes. El pgo de upones se reliz nulmente l 6%, se ofree un prim de emisión del % del nominl de d título y un prim de mortizión del 2%. Los gstos de dministrión lo lrgo de l vid del título representn el 3 de ls ntiddes pgds d ño. Los gstos iniiles por l oloión del empréstito en el merdo representn el 4% del nominl emitido. Obtener rzondmente: ) Anulidd onstnte que lo mortiz. ( punto). 2) Número de títulos que se mortizn en el sexto sorteo y número de títulos vivos después de utro sorteos. (0, puntos). 3) Tnto efetivo pr el emisor y tnto de rentbilidd de un título que se mortiz en el quinto sorteo. ( punto). 3. Arrendmiento finniero (lesing): Un empres espeilizd en operiones de rrendmiento finniero h de lulr ls untís peribir por lquilr unos equipos industriles. El preio de merdo de estos tivos import dos millones de euros, el horizonte temporl que se plnte pr est operión se fij en 8 ños y el vlor residul se estim en el 0% del preio de merdo. Los lquileres se peribirán mensulmente on ráter prepgble y pr l vlorión finnier se fij un tnto nominl pr freueni mensul j = %. Obtener rzondmente l untí mensul que se h ofertr l empres rrendtri de uerdo on ls ondiiones estbleids. (2 puntos).

2 Soluiones Junio 08 Primer Semn. ) Teorí b.) b.2) ,6027 = C 0,06 C = 34.30, ,04 = = 6.40,8 7 0,06 C = 6.40,8 = , ,8 = I + A 6.40,8 = , A A = 40.66, A = A (+i) A = 40.66,97 (+0,06) = 4.687, b.3) (- 0,0-0,003) = 6.40,8 0 i i = 0, ) Teorí b.) ( ) Anulidd omeril : = C i N s- +(C+P) M s (+ g) C Ci Normlizión : = C N s- + C M s α = C Ns- i +C Ms +g C+P C+P C α = + g C +P C N = α n i on : = α n i α=.3.9,7 C i.000 0,06 i = = = 0,08824 C+P C C+P α= = α ( + g) =.3.9,7 ( +0,003) = , + g C+P C.000 b.2) α - C N i ,08824 M 6 = M (+i ) on M = = = 762,88 C.000 M = 762,88 (+0,08824).0,2 títulos 6 =.3.9,7 6 i C N 4 = 6 i N 4 = = 6.668,títulos.000 b.3) (C -P ) N- G = (.000-0) = ,2 i = 0,0747 e 0 n ie 0 ie e (C -P ) = C i +(C+P) (+i ) (.000-0) = 60 +( ) (+i ) i = 0,069 -s - e s ir r ir r r , = l (+0,0) l = 30.94,6

3 Fultd de Cienis Eonómis Convotori de Junio Segund Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 4 de Junio de 2008 Durión: 2 hors ) Teorí. Préstmos sindidos: Crterístis generles, modliddes de sindiión y tipos de interés que suelen utilizrse. (, puntos). b) Práti. L empres E obtuvo he 4 ños un préstmo mortizr en ños medinte nuliddes onstntes siendo el tnto de vlorión el 6% nul. L uot de mortizión orrespondiente este ño (urto ño de vid del préstmo: A 4 ) import 8.824,9863 euros. Los gstos iniiles rgo del presttrio hn sido el,% de omisión de pertur de rédito, el 4 de omisión de estudio y el 3 de orretje que peribe el fedtrio públio merntil. En el ontrto se estblee un láusul de nelión ntiipd por l que se pli un rergo del 2% sobre el pitl vivo en el momento de l nelión. Obtener rzondmente: 2. Empréstitos ) Cpitl prestdo (C o ) y nulidd onstnte que l mortiz (). ( punto). 2) Cpitl devolver en el so de que se soliite l nelión ntiipd undo hn trnsurrido 8 ños ompletos desde el iniio de l operión. (se b de pgr l 8ª nulidd). (0, puntos). 3) El tnto efetivo que result pr el presttrio en el so de que l operión finlie después de trnsurridos esos 8 ños ompletos tl omo se indi en el prtdo b). (0, puntos). ) Teorí. Tnto efetivo pr el emisor del empréstito: Explir rzondmente ómo se obtiene si se onoe: C = nominl de d título. N = número de títulos emitidos. = nulidd omeril onstnte que lo mortiz y n = durión totl del empréstito, G o = gstos iniiles rgo del emisor, G n = gstos finles rgo del emisor. P e = Prim de emisión. (, puntos). b) Práti. Un empréstito upón ero, norml del tipo I (nuliddes onstntes), se mortiz medinte sorteos nules en ños. El nominl de d obligión es.000 euros y los títulos se les pgn los intereses umuldos l 6% nul en l feh de mortizión. Se sbe que el número de títulos vivos después de trnsurridos 0 ños es ,764 títulos. Obtener rzondmente: ) Anulidd onstnte que mortiz el empréstito. ( punto). 2) Número de títulos que se mortizn en el sorteo del ño. (0, puntos). 3) Tnto de rentbilidd que obtiene un obligión que se mortiz en el déimo sorteo sbiendo que los títulos se emiten on un prim del 2% del nominl. ( punto). 3. Operiones de vent plzos ) Teorí. Explir en qué onsiste est operión y ómo se obtiene l untí P pgr en d plzo. Dtos: V = preio del bien, E = entrd, n = número de plzos, m= freueni de d plzo y r = rergo mensul que se pli l untí plzd. (, puntos). b) Apliión: Un empres espeilizd en l vent de ordendores ofree, entre otrs, l siguiente modlidd de vent plzos; el omprdor h de dr un entrd del % del preio de vent, que se estblee en 800, y, el resto, se h de pgr en 24 plzos mensules. Sobre ls untís plzds, se pli un rergo del 0,7% mensul. Obtener rzondmente l untí pgr en d plzo y el tnto de pitlizión-desuento ompuesto l que result l operión. ( punto).

4 Soluiones Junio 08 Segund Semn. ) Teorí A A ( 0,06) A A ( 0,06) 8.824,9863 ( 0,06) 7.409, = + = 4 + = + = n S C = A = A = 7.409,63 = s 0,06 0,06 s=.000 = = 4.909,63 0,06 S 8 4 0,06 C = 4.909,63 =.663,44 A devolver =.663,44,02 = 2.696,7 * 8 * b3).000 ( 0,004 0,003 0,0) = 4.909,63 * ,7 (+ i ) i = 0,062 8 i 2. ) Teorí ,764 (+ 0,06) = 0,06 = ,3 (s ) (s ) ,3 Ms = M (+ i) = (+ i) M =,06 = 7.67,4 C (+ i).000,06 r r 0 0 b3) e r r r C P = C (+ i) (+ i ) =.000 (+ 0,06) (+ i ) i = 0, ) Teorí b) E = 800 ( 0,) = 680 ; α= 0, = 0,8 680 (+ 0,8) P = = 33, ( 0,) = 33,43 24 i i = 0,03679 i = (+ 0,03679) = 0,77084

5 Fultd de Cienis Eonómis Convotori de Septiembre Prinipl Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 4 de Septiembre de 2008 Durión: 2 hors ) Teorí: Préstmos on el pgo friondo de los intereses: Plntemiento generl. (, puntos). b) Práti: L empres Y h obtenido un préstmo de ien mil euros mortizr en 0 ños por el método de uots de mortizión onstntes pero on bono semestrl de los intereses (l mortizión se reliz nulmente), siendo el tnto nominl pr freueni semestrl j 2 = 6%. Obtener rzondmente: ) Cuot de mortizión onstnte y pitl vivo después de trnsurridos 4 ños. ( punto). 2) Términos mortiztivos orrespondientes l sexto ño. ( punto). 3) Vlor del préstmo y vlor de sus omponentes, usufruto y nud propiedd, undo hn trnsurrido 4 ños y el tnto nominl de merdo es j 2 = 7%. ( punto). 2. Empréstitos ) Teorí: Empréstitos normles on upón ero (se mortizn on los intereses umuldos) del tipo I: Explir rzondmente omo se obtiene l nulidd onstnte que lo mortiz y el pln de mortizión. (, puntos). b) Práti: Un empréstito está formdo por títulos de.000 euros d uno y tiene un durión de ños, efetuándose l mortizión por sorteos nules. El empréstito es del tipo upón ero, (los títulos no periben upones lo lrgo de su vid) y se mortiz on los intereses umuldos un tnto del % nul. Obtener rzondmente: ) Anulidd onstnte que lo mortiz. ( punto). 2) Número de títulos que se mortizn en el º sorteo y número de títulos vivos después de siete sorteos. ( punto). 3. Operiones de onstituión de pitl. Un person dese formr un pitl relizndo portiones nules, onstntes y prepgbles. Explir rzondmente ómo se obtienen: ) L untí () que se h de portr d ño. (0, puntos). b) El pitl onstituido después de trnsurridos s ños (C - s). (0, puntos). ) Ls uots de onstituión de d ño (Δ -,... Δ - n). (0, puntos). d) Apliión l so en que C n = , n = 8 ños; s = ños i = 4% nul. (, puntos).

6 Soluión Septiembre 08. ) Teorí b3) C n 0 C = C 4A = = C0 = n A A = = = / ño 4 0 0,06 Semestre : C i = (C A) i = ( ) = Sexto ño : 2 Semestre 2 : C i + A = =.00 2 N = A N = = 47.48,67 s n s i i = (+ 0,07) = 0,072 C = (n s) A C = (0 4) = s 4 J 0,06 U = (C N ) U = ( ,67) = 0.726,7 0,07 (m) m (2) s s s 4 Jm V = U + N V = U + N = 0.726, ,67 = 8.2,24 (m) (m) (2) (2) s s s ) Teorí n i 0,0 C N = = = = C (+ i) M M = = =.304, títulos C (+ i).000 (+ 0,0) C N (+ i) =.000 N (+ 0,0) = N = s 7 s n s i 7 7 0,0 7 Cn 3. ) Cn = S n i = S n i C = S b) s s i ) = = 0.43,37 ; C = 0.43,37 S 0,04 = 8.782,8 8 0,04 = 0.43,37 (+ 0,04) =.696,22 S

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

MORFOLOGIA DEL EXAMEN

MORFOLOGIA DEL EXAMEN MATEMÁTIAS FINANIERAS L. A. D. E. FINAL 1 MRFLGIA DEL El exmen es práctico compuesto por vrios problems de desrrollo con distintos prtdos. MATEMÁTIAS FINANIERAS L. A. D. E. FINAL 2 PRÁTIA 1) un inversor

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL II

E-CONTABILIDAD FINANCIERA: NIVEL II E-CONTABILIDAD FINANCIERA: NIVEL II MÓDULO 5: LA FINANCIACIÓN AJENA EN LA EMPRESA OBJETIVOS DEL MÓDULO: Conocer ls distints modliddes que tiene l empres pr finncirse con recursos jenos. Estudir otrs operciones

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN Contbilidd (RR.LL.) T7 OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN 1. - Considerciones generles 2. - Proveedores 3. - Acreedores. 4. - El Impuesto sobre el Vlor Añdido.

Más detalles

Índice. Presentación... Ejercicio n.º 6... Solución ejercicio n.º 6...

Índice. Presentación... Ejercicio n.º 6... Solución ejercicio n.º 6... Índice Presentción............................................................... Ejercicio n.º 1.............................................................. Solución ejercicio n.º 1....................................................

Más detalles

TEMA 9 - INMOVILIZADO

TEMA 9 - INMOVILIZADO TEMA 9 - INMOVILIZADO 1. Considerciones generles. 1.1. Descripción. 1.2. Clsificción. 1.3. Registro y reconocimiento. 1.4. Forms de dquisición. 1.5. Vlorción. 1.6. Bjs de inmovilizdo 2. Inmovilizdo mteril.

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1.

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1. CASOS TEMA 3 CASO PRÁCTICO Nº 1 El ptrimonio de l empres individul "ALFA", cuy ctividd es l comercilizción de los rtículos A, B y C, está integrdo por el siguiente conjunto de bienes derechos y obligciones,

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

EVALUACION DE PROYECTOS

EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS FINANCIACIÓN DE PROYECTOS: CREDITOS Elementos del crédito Principl del préstmo se puede frccionr en vrios desembolsos nules, generlmente

Más detalles

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias.

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias. Contbilidd (RR.LL.) T6 TEMA 6 EXISTENCIAS 1. Considerciones generles. 2. Vlorción de ls Existencis. 3. Registro de ls Existencis. Contbilidd (RR.LL.) T6 1.-CONSIDERACIONES GENERALES. Contbilidd (RR.LL.)

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2 Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.

Más detalles

Impuesto sobre Sucesiones y Donaciones

Impuesto sobre Sucesiones y Donaciones STE MODELO SE REPRODUCE A EFECTOS MERAMENTE INFORMATIVOS. PARA SU DESCARGA, IMPRESIÓN Y CUMPLIMENTACIÓN DEBE ACUDIRSE A LA WEB DE LA AGENCIA TRIBUTARIA Ageni Triutri Delegión de l A.E.A.T. u ofiin liquiddor

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Cálculo Diferencial. Álgebra y Cálculo. Curso Propedéutico. Diplomado en Administración de Riesgos. Expositor: Juan Francisco Islas

Cálculo Diferencial. Álgebra y Cálculo. Curso Propedéutico. Diplomado en Administración de Riesgos. Expositor: Juan Francisco Islas Curso Propedéutio Álgebr y Cálulo Diplomdo en Administrión de Riesgos Cálulo Diferenil Epositor: Jun Frniso Isls Monterrey, N.L. Julio 0 X Sumtori Sen dos vribles y que tomn los vlores X X 5 X X 8 Y Y

Más detalles

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización.

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización. FECHA EMISION 8 1 1992 ORGANO EMISOR INTERVENCIÓN GENERAL DE LA ADMINISTRACIÓN DEL ESTADO PUBLICACION BOLETÍN INFORMATIVO DE LA IGAE nº 5, ño 1992. TITULO CONSULTA Nº 8/1992, formuld por l Intervención

Más detalles

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2015/7 Confereni de los Estdos Prtes en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 3 de septiemre de 2015 Espñol Originl: inglés Sexto período de sesiones Sn Petersurgo

Más detalles

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO.

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci L Norm de Registro y

Más detalles

Casos prácticos resueltos

Casos prácticos resueltos Apéndice A Csos prácticos resueltos A.1. Introducción Hst hor, dentro de cd unidd temátic, se hn ido resolviendo supuestos concernientes l tem trtdo en el cpítulo. En éste, se pretenden desrrollr ejercicios

Más detalles

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar Los psivos finncieros. Problemátic contble de los débitos y prtids pgr Rquel Flórez López rquel.florez@unileon.es Universidd de León Fc. de Ciencis Económics y Empresriles Cmpus de Vegzn, s/n 24071 León

Más detalles

PLAN DE EMPRESA. Datos del solicitante Nombre o razón social Actividad Programa de ayuda solicitado Inversión total prevista (euros) Nº expediente

PLAN DE EMPRESA. Datos del solicitante Nombre o razón social Actividad Programa de ayuda solicitado Inversión total prevista (euros) Nº expediente PLN DE EMPRES Datos del solicitante Nombre o razón social ctividad Programa de ayuda solicitado Inversión total prevista (euros) Persona de contacto Nº expediente Teléfono 1 1. DESCRIPCIÓN GENERL DE L

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

TEMA 6. El proceso contable general: regularización y cierre

TEMA 6. El proceso contable general: regularización y cierre (Introducción l Contbilidd finncier, Ed. Pirámide 2008) TEMA 6 El proceso contble generl: regulrizción y cierre 1 (Introducción l Contbilidd finncier, Ed. Pirámide 2008) PROCESO (CICLO) CONTABLE GENERAL:

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA EMPRESA CRECESA Ejercicios Contbilidd Tem 4 CRECESA es un empres dedicd l comercilizción de plnts de interior. Se h constituido principios de 20XX y su Blnce finles de ese ño (expresdo en uniddes monetris)

Más detalles

En este empréstito hay que tener en cuenta que los cupones no son iguales y en consecuencia, tampoco los tipos de interés :

En este empréstito hay que tener en cuenta que los cupones no son iguales y en consecuencia, tampoco los tipos de interés : 1 1.- Sea un empréstito con las características siguientes : --Número de títulos emitidos : N 1 = 200.000. --Nominal de cada título : C = 1.000 --Duración del empréstito 5 años. --Cupones anuales y pospagables,

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

Ejemplo de un plan financiero

Ejemplo de un plan financiero Ejemplo de un pln finnciero 6 6.1 Enuncido Not: ls cntiddes son intenciondmente bjs pr fcilitr el cálculo. L señor J.G. posee un cpitl de 140 y lo port pr crer un pequeño comercio. Dese inugurr su estblecimiento

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

UNIDAD III VALOR DEL DINERO EN EL TIEMPO

UNIDAD III VALOR DEL DINERO EN EL TIEMPO UNIDAD III VALOR DEL DINERO EN EL TIEMPO (MATEMATICAS FINANCIERAS) Bibliogrfí recomendd Besley & Brighm, Fundmentos de dministrción finncier 12 edición, Cpítulo 6 O. Betncourt C. 1 NO ES LO MISMO UN BOLIVAR

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

Actividades de Contabilidad Financiera

Actividades de Contabilidad Financiera Actividdes de Contbilidd Finncier Mª del Consuelo Alonso Jr Elidi Villlb López PORTADA ACT. FINANCIERA.indd 1 05/06/2013 14:23:40 DIRIGIDO A LAS ASIGNATURAS DE 2º CFGM DE GESTIÓN ADMINISTRATIVA. MÓDULO

Más detalles

All Savers. All Savers. Alternate Funding. Planes de Salud Autoasegurados para Pequeñas Empresas

All Savers. All Savers. Alternate Funding. Planes de Salud Autoasegurados para Pequeñas Empresas Alternte Funding Plnes de Slud Autosegurdos pr Pequeñs Empress Pr Su Pequeñ Empres Plnes que no lo llevn l bncrrot L principl preocupción de los propietrios de pequeñs empress es el costo de l tención

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Financiación de activos (España)

Financiación de activos (España) Finncición de ctivos (Espñ) Oportunidd Desrrolle sus cpciddes utilizndo los últimos equipos Flexibilidd Gestione su tesorerí y cced l tecnologí que necesit Plnificción Gestione su inversión con costes

Más detalles

CUESTIONARIO PERFIL DEL INVERSIONISTA

CUESTIONARIO PERFIL DEL INVERSIONISTA I Expliión: BCR Soiedd Administrdor de Fondos de Inversión S.A., en delnte BCR SAFI y BCR Vlores S.A., hn diseñdo un uestionrio que le yudrá identifir su Perfil del Inversionist", en funión de su perepión

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO.

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. Gregorio Lbtut Serer. Profesor Titulr de l Universidd de Vlenci. http://gregorio-lbtut.blogspot.com.es/ Vmos presentr el trtmiento contble de los préstmos con

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

2008 ENE AMORTIZACIONES / REGISTRO CONTABLE AMORTIZACION CONTABLE DEL INMOVILIZADO. Índice 1.- Introducción general

2008 ENE AMORTIZACIONES / REGISTRO CONTABLE AMORTIZACION CONTABLE DEL INMOVILIZADO. Índice 1.- Introducción general AMORTIZACION CONTABLE DEL INMOVILIZADO Índice 1.- Introducción generl 1.- Introducción generl 2.- Introducción los sistems de mortizción 2.1.- Introducción y Concepto 2.2.- Definiciones 2.3.- Métodos de

Más detalles

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000 . Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

TEMA 5.2 : BONOS Y OBLIGACIONES DEL ESTADO

TEMA 5.2 : BONOS Y OBLIGACIONES DEL ESTADO MATEMATICA EMPRESA 1 TEMA 5.2 : BONOS Y OBLIGACIONES DEL ESTADO 5.2.1.- DEFINICION : Son instrumentos emitidos por El TESORO, para financiar el déficit público y, al igual que LAS LETRAS DEL TESORO, son

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

Tabulados básicos del módulo especial EAH 2011- Discapacidad (informe 1)

Tabulados básicos del módulo especial EAH 2011- Discapacidad (informe 1) R.I. 9000-2482 Tuldos ásicos del módulo especil EAH 20- Discpcidd (informe ) Al solo efecto de portr clridd en l difusión, se presentn los cudros con l denominción Persons con, tl como lo estlece Nciones

Más detalles

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS http://olmo.pnti.me.es/dms000 MATEMÁTICAS APLICADAS A CC.SS. I TEMA Y : LOS NÚMEROS RADICALES. LOGARITMOS HOJA Nº Feh de entreg: Viernes, de Oture de 00 Ejeriios. 7. Etre ftores y simplifi l máimo l epresión

Más detalles

CONTENIDO 1 INTRODUCCION... 1 2 IMPEDANCIA SERIE DE UNA RED... 5 2.1 RESISTENCIA DE LA LINEA... 6

CONTENIDO 1 INTRODUCCION... 1 2 IMPEDANCIA SERIE DE UNA RED... 5 2.1 RESISTENCIA DE LA LINEA... 6 MOEACIÓN E REES E TRANSMISIÓN E ENERGÍA EÉCTRICA rofesor Asoido ESCUEA E INGENIERÍA EÉCTRICA Y MECÁNICA SEE MEEÍN AGOSTO 004 CONTENIO ág. INTROUCCION... IMEANCIA SERIE E UNA RE... 5. RESISTENCIA E A INEA...

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

EXAMEN CONTABILIDAD FINANCIERA 13/06/2008. 1/ Clasificar los saldos siguientes con cálculo del capital social: CUENTAS IMPORTE SALDO DEUDOR

EXAMEN CONTABILIDAD FINANCIERA 13/06/2008. 1/ Clasificar los saldos siguientes con cálculo del capital social: CUENTAS IMPORTE SALDO DEUDOR 1 EXAMEN CONTABILIDAD FINANCIERA 13/06/2008 1/ Clsificr los sldos siguientes con cálculo del cpitl socil: CUENTAS IMPORTE SALDO DEUDOR SALDO. ACREEDOR Cpitl Socil Clientes operciones de fctoring Bncos

Más detalles

a b y se lee a es a b ; a se denomina antecedente y b consecuente.

a b y se lee a es a b ; a se denomina antecedente y b consecuente. 1 Centro Educcionl Sn Crlos de Argón. Dpto. de Mtemátic. Prof.: Ximen Gllegos H. Guí Nº 5 PSU NM 4: Proporcionlidd Nombre: Curso: Fech: Aprendizje Esperdo: Plnte y resuelve problems que requieren plicr

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1

Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1 Ejemplo de álulo de un portio por el método mtriil de l rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ Con el fin de resumir en un ejemplo el proeso seguir vmos resolver el pórtio de l figur. Ls

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

SUPUESTOS DE EMPRÉSTITOS (I)

SUPUESTOS DE EMPRÉSTITOS (I) - 1 - SUPUESTOS DE EMPRÉSTITOS (I) SUPUESTO 1 Títulos emitidos: 20.000. Nominal título: 500 euros. Cupón anual 5%. Sorteos anuales, amortizándose los títulos por el nominal. SUPUESTO 2 Títulos emitidos:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014

GUÍA DOCENTE DE DERECHO MERCANTIL. Curso 2013-2014 GUÍA DOCENTE DE DERECHO MERCANTIL Curso 2013-2014 1 TITULACIÓN: GRADO ADE GUÍA DE DOCENTE DE LA ASIGNATURA: DERECHO MERCANTIL Coordindor: Césr Tpis. I.- Identificción de l signtur: Tipo Mteri Periodo de

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

CASO PRÁCTICO DE APLICACIÓN 1: ELABORACIÓN DEL ESTADO DE CAMBIOS EN EL PATRIMONIO NETO

CASO PRÁCTICO DE APLICACIÓN 1: ELABORACIÓN DEL ESTADO DE CAMBIOS EN EL PATRIMONIO NETO 11. CUENTAS ANUALES Tl y como indic el prtdo 2.1 l citd NECA 8ª, el resultdo l ejercicio 200X- 1 berá trspsrse l column resultdos ejercicios nteriores. Pr mostrr dich reclsificción se berá empler el epígrfe

Más detalles