1. División de polinomios por monomios
|
|
- Ignacio Martín Bustamante
- hace 2 años
- Vistas:
Transcripción
1 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que aparecen en el dividendo, cada una con exponente igual a la diferencia del exponente del dividendo y del divisor. El cociente de un polinomio por un monomio (si es posible) es igual a un polinomio cuyos términos son los que se obtienen dividiendo cada término del polinomio por el monomio. no es un un polinomio
2 2.1 División entera de polinomios Dados los polinomios dividendo D(x) y divisor d(x) 0, didivir D(x) entre d(x) es encontrar dos polinomios cociente C(x) y resto R(x) tales que D(x) = d(x). C(x) + R(x) que se suele esquematizar de la siguiente manera: D(x) R(x) d(x) C(x) Si el resto R(x)= 0 la división se llama exacta, y se dice que el polinomio D(x) es divisible por d(x) o múltiplo de d(x); o que d(x) es un factor de D(x), o divisor de D(x).
3 2.2 Ejemplo de división entera La división entera de polinomios se realiza del mismo modo que la división entera de números naturales. Primer paso Segundo paso Tercer paso 3x 5 + 8x 4 11x 2 3x + 6 3x 2 +2x (3x 5 + 2x 4 x 4 4x 3 ) 3 6x 4 + 4x 3 11x 2 3x + 3x x 4 11x 2 3x + 6 3x 2 +2x (3x 5 + 2x 4 x 4 4x 3 + 6x ) 4x 3 11x 2 3x + 3 2x 6(6x + 4x 3 8x 2 ) 3x 2 3x + 3x 5 + 8x x 2 3x + 6 3x 2 +2x x x 2 1 (3x 5 + 2x 4 4x 3 ) 6x 4 4x 3 11x 2 3x + 6 (6x 4 4x 3 11x 2 ) 3x 2 3x + ( 3x 2 6 2x + x + 4) 2 cociente resto Cociente de los términos de mayor grado Cociente de los términos de mayor grado Cociente de los términos de mayor grado
4 3. División por x-a. Regla de Ruffini Para dividir un polinomio P = 2x 3 6x 2 4x + 12 entre x 2 se puede usar el siguiente esquema llamado Regla de Ruffini Coeficientes de P a 2 Se opera: se suma r se multiplica por a Hemos obtenido que: P = 2x 3 7x 2 4x + 12 = (2x 2 2x 8) (x 2) + ( 4)
5 4.1 Teorema del resto P(x) Al dividir P(x) entre x a obtenemos: R x a C(x) Es decir: P(x) = (x a) C(x) + R Luego P(a) = (a a) C(a) + R = R El resto de dividir un polinomio P(x) por (x a) es igual al valor numérico del polinomio P(x) para x = a; es decir R = P(a) El resto de dividir P(x) = 2x 3 7x 2 4x + 12 entre x 2 se puede obtener así: P(2) = = 4
6 4.2 Teorema del factor P(x) Si al dividir P(x) entre x a obtenemos: 0 x a C(x) Entonces: P(x) = (x a) C(x) + 0 = (x a) C(x) que indica que x a es un factor o divisor del polinomio P(x) Un polinomio P(x) tiene como factor x a si el valor numérico del polinomio para x = a es 0 Un número a es una raíz del polinomio P(x) si el valor numérico de P(x) para x = a es cero. a es raíz de P(x) P(a) = 0 Teorema fundamental del álgebra. Un polinomio de grado n tiene a lo sumo n raíces reales.
7 5. Raíces de un polinomio. Número de raíces Un número a es una raíz del polinomio P(x) si el valor numérico de P(x) en x=a es cero. O lo que es lo mismo, si al dividir el polinomio P(x) entre x-a la división es exacta, o sea, su resto es cero. a es raíz de P(x) P(a) = 0 Resto de (P(x):(x-a)) = 0 Un polinomio de grado n tiene a lo sumo n raíces reales. Este enunciado es conocido como el Teorema fundamental del álgebra.
8 6. Cálculo de las raíces enteras de un polinomio Si un polinomio de coeficientes enteros tiene raíces enteras, éstas son divisores del término independiente. Sea por ejemplo P(x) = ax 3 +bx 2 +cx+d Si r es una raíz (entera) de P(x) entonces ar 3 +br 2 +cr+d = 0 Entonces: r(ar 2 +br+c) = d ar br c r 2 d De aquí que se deduce que r divide a d ya que ar 2 +br+c es un número entero. Por tanto las raíces enteras de un polinomio han de ser buscadas entre los divisores del término independiente.
9 7.1 Factorización de polinomios Factorizar un polinomio es descomponerlo en dos o más polinomios, no constantes, tales que su producto sea el polinomio dado. Si el polinomio P(x) = a n x n + a n 1 x n a 1 x + a o ;tiene n raíces reales r 1, r 2,..., r n se demuestra que la descomposición factorial es: P(x) = a n (x r 1 ) (x r 2 )... (x r n ) Factorizar el polinomio P = x 4 + 3x 3 x 2 3x Se iguala el polinomio a cero: x 4 + 3x 3 x 2 3x = 0 Se saca factor común x: x(x 3 + 3x 2 x 3) = 0 Una raíz es x = 0 Se calculan las raíces de x 3 + 3x 2 x 3 = 0 Para ello probamos con los divisores positivos y negativos de 3 Obtenemos que 1, 1 y 3 son raíces de x 3 + 3x 2 x 3 = 0. Por tanto las raíces de P son: 0, 1, 1 y 3 La factorización de P es: (x 0)(x 1)(x + 1) (x + 4) = x(x 1)(x + 1)(x + 4)
10 7.2 Interpretación geométrica de la factorización de polinomios
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.
Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes
La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:
Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
Descomposición factorial de polinomios
Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de
Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes
4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El
Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid
Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Definición Un polinomio es una operación indicada de sumas y productos entre números y una variable x (indeterminada): P (x) = a n x n + a
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender
EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO
RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.
1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):
Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen
Polinomios y Fracciones Algebraicas
Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Polinomios y fracciones algebraicas
829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de
POLINOMIOS OPERACIONES CON MONOMIOS
POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas
( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:
Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x
Operatoria algebraica
Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
Polinomios. Antes de empezar
Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,
Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina
Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
Factorización de polinomios
Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes
Operaciones con polinomios
5 Operaciones con polinomios 5.1 Igualdades notables El cuadrado de una suma es igual al cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo: (a + b) a + ab + b El
Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x
S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes
EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
14 Expresiones algebraicas. Polinomios
PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,
PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor
PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados
6 División de polinomios. Raíces
6 División de polinomios. Raíces ACTIVIDADES INICIALES 6.I. 6.II. Si quieres ampliar una foto de x por y píxeles a 4y por x píxeles, cuántos píxeles nuevos tendrás que rellenar? 4y x x y = 6xy píxeles
45 EJERCICIOS de POLINOMIOS 4º ESO opc. B
EJERCICIOS de POLINOMIOS º ESO opc. B 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 c) P(x)x +x+, para x d) P(x)-x -x-, para x-
Repasando lo aprendido...con una propuesta autoinstruccional
Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía
El anillo de polinomios sobre un cuerpo
Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es
Capitulo 4. Polinomios
Capitulo 4. Polinomios Objetivo. El alumno usará y analizará los conceptos del álgebra de los polinomios y sus propiedades para obtener raíces. Contenido. 4.1 Definición de polinomio. Grado de un polinomio.
Polinomios y fracciones algebraicas
0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica
a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)
Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,
Las expresiones algebraicas se clasifican en racionales e irracionales.
1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,
1. Suma y producto de polinomios. Propiedades
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
2Soluciones a las actividades de cada epígrafe PÁGINA 42
PÁGINA 42 Pág. 20 cm r r l l 20 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones. Para hacerlo necesita saber su volumen
Operaciones combinadas con polinomios
ExMa-MA05. Operaciones combinadas W. Poveda Operaciones combinadas con polinomios Objetivos. Aplicar las leyes de potencias.. Aplicar las propiedades de la suma y el producto.. Aplicar los productos notables
Polinomios y Ecuaciones
Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
3 POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,
43 EJERCICIOS de POLINOMIOS
EJERCICIOS de POLINOMIOS 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 (Soluc: a) ; b) 0; c) 8; d) -) Ejercicios libro: pág. 1:
UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez
UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES
Multiplicación. Adición. Sustracción
bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...
Operaciones con polinomios
Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)
Ejercicios resueltos. Bloque 2. Álgebra Tema 1 Polinomios. 2.1-1 Realiza la suma de los siguientes polinomios: Solución. Ejercicios resueltos 1
Ejercicios resueltos Bloque. Álgebra Tema 1 Polinomios.1-1 Realiza la suma de los siguientes polinomios: 5 p 6 7 6 q 5 5 p 9 1 10 5 q 5 1 15 p 5 6 8 q p 1 q 6 8 r 1 6 5 p 7 6 6 5 q 5 6 5 r 6 8 8 p 711
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o
(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
martilloatomico@gmail.com
Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:
UNIDAD 3: ANILLOS DE POLINOMIOS
UNIDAD 3: ANILLOS DE POLINOMIOS En nuestra educación matemática se nos introdujo muy pronto -generalmente en los primeros años de secundariaal estudio de los polinomios. Durante una temporada que parecía
modulodematematica@gmail.com https://www.facebook.com/groups/modulomat
modulodematematica@gmail.com https://www.facebook.com/groups/modulomat Matemática Ingreso 0 UADER Facultad de Ciencias de la Gestión Estimado Estudiante: El material que presentamos a continuación es un
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta
5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma
f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0
FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables
OPERACIONES CON POLINOMIOS
OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,
5 DIVISIÓN DE POLINOMIOS. RAÍCES
EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
INSTITUTO VALLADOLID PREPARATORIA página 57
INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es
POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.
Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO
Operaciones con Fracciones Aritméticas
Aritméticas Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: el mínimo común múltiplo de dos o más números enteros : Contenido Discutiremos: el mínimo común múltiplo
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
Suma, diferencia y producto de polinomios
I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.
Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá
Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i
Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.
Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al
Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo
POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:
1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente
Propiedades de les desigualdades.
Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0
Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado
5 Expresiones algebraicas
8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras
Factorización de polinomios
ExMa-MA0125. Factorización de polinomios W. Poveda 1 Factorización de polinomios Objetivos 1. Factorizar completamente polinomios mediante los métodos de factor común, diferencia de cuadrados, diferencia
INSTITUTO VALLADOLID PREPARATORIA página 37
INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
Congruencias de Grado Superior
Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que