UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez"

Transcripción

1 UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1

2 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES CON MONOMIOS Y POLINOMIOS Leyes de Exponentes Exponentes Fraccionarios Logaritmos y sus propiedades Valor numérico de una expresión algebraica 2

3 Presentación El Álgebra es la rama de las matemáticas en la que se usan letras para presentar relaciones aritméticas. Al igual que en la Aritmética, las operaciones fundamentales del Álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La Aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado de lado la hipotenusa es igual a la suma de las áreas de los cuadrados de lado los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que = 5 2 ). El Álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a 2 + b 2 = c 2 El Álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El Álgebra moderna ha evolucionado desde el Álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al Álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, una buena definición de Álgebra es la que dice que el Álgebra es el idioma de las matemáticas. (Encarta, 2006) En mi experiencia personal, te podría decir que el Álgebra se emplea en todos los campos del conocimiento. Posiblemente y de forma cotidiana, no la aplicamos tal y como la estudiamos, es decir, cuando vamos al supermercado, o debemos abordar un transporte, o tenemos que ir a pagar los servicios, difícilmente la solución del Teorema de Pitágoras c 2 = a 2 + b 2 podría ayudarnos a resolver tales problemas. No obstante, cuando se trata de formalizar una situación, esto es, expresarla en lenguaje matemático, es cuando el lenguaje que empleamos es el algebraico; y al formalizar situaciones del mundo real, por ejemplo situaciones que involucran distancias, rutas, superficies, volúmenes, 3

4 diferencias, incrementos, proporciones etc, se van desarrollando estructuras internas de pensamiento que son capaces de abstraer de la realidad las variables importantes que deben considerarse para tomar una decisión. Así por ejemplo, cuando yo me pregunto Cuál es la ruta más corta para ir al supermercado y de ahí pasar a pagar los servicios de agua, luz y teléfono ahorrando tiempo y acortando distancias? No dibujo en un papel un croquis (lo cual podría hacerse con algún fin de formalización), ni dibujo el triángulo rectángulo para calcular las distancias de los puntos aplicando la fórmula de la distancia, sino que internamente empiezan a trabajar las estructuras de pensamiento que he aprendido sobre Geometría, Álgebra y Trigonometría y entonces mi cerebro es capaz de abstraer la realidad y proporcionarme un algoritmo (la secuencia de pasos más eficiente) para que yo recorra todos los lugares, haga mis pagos y mis compras en el orden más adecuado y en el menor tiempo posible. Es tan solo una forma simple y llana de cómo el Álgebra tiene una aplicación práctica en la vida cotidiana. Claro que hay una infinidad de aplicaciones y ten por seguro que en cualquier área de conocimiento que estudies o a la que te dediques, la emplearás continua y necesariamente. 4

5 1.1 ÁLGEBRA (CONCEPTOS BÁSICOS). Expresiones algebraicas Trabajar en Álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras. Una expresión algebraica es una combinación de letras y números ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas nos permiten, por ejemplo, hallar áreas y volúmenes: Longitud de la circunferencia: L = 2r, donde r es el radio de la circunferencia. Área del cuadrado: S = l 2, donde l es el lado del cuadrado. Volumen del cubo: V = a 3, donde a es la arista del cubo. Ejemplos de traducción de proposiciones verbales a expresiones algebraicas El doble o duplo de un número: 2x El triple de un número: 3x El cuádruplo de un número: 4x La mitad de un número: x/2. Un tercio de un número: x/3. Un cuarto de un número: x/4. Un número es proporcional a 2, 3, 4,...: 2x, 3x, 4x,.. Un número al cuadrado: x 2 Un número al cubo: x 3 Dos números consecutivos: x y x + 1. Dos números consecutivos pares: 2x y 2x + 2. Dos números consecutivos impares: 2x + 1 y 2x

6 Ejemplos de traducción de proposiciones verbales a expresiones algebraicas Descomponer 24 en dos partes: x y 24 x. La suma de dos números es 24: x y 24 x. La diferencia de dos números es 24: x y 24 x. El producto de dos números es 24: x y 24/x. El cociente de dos números es 24: x y 24 x. Un número incrementado en 8: x + 8. Dos más que tres veces un número: 3x + 2. Cuatro menos que seis veces un número: 6x 4. Doce veces la suma de un número y 5: 12(x + 5). Cinco menos que dos veces la distancia, d: 2d 5. El seis por ciento de un número: 0.06c. El costo de un artículo incrementado en un 7% de impuestos: c c. El costo de un artículo reducido en 35%: c 0.35c. Un número y el número disminuido en 10%: x 0.10x. La edad de Luis dentro de seis años: x + 6. La velocidad del segundo tren es 1.8 veces la velocidad del primero: 1.8v. David y su hermano comparten $90: 90 x. A Tomás le lleva tres horas más que a Roberta terminar la tarea: t + 3. Hilda tiene $5 más que dos veces el monto de dinero que tiene Héctor: 2x + 5. La longitud de una mesa es 7 unidades menos que 3 veces su ancho: 3w 7. La suma de dos números es 19: 19 x. Una tabla de diez metros cortada en dos pedazos: x 10. $10,000 compartidos por dos personas:: 10,000 x. Los últimos tres ejemplos podrían no ser muy obvios. Considera La suma de dos números es 10. Cuando sumamos x y 10 x obtenemos x + (10 x) = 10. Otro ejemplo: Cuando una tabla de 10 metros se corta en dos tramos serán x y 10 x. Por ejemplo, si un tramo es de 3 metros, el otro debe ser de 10 3 = 7 metros. 6

7 Tipos de expresiones algebraicas Monomio.- Expresión algebraica formada por un solo término. Ejemplo: 2x 2 Tipos de expresiones algebraicas Binomio Un binomio es una expresión algebraica formada por dos términos. Ejemplo: 2x 2 + y 3 Trinomio Un trinomio es una expresión algebraica formada por tres términos. Ejemplo: 2x 2 + 3y 3-2x 2 Monomios Otra definición de un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: 2x 2 y 3 z Polinomio Un polinomio es una expresión algebraica formada por más de un término. Ejemplos: 2x 2 + y 3 + 2x 2 + 5y 2-2x 2 Partes de un monomio Partes de un monomio Coeficiente. El coeficiente del monomio es el número que aparece multiplicando a las variables. Parte literal La parte literal está constituida por las letras y sus exponentes. Grado El grado de un monomio es la suma de todos los exponentes de las letras o variables. El grado de 2x 2 y 3 z es: = 6 7

8 Monomios semejantes Dos monomios son semejantes cuando tienen la misma parte literal. 2x 2 y 3 z es semejante a 5x 2 y 3 z Polinomios Un polinomio es una expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n a n - 2 x n a 1 x 1 + a 0 Siendo a n, a n a 1, a o números, llamados coeficientes. n un número natural. x la variable o indeterminada. a n es el coeficiente principal. a o es el término independiente. Grado de un polinomio El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x. Clasificación de un polinomio según su grado Primer grado (o grado 1) P(x) = 3x + 2 Segundo grado (o grado 2) P(x) = 2x 2 + 3x + 2 Tercer grado (o grado 3) P(x) = x 3-2x 2 + 3x + 2 8

9 Tipos de polinomios Polinomio nulo Es aquel polinomio que tiene todos sus coeficientes nulos. Polinomio homogéneo Es aquel polinomio en el todos sus términos o monomios son del mismo grado. Ejemplo: P(x) = 2x 2 + 3xy Polinomio heterogéneo Es aquel polinomio en el que sus términos no son del miso grado. Ejemplo: P(x) = 2x 3 + 3x 2-3 Clasificación de polinomios Polinomio completo Es aquel polinomio que tiene todos los términos desde el término independiente hasta el término de mayor grado. Ejemplo: P(x) = 2x 3 + 3x 2 + 5x - 3 Polinomio ordenado Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado. Ejemplo: P(x) = 2x 3 + 5x - 3 Polinomios iguales Dos polinomios son iguales si verifican: 1) Los dos polinomios tienen el mismo grado. 2) Los coeficientes de los términos del mismo grado son iguales. P(x) = 2x 3 + 5x - 3 Q(x) = 5x x 3 Polinomios semejantes Dos polinomios son semejantes si verifican que tienen la misma parte literal. P(x) = 2x 3 + 5x 3 Q(x) = 5x 3 2x 7 Para ver el glosario relativo a los conceptos algebraicos más comunes, descarga el archivo Glosario de Álgebra.doc que encontrarás en la sección de Herramientas del curso/glosario. 9

10 1.2 SUMA DE MONOMIOS, SUMA DE POLINOMIOS, SUMA DE VARIOS POLINOMIOS CON COEFICIENTES ENTEROS Y FRACCIONARIOS. La suma o adición es una operación que tiene por objeto reunir dos o más expresiones algebraicas (sumandos) en una sola expresión algebraica (suma). Así, la suma de a y b es a + b, porque esta última expresión es la reunión de las dos expresiones algebraicas dadas: a y b. La suma de a y b es a b, porque esta última expresión es la reunión de las dos expresiones algebraicas dadas: a y b. Regla general para sumar Para sumar dos o más expresiones algebraicas se escriben unas a continuación de las otras con sus propios signos y se reducen los términos semejantes si los hay. 1) Sumar 5a, 6b y 8c. Los escribimos unos a continuación de otros con sus propios signos, y como 5a = +5a, 6b = +6b y 8c = +8c la suma será: 5a + 6b + 8c Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x n 2x 2 y 3 z + 3x 2 y 3 z = 5x 2 y 3 z Si los monomios no son semejantes se obtiene un polinomio. 2x 2 y 3 + 3x 2 y 3 z 10

11 Suma de polinomios Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado. P(x) = 2x 3 + 5x - 3 Q(x) = 4x - 3x 2 + 2x 3 1.-Ordenamos los polinomios, si no lo están. Q(x) = 2x 3-3x 2 + 4x P(x) + Q(x) = (2x 3 + 5x - 3) + (2x 3-3x 2 + 4x) 2.-Agrupamos los monomios del mismo grado. P(x) + Q(x) = 2x 3 + 2x 3-3 x 2 + 5x + 4x Sumamos los monomios semejantes. P(x) + Q(x) = 4x 3-3x 2 + 9x - 3 Otro ejemplo. Para sumar P(x) = 3x 4 5x 2 + 7x con Q(x) = x 3 + 2x 2 11x + 3 procedemos de la siguiente forma: La adición de polinomios cumple las propiedades asociativa y conmutativa. El polinomio cero es el número 0, pues sumado con cualquier polinomio no lo altera, por lo que es el elemento neutro de la suma. Todo polinomio tiene un opuesto, que se obtiene cambiando el signo de todos sus monomios. Si a un polinomio le sumamos su opuesto se obtiene el número 0 (polinomio neutro). 1.3 RESTA DE MONOMIOS Y RESTA DE POLINOMIOS La resta de polinomios consiste en sumar el opuesto del sustraendo. De manera formal, se llama diferencia de dos polinomios, P(x) - Q(x), al resultado de sumarle a P(x) el opuesto de Q(x). 11

12 Ejemplo: P(x) Q(x) = (2x 3 + 5x - 3) (2x 3-3x 2 + 4x) P(x) Q(x) = 2x 3 + 5x - 3 2x 3 + 3x 2 4x P(x) Q(x) = 2x 3 2x 3 + 3x 2 + 5x 4x - 3 P(x) Q(x) = 3x 2 + x MULTIPLICACIÓN DE MONOMIOS Y POLINOMIOS. Producto de un número por un monomio El producto de un número por un monomio es otro monomio semejante cuyo coeficiente es el producto del coeficiente de monomio por el número. 5 2x 2 y 3 z = 10x 2 y 3 z Multiplicación de monomios La multiplicación de monomios es otro monomio que tiene por coeficiente el producto de los coeficientes y cuya parte literal se obtiene multiplicando las potencias que tenga la misma base. ax n bx m = (a b)x n +m 5x 2 y 3 z 2 y 2 z 2 = 10 x 2 y 5 z 3 Multiplicación de un número por un polinomio Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número. 3 ( 2x 3-3 x 2 + 4x - 2) = 6x 3-9x x - 6 Multiplicación de un monomio por un polinomio Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio. 12

13 3 x 2 (2x 3-3x 2 + 4x - 2) = 6x 5-9x x 3-6x 2 Multiplicación de polinomios P(x) = 2x 2-3 Q(x) = 2x 3-3x 2 + 4x Se multiplica cada monomio del primer polinomio por todos los elementos del segundo polinomio. P(x) Q(x) = (2x 2-3) (2x 3-3x 2 + 4x) = = 4x 5 6x 4 + 8x 3 6x 3 + 9x 2 12x = Se suman los monomios del mismo grado. = 4x 5 6x 4 + 2x 3 + 9x 2 12x Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican. También podemos multiplicar polinomios de siguiente modo: Ejemplo: Efectuar de dos modos distintos la multiplicación de los polinomios: P(x) = 3x 4 + 5x 3-2x + 3 y Q(x) = 2x 2 - x +3 Modo 1 P(x) Q(x) = (3x 4 + 5x 3-2x + 3) (2x 2 - x +3) = = - 3x 5 + 9x x 5-5x x 3-4x 3 + 2x 2-6x + 6x 2-3x + 9 = = 6x 6 + 7x 5 + 4x x 3 + 8x 2-9x + 9 Modo 2 13

14 Un ejemplo más del modo 2: Para multiplicar los polinomios P(x) = 3x 4-5x y Q(x) = x 3 + 2x procedemos de la siguiente forma, acomodando primero los polinomios conforme al modo 2: La multiplicación de polinomios cumple las propiedades asociativa y conmutativa. El polinomio unidad es el número 1, pues multiplicando por cualquier polinomio no lo altera. Por tanto, es el elemento neutro del producto. No existe polinomio inverso de otro, es decir, en el conjunto de los polinomios con una indeterminada no hay elemento inverso. La multiplicación de polinomios es distributiva respecto a la adición. Cualesquiera que sean los polinomios P(x), Q(x), R(x), se verifica que: P(x) [Q(x) + R(x)] = P(x) Q(x) + P(x) R(x) 14

15 1.5 DIVISIÓN DE MONOMIOS Y POLINOMIOS. (DIVISIÓN SINTÉTICA Y TEOREMA DEL RESIDUO) División de monomios Sólo se pueden dividir monomios con la misma parte literal y con el grado del dividendo mayor o igual que el grado de la variable correspondiente del divisor. La división de monomios es otro monomio que tiene por coeficiente el cociente de los coeficientes y cuya parte literal se obtiene dividiendo las potencias que tenga la misma base. ax n / bx m = (a / b)x n m Si el grado del divisor es mayor, obtenemos una fracción algebraica. División de polinomios Se llama división entera de un polinomio P(x) de grado m entre otro Q(x) de grado n al proceso por el cual se obtienen otros dos polinomios C(x) y R(x) ) que cumplen las siguientes condiciones: P(x) = Q(x) C(x) + R(x) grado de C(x) = m - n; grado de R(x) n - 1 Los polinomios P, Q, C y R se llaman, respectivamente, dividendo, divisor, cociente y resto. 15

16 Ejemplo: Resolver la división de polinomios: P(x) = 2x 5 + 2x 3 x - 8 Q(x) = 3x 2 2 x + 1 P(x) : Q(x) Paso 1.-A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan. Paso 2.-A la derecha situamos el divisor dentro de una caja. Paso 3.-Dividimos el primer monomio del dividendo entre el primer monomio del divisor. x 5 / x 2 = x 3 Paso 4.-Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo: Paso 5.-Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo. 2x 4 / x 2 = 2 x 2 16

17 Procedemos igual que antes. 5x 3 / x 2 = 5 x Volvemos a hacer las mismas operaciones. 8x 2 / x 2 = 8 10x 16 es el resto,, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo. x 3 +2x 2 +5x+8 es el cociente. Otro ejemplo concreto: Al dividir P(x) = 5x 3 + 7x 2-3 y Q(x) = x 2 + 2x - 1: Se obtiene que el cociente es C(x) = 5x 3, y el resto, R(x) = 11x 6. 17

18 La descripción del proceso es la siguiente: 1.-El primer monomio del cociente se obtiene dividiendo el monomio de mayor grado del numerador por el del denominador: 5x 3 /x 2 = 5x. 2.-Se multiplica 5x por el divisor y el resultado se resta del dividendo. 3.-Una vez obtenida la diferencia se inicia el proceso como si ésta (la diferencia obtenida) fuera ahora el dividendo. 4.-El proceso concluye cuando la diferencia es de grado inferior al divisor. Cuando el resto de la división es cero, entonces se dice que la división es exacta y que el dividendo, P(x), es múltiplo del divisor, o bien que P(x) es divisible por Q(x,) y se cumple la relación: P(x) = Q(x) C(x) Teorema del resto El resto de la división de un polinomio P(x) entre un polinomio de la forma (x - a) es precisamente el valor de dicho polinomio cuando x vale a. Al dividir un polinomio P(x) por x - a, puesto que el divisor es un polinomio de grado 1, el resto es, necesariamente, de grado cero (es decir, es un número). El teorema del resto afirma que el resto de dividir un polinomio P(x) por x - a es, precisamente, el valor del polinomio cuando x vale a, es decir, R = P(a), pues como P(x) = (x - a)c(x) + R, al darle a x el valor a se obtiene: P(a) = (a - a)c(a) + R = 0 + R = R 18

19 Ejemplo de aplicación: Calcular por el teorema del resto el resto de la división: P(x) / Q(x) P(x)= x 4 3x 2 +2 Q(x)= x 3 Hacemos la división sintética para saber cuánto va a quedar como resto. P(3) = = = 56 Como el divisor fue (x-3), sustituimos el valor de 3 en el polinomio original, o sea, el dividendo P(x)= x 4 3x 2 +2 y obtuvimos el valor de 56 que es el mismo residuo encontrado por división sintética. 19

20 1.6 LEYES DE EXPONENTES PARA EXPONENTES ENTEROS. Definición de exponente El exponente de un número dice cuántas veces se multiplica el número. En el ejemplo gráfico: 8 2 = 8 8 = 64. En palabras: 8 2 se puede leer "8 a la segunda potencia", "8 a la potencia 2" o simplemente "8 al cuadrado" Otro ejemplo: 7 x 7 x 7 x 7 = 74, que se lee 7 elevado a la cuarta, el exponente es el número 4 (cuatro). Ahora bien las leyes de exponentes son las reglas de tratamientos de este tipo de operación. 20

21 La ley que dice que x m x n = x m+n En x m x n, Cuántas veces multiplicas "x"? Respuesta: primero "m" veces, después otras "n" veces, en total "m+n" veces. Ejemplo: x 2 x 3 = (xx) (xxx) = xxxxx = x 5 Así que x 2 x 3 = x (2+3) = x 5 La ley que dice que x m /x n = x m-n Como en el ejemplo anterior, cuántas veces multiplicas "x"? Respuesta: "m" veces, después reduce eso "n" veces (porque estás dividiendo), en total "m-n" veces. Ejemplo: x 4-2 = x 4 /x 2 = (xxxx) / (xx) = xx = x 2 (Recuerda que x/x = 1, así que cada vez que hay una x "sobre la línea" y una "bajo la línea" puedes cancelarlas.) Esta ley también te muestra por qué x 0 =1 : Ejemplo: x 2 /x 2 = x 2-2 = x 0 =1 La ley que dice que (x m ) n = x mn Primero multiplicas x "m" veces. Después tienes que hacer eso "n" veces, en total m n veces. Ejemplo: (x 3 ) 4 = (xxx) 4 = (xxx)(xxx)(xxx)(xxx) = xxxxxxxxxxxx = x 12 Así que (x 3 ) 4 = x 3 4 = x 12 La ley que dice que (xy) n = x n y n Para ver cómo funciona, sólo piensa en ordenar las "x"s y las "y"s como en este ejemplo: Ejemplo: (xy) 3 = (xy)(xy)(xy) = xyxyxy = xxxyyy = (xxx)(yyy) = x 3 y 3 21

22 La ley que dice que (x/y) n = x n /y n Parecido al ejemplo anterior, sólo ordena las "x"s y las "y"s Ejemplo: (x/y) 3 = (x/y)(x/y)(x/y) = (xxx)/(yyy) = x 3 /y 3 La ley que dice que Para entenderlo, sólo recuerda de las fracciones que n/m = n (1/m): Ejemplo: Y eso es todo. Bueno, sólo una cosa más... Qué pasa si x = 0, es decir, si la base es igual a 0? El extraño caso de 0 0 Hay dos argumentos diferentes sobre el valor correcto. 0 0 podría ser 1, o quizás 0, así que alguna gente dice que es "indeterminado": 22

23 1.7 EXPONENTES FRACCIONARIOS. Los exponentes fraccionarios, como el que vemos en el siguiente monomio: x ½ también se llaman "radicales" En el ejemplo de 8 2, el exponente es "2", pero y si fuera "½"? Cómo funcionaría? Pregunta: Qué es x ½? Respuesta: x ½ = la raíz cuadrada de x (o sea x ½ = x ) Por qué? Porque si calculas el cuadrado de x ½ tienes: (x ½ ) 2 = x 1 = x Para entenderlo más claramente, sigue esta explicación de dos pasos: 1 Primero, hay una regla general: (x m ) n = x m n (Porque primero multiplicas x "m" veces, después tienes que hacer eso "n" veces, en total m n veces) Ejemplo: (x 2 ) 3 = (xx) 3 = (xx)(xx)(xx) = xxxxxx = x 6 Así que (x 2 ) 3 = x 2 3 = x 6 2 Ahora, vemos qué pasa cuando hacemos el cuadrado de x ½ : (x ½ ) 2 = x ½ 2 = x 1 = x Cuando hacemos el cuadrado de x ½ sale x, así x ½ tiene que ser la raíz cuadrada de x. Probemos con otra fracción. Ahora con un exponente de un cuarto ¼: Qué es x ¼? Veamos: (x ¼ ) 4 = x ¼ 4 = x 1 = x Entonces, qué valor se puede multiplicar 4 veces para tener x? Respuesta: La raíz cuarta de x. Así que x ¼ = la raíz cuarta de x = 4 x 23

24 Regla general: Un exponente fraccionario como 1/n significa hacer la raíz n-ésima: De hecho podemos hacer una regla general: Ejemplo: Cuánto es 27 1/3? Respuesta: 27 1/3 = 3 27 = 3 Qué pasa con fracciones más complicadas? Las fracciones más complicadas se pueden separar en dos partes: Una parte con un número entero, y Una parte con una fracción del tipo 1/n Para entender eso, sólo recuerda que m/n = m (1/n): Así que tenemos esto: Un exponente fraccionario como m/n significa haz la potencia m-ésima, después haz la raíz n-ésima Ejemplo: Cuánto es 4 3/2? Respuesta: 4 3/2 = 4 3 (1/2) 3 = ( ) 4 = (4 4 4) = (64) = LOGARITMOS Y SUS PROPIEDADES. 24

25 Antes de abordar este tema, hagamos un repaso acerca de las Potencias y sus propiedades. 25

26 Ahora sí, comencemos nuestro estudio sobre los logaritmos: 26

27 27

28 28

29 1.9 VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA. Cristina tiene problemas de riñón y el médico le ha recomendado que tome 2 litros de agua al día. Para cumplir la recomendación del médico, Cristina quiere conocer la capacidad que tienen los vasos de su casa, y así podrá saber cuántos tendrá que beberse al día. Sus vasos tienen forma cilíndrica, con lo que utiliza la fórmula del volumen del cilindro para calcular su capacidad. Esta fórmula es una expresión matemática que no sólo tiene números, también incluye letras que representan el radio del círculo base y la altura del cilindro. La fórmula del volumen del cilindro es una expresión algebraica. Para calcular el volumen del vaso, Cristina mide el radio del círculo base, para lo que mide el diámetro y lo divide entre 2, y la altura del vaso, todo en centímetros. 29

30 Luego sustituye estos valores en la fórmula y calcula el volumen en centímetros cúbicos. Lo que ha hecho Cristina es calcular el valor numérico de la expresión algebraica que se utiliza para calcular el volumen de un cilindro. Como 2 litros equivalen a centímetros cúbicos, Cristina divide entre 294'5 para saber cuántos vasos se tiene que beber, con lo que al final decide que se beberá 7 vasos al día. En matemáticas utilizamos letras en lugar de números en muchas ocasiones: Para expresar y manejar un número que no conocemos. Para expresar fórmulas con las que obtenemos un resultado, en función de los valores numéricos que les demos a esas letras. Para generalizar relaciones y propiedades numéricas. Con las letras que sustituyen a los números podemos realizar las mismas operaciones que con los números 30

31 En resumen: Una expresión algebraica está formada por números y letras unidos mediante operaciones matemáticas. El valor numérico de una expresión algebraica es el valor que obtenemos cuando sustituimos las letras por números y hacemos las operaciones que indica la expresión. Ejemplos finales: L(r) = 2 r r = 5 cm. L (5)= 2 5 = 10 cm S(l) = l 2 l = 5 cm A(5) = 5 2 = 25 cm 2 V(a) = a 3 a = 5 cm V(5) = 5 3 = 125 cm 3 31

32 REFERENCIAS Fernández, J.C. (2008) Vitutor.com sitio web de libre acceso, y con contenidos gratuitos para todos sus usuarios. Consultado en Mayo 23, 2009 en García, M.J. (2006) Matemáticas aplicadas a las Ciencias Sociales Consultado en Mayo 30, 2009 en Micronet. Enciclopedia Junior Micronet. Enciclopedia multimedia. Micronet. Microsoft (2006). Microsoft Encarta (2006). Biblioteca Premium. Microsoft, Corporation. Pierce, R. (2008) "Menú de Álgebra" Disfruta Las Matemáticas. Consultado en Mayo 23, 2009 en FORTEC, Formación y Tecnología S.L. (2009) Consultado en Julio 28, 2009 en 32

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

Lenguaje Algebraico Ing. Gerardo Sarmiento

Lenguaje Algebraico Ing. Gerardo Sarmiento Agosto 2009 Unidad 1 LENGUAJE ALGEBRAICO 1.1.1 DEFINICION DE ALGEBRA 1.1.2 SIMBOLOS Y LENGUAJE 1.1.3 EXPRESIONES ALGEBRAICAS Lenguaje Común y Lenguaje Algebráico 1.1.4 NOTACION ALGEBRAICA Elementos de

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Polinomios. Objetivos. Antes de empezar

Polinomios. Objetivos. Antes de empezar 2 Polinomios Objetivos En esta quincena aprenderás a: Manejar las expresiones algebraicas y calcular su valor numérico. Reconocer los polinomios y su grado. Sumar, restar y multiplicar polinomios. Sacar

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

Multiplicación. Adición. Sustracción

Multiplicación. Adición. Sustracción bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat modulodematematica@gmail.com https://www.facebook.com/groups/modulomat Matemática Ingreso 0 UADER Facultad de Ciencias de la Gestión Estimado Estudiante: El material que presentamos a continuación es un

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

MATERIAL DIDACTICO DE MATEMÁTICAS

MATERIAL DIDACTICO DE MATEMÁTICAS MATERIAL DIDACTICO DE MATEMÁTICAS Matemáticas 1 INSTITUTO TECNOLÓGICO DE ROQUE MATERIAL DIDACTICO DE MATEMÁTICAS DEPARTAMENTO CIENCIAS BÁSICAS ELABORARON: ERIKA RAMOS OJEDA RAQUEL ALDACO SEGOVIANO JORGE

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

Expresiones algebraicas

Expresiones algebraicas 5 Expresiones algebraicas Objetivos Crear expresiones algebraicas a partir de un enunciado. Hallar el valor numérico de una expresión algebraica. Clasificar una expresión algebraica como monomio, binomio,...

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales 7 Potenciación 7 Radicación 7 Propiedades de los números

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

Unidad didáctica: Polinomios con WIRIS

Unidad didáctica: Polinomios con WIRIS Unidad didáctica: Polinomios con WIRIS Nivel: 3º ESO Objetivos: Utilizar correctamente las expresiones algebraicas y hallar su valor numérico usando WIRIS Realizar con soltura las operaciones con polinomios:

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

Capítulo 2 Números Reales

Capítulo 2 Números Reales Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,

Más detalles

RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios

RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios LENGUAJE ALGEBRAICO A. Expresa en lenguaje algebraico RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios 1) Un número cualquiera. 2) Dos números cualesquiera. 3) Dos números consecutivos.

Más detalles

SERVICIO NACIONAL DE APRENDIZAJE SENA

SERVICIO NACIONAL DE APRENDIZAJE SENA SERVICIO NACIONAL DE APRENDIZAJE SENA GUÍA DE APRENDIZAJE SISTEMA INTEGRADO DE GESTIÓN Proceso Gestión de la Formación Profesional Integral Procedimiento Ejecución de la Formación Profesional Integral

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

INSTITUTO TECNOLÓGICO DE CHETUMAL

INSTITUTO TECNOLÓGICO DE CHETUMAL INSTITUTO TECNOLÓGICO DE CHETUMAL CUADERNILLO DEL CURSO DE NIVELACIÓN 014 PARA LAS CARRERAS DE: INGENIERÍA CIVIL INGENIERÍA ELÉCTIRCA INGENIERÍA EN SISTEMAS COMPUTACIONALES INGENIERÍA EN TECNOLOGIAS DE

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles