PÁGINA 77 PARA EMPEZAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PÁGINA 77 PARA EMPEZAR"

Transcripción

1 Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos por la cosa y por la cosa. Epresa algebraicamente (al estilo actual) este enunciado y averigua, tanteando, cuánto vale la cosa. A la cosa vamos a llamarla. Entonces: Si a 16 veces la cosa le sumamos 5 equivale a Obtenemos el mismo resultado que equivale a =. Si multiplicamos por la cosa y por la cosa equivale a. Uniendo las tres frases, tenemos que: = = Si utilizamos una calculadora y vamos probando números, podemos llegar a descubrir que las soluciones son 7 y 5. Traducción al lenguaje algebraico Y ahora, sin recurrir a la cosa, asigna a cada enunciado de la izquierda la epresión que le corresponde (a la derecha). I. Un número entero, el anterior y el siguiente. II. Dos números pares consecutivos. III. La suma de tres enteros consecutivos es 90. IV. Las edades de dos hermanos difieren en 5 años. El año próimo, el mayor tendrá el doble de años que el menor. a) n + (n + 1) + (n + ) = 90 b) n, n 1, n + 1 c) y = 5; + 1 = ( y + 1) d) n, n + Cuando hayas acabado, vuelve a poner las epresiones algebraicas correspondientes a los enunciados de la izquierda, pero tapando, previamente, la columna de la derecha. I. 8 b) II. 8 d) III. 8 a) IV. 8 c)

2 Soluciones a las actividades de cada epígrafe Traduce al lenguaje algebraico los siguientes enunciados: a) La mitad de un número. b) El triple de un número. c) La cuarta parte de un número. d) El 5% de una cantidad. e) El triple de un número más dos unidades. f) La mitad del resultado de sumarle al triple de un número dos unidades. Pág. a) b) c) 4 d) 0,5 e) + f) + Epresa algebraicamente el perímetro y el área de estos rectángulos: A B C + 7 A: P = ( ) + ( + ) = 4 A = ( ) ( + ) = 6 B: P = + = 8 A = = C: P = + 7 = + 14 A = 7 = 7

3 Soluciones a las actividades de cada epígrafe PÁGINA 78 Pág. 1 1 Describe mediante una epresión algebraica los enunciados siguientes: a) El doble de un número menos su tercera parte. b) El doble del resultado de sumarle tres unidades a un número. c) El área de este triángulo es 6 cm. d) Gasté en un traje /5 de lo que tenía y 60 en dos camisas. Me queda la mitad de lo que tenía. a) 1 b) ( + ) c) = 6 d) ( ) = 1

4 Soluciones a las actividades de cada epígrafe PÁGINA 79 Pág. 1 1 Cuál es el grado de cada uno de los siguientes monomios?: a) 5y z b) 11y c) 1 a) Su grado es 6. b) Su grado es. c) Su grado es 0. Efectúa las siguientes sumas de monomios: a) b) 6 y 1 y + y y c) y + d) yz + y z z y + 5zy a) 9 + b) 5 y c) y d) yz + 6y z Efectúa los siguientes productos de monomios: a) () (5 ) b) ( ) (4 ) c) ( ) ( 6) d) ( 9 ) ( 5 ) e) (7y ) (y) f) (5yz) ( z) a) 15 b) 1 5 c) 4 4 d) 15 5 e) 14y f) 15 yz 4 Escribe dos monomios semejantes a cada uno de los siguientes: a) 5ab c b) 6 c) d) 7 Respuesta abierta. Ejemplo: a) 10ab c, ab c b), c) 15, 4 d) 4, 10

5 Soluciones a las actividades de cada epígrafe PÁGINA 80 Pág. 1 1 Di el grado de cada uno de estos polinomios: a) b) c) a) Su grado es 6. b) Su grado es 4. c) +. Su grado es. Sean P = y Q = 4 +. Halla P + Q y P Q Halla los productos siguientes y di de qué grado son: a) ( + 1) b) ( 4 + 6) c) ( ) d) 5( + 1) e) 7 5 ( 1) f) 7( + ) g) 4 ( 5 + ) h) 8 ( + ) i) ( + ) j) 4 [ + () ] a) + 6 b) Su grado es. Su grado es 4. c) 6 + d) Su grado es. Su grado es. e) f) Su grado es 7. Su grado es 4. g) = h) Su grado es 5. Su grado es 4. i) 4 5 = j) = Su grado es 5. Su grado es.

6 Soluciones a las actividades de cada epígrafe PÁGINA 81 Pág. 1 4 Siendo P = 4 +, Q = y R = 5 8, calcula: a) P Q b) P R c) Q R a) b) c) Opera y simplifica la epresión resultante: a) (5 + 1) ( ) + 1 b) 5( ) + ( y + 4) 7 ( y + ) 8 c) 15 [ ( ) 4( y ) ] d) ( + 7)(5 + ) ( 5 + 1) a) = + 19 b) y y = 9 1 y c) 10( ) 1(y ) + ( + ) 105 = y = = 1y 1 d) = =

7 Soluciones a las actividades de cada epígrafe 6 Etrae factor común en cada epresión: Pág. a) b) c) y 5 y y + 7 y d) y 5 y (y ) e) ( ) + ( ) 5( ) f) y 6 y + 4 y g) ( ) ( y 1) 7 ( y 1) a) 5 (1 + 5 ) b) 1 ( 4 1 5) c) y (y y y) d) y( 10y + 15) e) ( )( + 5) = ( ) 0 = 0 f) y (1 y + y) g) (y 1) ( 7 ) = (y 1) ( 5 )

8 Soluciones a las actividades de cada epígrafe PÁGINA 8 Pág. 1 1 Desarrolla los siguientes cuadrados: a) ( + 4) b) ( 5) c) (1 6) d) ( + 4) e) ( 1 ) f) (a + b ) a) b) c) d) = 1 16 ( ) e) = 1 4 ( ) f) a + b + ab Efectúa los siguientes productos: a) ( + 1)( 1) b) ( + )( ) c) ( d) (a + b )(a b ) 1 ) ( + 1 ) a) 1 b) 4 9 c) d) a b

9 Soluciones a las actividades de cada epígrafe PÁGINA 8 Pág. 1 Epresa en forma de producto. a) 4 5 b) c) d) e) f) a) ( + 5)( 5) b) ( + 4) c) ( + 1) d) ( + 1) e) ( 5) f) ( + 1 ) 4 Simplifica las epresiones siguientes: a) ( )( + ) ( + 4) b) ( 1) ( + 1) c) ( 5) ( ) d) (5 4)( + ) 5 e) ( + 5) ( + 40) f) ( + ) [ + ( ) ] a) 4 4 = 8 b) ( ) ( ) = = 1 c) ( ) ( ) = = d) = e) = 5 f) ( ) [ + ( 6 + 9)] = = Multiplica y simplifica el resultado: a) por 8 b) + 9 c) ( 4) ( + 1) 5 por 8 a) = por 9 b) ( 1) (1 + 4) = = 10 c) ( 4) 4( + 1) 40 = ( ) = = = 0 4

10 Soluciones a las actividades de cada epígrafe PÁGINA 85 Pág. 1 1 Simplifica las fracciones siguientes. Para ello, saca factor común cuando convenga: a) 15 5 ( ) d) 9( + 1) ( + 1) ( + 1) a) b) 1 b) ( 1) 9( 1) e) 5 ( ) ( + ) 15 ( ) c) f) ( ) ( 1) c) (1 ) (5 ) = 1 (5 ) = d) ( + 1)(9 ) ( + 1) = 6( + 1) ( + 1) = e) ( )( + ) = ( 9) = 9 f) ( 1) ( 1) = ( 1) ( 1) = 1 Opera y simplifica. a) + + c) b) d) a) ( ) = = + b) ( + 1) 4 = ( + 1) ( + 1) = ( + 1) ( + 1) = ( + 1) = ( + 1) = c) = ( ) ( + 1) = ( + )( ) 7 + = ( + )( ) 7( + ) + ( + )( ) ( + )( ) ( + )( ) = = ( + )( ) = ( + )( ) d) 5 ( + ) + 5 ( + ) 5 + = 5 ( + ) + = 5 + = 5

11 Soluciones a las actividades de cada epígrafe Efectúa las siguientes operaciones y simplifica. Ten en cuenta las identidades notables: a) 1 c) + 1 e) : ( 1) b) : 1 ( + 1) 1 ( ) : 4 + d) 6 f) 1 : 4 g) ( + 5) h) 6 4 i) j) 18( 1) Pág. a) ( + 1)( 1) : ( 1) = ( + 1)( 1) 1 1 = + 1 b) ( ) : ( + )( ) ( + ) = ( ) + ( + )( ) = 1 c) ( 1) : 1 = ( 1) 1 = 1 d) 6 ( ) = 6( ) = 6 18 e) ( 1) ( + 1) ( + 1)( 1) = f) g) 1 : () ( 1) = ( 1) 1 () = = 1 5( + 5) 10( + 5) = 1 ( + 5) h) = 1 i) 4 () (4 ) = = j) ( 1) 18( 1) = 9 18 = 1

12 Soluciones a las actividades de cada epígrafe 4 Opera y simplifica. a) : ( b) ) ( + 1)(5 5) Pág. a) b) 6 : 5( + ) + 5( ) ( + )( ) ( + )( ) = 6 ( + )( ) ( + )( ) 5( + + ) = = 6 0 = 10 5( + 1) 5( + 1)(5 5) ( + 1)(5 5) 5( + 1)(5 5) 5( + ) 5( + 1)(5 5) = = 5 ( + 1) ( + 1)(5 5) 5 ( + 1) 5( + 1)(5 5) = (5 5) = 1 5 = = (5 5) =

13 Soluciones a Ejercicios y problemas PÁGINA 86 Pág. 1 Epresa y calcula Traducción a lenguaje algebraico 1 Asocia a cada enunciado una de las epresiones algebraicas que aparecen debajo: a) El cuadrado de un número menos su doble. b) El 80% de un número. c) Un número impar. d) Los dos tercios de un número más cinco unidades. + 5; ; 0,8 ; + 1 a) El cuadrado de un número menos su doble 8 b) El 80% de un número 8 0,8 c) Un número impar d) Los de un número más 5 unidades Epresa en lenguaje algebraico empleando una sola incógnita. a) El triple de un número menos dos. b) El producto de dos números consecutivos. c) El cuadrado de un número más su mitad. d) La suma de un número con otro diez unidades mayor. a) El triple de un número menos dos:. b) El producto de dos números consecutivos: ( + 1). c) El cuadrado de un número más su mitad: +. d) La suma de un número con otro diez unidades mayor: + ( + 10). Epresa algebraicamente el perímetro y el área de estos rectángulos: A B C + A Perímetro = ( + ) = + 6 Área = B Perímetro = ( + ) = 6 Área = = C Perímetro = ( + + ) = Área = ( + ) = +

14 Soluciones a Ejercicios y problemas 4 Traduce a lenguaje algebraico utilizando dos incógnitas. a) La suma de los cuadrados de dos números. b) El cuadrado de la diferencia de dos números. c) La mitad del producto de dos números. d) La semisuma de dos números. Pág. a) La suma de los cuadrados de dos números: + y. b) El cuadrado de la diferencia de dos números: ( y). y c) La mitad del producto de dos números:. d) La semisuma de dos números: + y. 5 Si e y son las edades actuales de dos hermanos, epresa los siguientes enunciados utilizando ambas incógnitas: a) La suma de las edades que tenían hace 5 años. b) El producto de las edades que tendrán dentro de 6 años. c) La diferencia entre la edad del mayor y la mitad de la del menor. a) La suma de las edades que tenían hace 5 años: ( 5) + (y 5) = + y 10 b) El producto de las edades que tendrán dentro de 6 años: ( + 6)(y + 6) = y y + 6 c) La diferencia entre la edad del mayor y la mitad del menor: y y si la edad del mayor es si la edad del mayor es y Monomios 6 Indica el grado de cada uno de los siguientes monomios y di cuáles son semejantes: a) 5y b) ( 7) c) 8 d) (y) e) y f) 4 5 g) y 5 h) 1 a) Grado. b) Grado. c) Grado 1. d) Grado 4. e) Grado 4. f) Grado. g) Grado. h) Grado. Son semejantes: a) y g); b) y f); d) y e).

15 Soluciones a Ejercicios y problemas 7 Calcula el valor numérico de los monomios del ejercicio anterior para = 1 e y =. a) 5 ( 1) = 15 b) [ 7 ( 1)] = 4 c) 8( 1) = 8 Pág. d) [( 1) ] = 9 e) ( 1) = 6 f) 4 5 ( 1) = 4 5 g) ( 1) 5 = 9 5 h) 1 ( 1) = 1 8 Efectúa. a) b) + 7y + y c) y y 5y + y + y a) = b) + 7y + y = + 8y c) y y 5y + y + y = y y 4y 9 Efectúa los siguientes productos de monomios: a) (6 )( ) b) (y )(4 y ) c) ( 4 )( 1 ) d) ( 1 4 y )( z ) a) 6 ( ) = 18 b) (y )(4 y) = 8 y c) ( 4 ) ( 1 ) = 8 6 d) ( 1 4 y ) ( z ) = 8 yz Polinomios 10 Simplifica las siguientes epresiones: a) ( 5 + ) ( + 1) b) 5 ( + 8) ( ) Cuál es el grado de cada polinomio? a) = Grado. b) = Grado. 11 Considera estos polinomios: A = B = C = + 7 Halla: A + B; A C; A B + C A + B = = A C = ( 5 + 1) ( + 7) = = =

16 Soluciones a Ejercicios y problemas A B + C = ( 5 + 1) ( ) + ( + 7) = = = = Pág. 4 1 Efectúa, reduce y di cuál es el grado del polinomio resultante. a) ( 5) ( + ) 7( + 1) b) 5 ( + 1) ( ) c) 1 ( ) a) ( 5) ( + ) 7( + 1) = = = Grado. b) 5 ( + 1) ( ) = = = Grado. c) 1 ( ) = Grado 4.

17 Soluciones a Ejercicios y problemas PÁGINA 87 Pág. 1 1 Opera y simplifica. a) ( + )( 1) ( ) b) ( 5 + )( ) ( ) c) ( ) (6 1) a) ( + )( 1) ( ) = + + = + 5 b) ( 5 + )( ) ( ) = = = c) ( ) (6 1) = = 14 Etrae factor común. a) b) + c) y 4 y + y d) a) = 4( 1) b) + = ( + 1 ) c) y 4 y + y = y(y 4 + y) d) = 1 ( + 5) = Identidades notables 15 Desarrolla estas epresiones: a) ( + 6) b) (7 ) c) ( ) d) ( + 1 ) e) ( y ) f) ( 5 1 y ) a) ( + 6) = b) (7 ) = c) ( ) = d) ( + 1 ) = e) ( y) = + 4y 4y f) ( 5 1 y ) = y 4 15 y

18 Soluciones a Ejercicios y problemas 16 Efectúa estos productos: a) ( + 7)( 7) b) ( + )( ) c) ( + 4)( 4) d) ( + 1)( 1) e) ( 1 1 )( ) f) ( )( 1 1 ) Pág. a) ( + 7)( 7) = 49 b) ( + )( ) = 9 c) ( + 4)( 4) = 9 16 d) ( + 1)( 1) = 4 1 e) ( 1 1 )( ) = f) ( )( 1 1 ) = Simplifica todo lo posible estas epresiones: a) ( + )( ) ( + ) b) ( + ) ( ) 9 c) ( + 1) ( + 1)( 1) d) ( + )( ) ( 1) a) ( + )( ) ( + ) = 9 ( + 9 6) = 6 18 b) ( + ) ( ) 9 = ( ) 9 = = = 9 c) ( + 1) ( + 1)( 1) = ( ) (4 1) = = = d) ( + )( ) ( 1) = 4 4 ( ) = = = 5 18 Transforma en diferencia de cuadrados. a) ( + 7)( 7) b) (4 1)(4 + 1) c) ( + )( ) d) (1 5)(1 + 5) a) ( + 7)( 7) = 4 49 b) (4 1)(4 + 1) = 16 1 c) ( + )( ) = 4 d) (1 5)(1 + 5) = Completa con el término que falta para que cada epresión sea el cuadrado de una suma o el de una diferencia: a) b) + 10 c) d) + 16 a) b) c) d)

19 Soluciones a Ejercicios y problemas Fracciones algebraicas Pág. 0 Simplifica estas fracciones algebraicas: a) 9 1 b) ( + 1) 5( + 1) a) 9 1 = 4 b) ( + 1) 5( + 1) = 5 c) ( + ) c) ( + ) = + 1 Simplifica las siguientes fracciones algebraicas. Para ello, saca factor común: a) 4 b) + c) + ( + 1) d) e) 8 4 ( 1) f) a) 4 = ( 4) = 4 c) + = ( + 1) ( + 1) ( + 1) = + 1 e) 8 4 ( 1) = 4 ( 1) ( 1) = Efectúa. 4 1 a) b) d) 1 + e) a) = b) + = b) + 1 = ( 7) + ( 1) = ( 7) 7 c) = ( 4) + ( + 1) 4 ( 4) ( + ) = + d) + 4 = ( + ) + ( + ) = f) = 5( + 1) ( + 1) = 5 c) f) = = ( 4) d) 1 = ( + ) ( 1)( ) = + 6 ( 4 + ) + ( )( + ) = 9 e) = = 1 + ( 1) + ( 1) 4 4( 1) f) 1 + = ( + 1) 1 + ( + 1) + ( + 1) = = ( 1) = ( + 1) = 8 4 = ( 1) = ( + 1)

20 Soluciones a Ejercicios y problemas Aplica lo aprendido Pág. 4 Epresa algebraicamente el perímetro y el área de estos rectángulos: A y B y C 1 y + 1 A Perímetro = ( + y) = + y Área = y B Perímetro = ( 1 + y) = + y Área = ( 1)y = y y C Perímetro = ( + y + 1) = + y + Área = (y + 1) = y + 4 Epresa como cuadrado de una suma o de una diferencia, como en el ejemplo = = ( + 5) a) b) + 1 c) d) a) = ( 7) b) + 1 = ( 1) c) ( ) = ( + 1) d) = ( + 6) 5 Etrae factor común como en el ejemplo. ( + 1) ( + 1) + ( + 1)( ) = ( + 1)[ + ] = ( + 1)( ) a) ( ) + ( ) ( ) b) ( + 1) ( + ) + ( ) c) ( + ) 6 ( + ) a) ( ) + ( ) ( ) = ( )( + ) b) ( + 1) ( + ) + ( ) = [ + 1 ( + ) + ( )] = ( 7) c) ( + ) 6( + ) = ( + )( 6)

21 Soluciones a Ejercicios y problemas PÁGINA 88 Pág. 1 6 Reduce las siguientes epresiones: a) 6 ( ) b) 1 ( + 6 c) 0 [ ( ) 15 a) 6 ( b) 1 ( + 6 c) 0 [ ( ) ) ( + 1) ] 1 ) = ( ) ( 1) = = = ) = 4( + 6) 6( + 1) + ( 1) = = = ( + 1) ] = ( ) 5( ) + 15 = = = Multiplica cada epresión por el mín.c.m. de los denominadores y simplifica el resultado. a) b) 4 ( 1) 1 ( + 1) c) ( 5) 9 d) ( ) + a) ( + 1) 6 ( + ) 4 ( + ) = 4 ( ) = ( + ) 4(5 ) ( + 1) = = = 5 1 b) 4 ( 1) 1 ( + 1) = 1 ( 4 ( 1) 1 ( + 1) + 1 6) = = ( 1) 4( + 1) + = = 5 11 c) ( 5) 9 ( + 1) 6 = 18 ( ( 5) 9 ( + 1) 6 ) = ( ) = = ( ) = = =

22 Soluciones a Ejercicios y problemas d) ( ) + ( + ) ( + ) = ( ) = = 4( ) + ( + ) ( ) = = = = 0 4 Pág. 8 Epresa como el cuadrado de una suma o una diferencia o como diferencia de cuadrados. a) b) c) 4 9 d) e) 16 1 f) a) = ( ) b) = ( + 1) c) 4 9 = ( + )( ) d) = ( ) e) 16 1 = (4 + 1)(4 1) f) = (4 + 5) 9 Transforma en producto como en el ejemplo. + + = ( + + 1) = ( + 1) a) 4 b) c) 4 d) a) 4 = ( 4) = ( + )( ) b) = ( ) = ( 1) c) 4 = ( 1) = ( + 1)( 1) d) = ( ) = ( 4) 0 Simplifica. Para ello, transforma en producto el numerador y el denominador. a) + 4 b) c) d) 9 a) e) = ( + ) ( + ) = b) = + 1 ( + 1)( 1) = 1 1 c) = ( ) = 1 d) 9 = ( ) ( + )( ) = + e) = ( + )( ) ( + ) = + f) = ( + + 1) ( + 1) = ( + 1) ( + 1) = ( + 1) f) + + +

23 Soluciones a Ejercicios y problemas 1 Opera, y simplifica si es posible. Pág. a) c) a) + 1 b) + 1 : + 1 ( 1) : = ( + 1) = ( + 1) b) + 1 : + 1 = c) ( + ) ( + 1)( 1) = + 1 ( 1) : = ( 1) 1 ( 1) = ( 1) d) ( + 1) : 1 d) ( + 1) : 1 = ( + 1) 1 = ( + 1) ( + 1)( 1) = 1 Resuelve problemas Epresa algebraicamente: / a) El área del triángulo azul. b) El área del trapecio rojo. l c) La longitud l. Quizá te sea útil recordar el teorema de Pitágoras. a) (/) = 1 b) ( + /) = c) l = + ( ) = 1 9 Epresa algebraicamente el área de la parte coloreada. y A = y ( 4)(y 4) = y (y 4 4y + 16) = 4 + 4y 16 4 Epresa algebraicamente el área y la diagonal mayor de este trapecio: y Área = ( + )y = y Diagonal: y + ()

24 Soluciones a Ejercicios y problemas 5 Epresa algebraicamente el área total y el volumen de un ortoedro cuyas dimensiones son tres números consecutivos. Pág Área: [( + 1)( + ) + ( + 1) + ( + )] = ( ) = Volumen: ( + 1)( + ) = ( + + ) = + + = ( ) = Epresa algebraicamente el área total y el volumen de un cilindro cuya altura mide el doble del radio de la base. R R Área: πr + πr R = πr + 4πR = 6πR Volumen: πr R = πr 7 Epresa algebraicamente el área de este trapecio isósceles: cm cm h cm Altura: h = 9 Área: ( + ) 9 = 9

25 Soluciones a Ejercicios y problemas PÁGINA 89 Pág. 1 Problemas + 8 Adivina el número secreto! Piensa un número cualquiera, multiplícalo por, réstale 10, réstale el número pensado, súmale y dime el resultado. Razona por qué obtengo el número secreto sumando 7 al resultado que me des. Llamamos al número pensado. Multiplícalo por : Réstale 10: 10 Réstale el número pensado: 10 = 10 Súmale : Si al resultado le sumo 7, obtengo. 9 Piensa un número, súmale 7, multiplica el resultado por, resta 4, divide por y dime el resultado. Cómo puedo saber el número que has pensado? Llamamos al número pensado. Le sumamos 7: + 7 Multiplicamos por : + 14 Restamos 4: + 10 Dividimos por : + 5 Si restamos 5 al resultado, obtenemos. 40 Utiliza el lenguaje algebraico para demostrar que los siguientes enunciados son verdaderos: a) La suma de tres números enteros consecutivos es igual al triple del segundo. b) Si al cuadrado de un número impar le restas 1, obtienes siempre un múltiplo de 4. c) Si al cuadrado de un número le resto el producto del número anterior por el número posterior, el resultado es siempre igual a 1. a) Tres números consecutivos son, + 1 y +. Sumamos: = + = ( + 1) Obtenemos el triple del segundo. b) Un número impar es + 1. Su cuadrado: ( + 1) = Le restamos 1: = 4( + ). Obtenemos un múltiplo de 4. c) ( + 1)( 1) = ( 1) = + 1 = 1

26 Soluciones a Ejercicios y problemas 41 Piensa en tres números consecutivos. Resta al cuadrado del mayor el cuadrado del menor. Divide el resultado por el del medio. Obtienes siempre 4! Pág. Justifícalo utilizando el lenguaje algebraico. Tres números consecutivos son ; + 1; + ( + ) = = = 4( + 1) + 1 = 4 4 Observa: 1 + = 4 = = 9 = = 16 = 4 Cuál será el valor de ? Y de n? Epresa con palabras esta propiedad y demuéstrala es la suma de los 10 primeros términos de la progresión 1,, 5, 7 a n = n 1 S 10 = = 100 = n 8 S n = 1 + (n 1) n = n La suma de los n primeros números impares es igual a n. 4 Observa la epresión: (a + b ) = a + a b + ab + b Completa con palabras: El cubo de la suma de dos números es igual al cubo del primero más. Demuéstrala. El cubo de la suma de dos números es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo. Demostración: (a + b) = a + ab + b (a + b) = (a + b)(a + b) = (a + b)(a + ab + b ) = = a + a b + ab + ba + ab + b = a + a b + ab + b

27 Soluciones a Ejercicios y problemas Refleiona sobre la teoría Pág. 44 Cuándo se dice que un número es raíz de un polinomio? Comprueba si es raíz de alguno de estos polinomios: P = + 1 Q = 5 7 R = ( )( ) Es 0 raíz de alguno de los polinomios anteriores? Cuando al sustituir por ese número, el valor del polinomio es 0. P = + 1 = = 0 8 es raíz de P. Q = 5 7 = ? 0 8 no es raíz de Q. R = ( ) ( ) = 0 8 es raíz de R. 45 Cuál debe ser el valor de k para que sea raíz del polinomio k? Justifica tu respuesta. Para que sea raíz de ese polinomio, al dar a ese valor el polinomio debe ser igual a 0. Por tanto: ( ) 5 ( ) 7 ( ) + k = k = 0 8 k = Cuál es el resultado de multiplicar una fracción por su inversa? Compruébalo con y su inversa. + El producto de una fracción por su inversa es igual a = ( + ) ( + ) = 1 47 a) Simplifica la epresión (a + 1) (a 1). b) Halla, sin utilizar la calculadora, el valor de: a) (a + 1) (a 1) = (a a) (a + 1 a) = a a a 1 + a = 4a b) = = Averigua cuál debe ser el valor de a, en cada caso, para que las dos epresiones sean idénticas: a) ( + a)( a) + 7 y 9 18 b) ( a) + a 46 y + 18 a) ( + a)( a) + 7 = 9 a + 7 Si 9 a + 7 = a + 7 = 18 8 a = 5 b) ( a) + a 46 = + a a + a 46 = + a 46 Si + a 46 = a 46 = 18 8 a = 64 a = 5 a = 5 a = 8 a = 8

28 Soluciones a Ejercicios y problemas 49 Cuáles de las siguientes epresiones es una identidad? Justifícalo. Pág. 4 a) 9 = b) ( + 1) = + 1 c) ( 5) = 5 a) Es una identidad: 9 = 9 = b) y c) no son identidades. 50 Epresa con palabras cada una de las siguientes relaciones: a) y = y b) ( + 1) = + c) 0 a) La raíz del cociente de dos números es igual al cociente de las raíces de esos números. b) El producto de un número por el que le sigue es igual al cuadrado de ese número más él mismo. c) El cuadrado de un número cualquiera es siempre mayor o igual que 0.

29 Soluciones a Y para terminar PÁGINA 90 Pág. 1 Utiliza tu ingenio De lógica Cinco atletas comentan a su entrenador el resultado de la última carrera: CARMEN: Esta vez he llegado delante de Amaya. AMAYA: Tina ha llegado detrás de Rosa. TINA: ROSA: LUISA: Rosa no ha ganado. Carmen ha llegado la cuarta. Hoy hacía un día estupendo para correr. Cuál ha sido el orden de llegada? Utilizaremos una tabla para ir resumiendo la información: Carmen ha llegado la cuarta. 1.ª.ª.ª 4.ª 5.ª Carmen Esta vez he llegado delante de Amaya. 1.ª.ª.ª 4.ª 5.ª Carmen Amaya Tina ha llegado detrás de Rosa. Rosa no ha ganado. 1.ª.ª.ª 4.ª 5.ª Rosa Tina Carmen Amaya Por tanto: 1.ª.ª.ª 4.ª 5.ª Luisa Rosa Tina Carmen Amaya

30 Soluciones a Y para terminar PÁGINA 91 Pág. 1 Investiga Un triángulo curioso Esta colección de números que se abre indefinidamente hacia abajo tiene multitud de regularidades curiosas, pero, antes que nada, averigua cómo se construye. Podrías completar las casillas vacías? ???? 10??? Suma los números de cada fila y completa la tabla: n n S 1 S 1 S S S 4 S 5 S n S 4 8 S S 4 S 1 S S S 4 S 5 S n S n n Escribe una epresión algebraica para calcular la suma de los términos de la fila enésima, S n. Fíjate en estas tres escaleras de números: n? Observa que: = = =... Cuál es el tercer número de la 6.ª fila? 1 6? Y el de la número 0 (vigésima)? 1 0? Escribe una epresión algebraica para la tercera casilla de la enésima fila: 1 n? Los números de la tercera escalera coinciden con las sucesivas sumas de los primeros números naturales. a 1 = 1 a = 1 + = a = = 6 a 4 = = 10 (1 + 0) 0 Así: a 0 = = = 10 (1 + n) n Y, por fin: a n =

31 Soluciones a la Autoevaluación PÁGINA 91 Pág. 1 Sabes epresar algebraicamente un enunciado? 1 Escribe en lenguaje algebraico: a) Si gasto los 5 de lo que tengo, me quedan 1. b) La mitad del resultado de sumar 5 unidades al triple de un número. a) Tengo 8 5 = 1 b) Número Epresa algebraicamente el área total y el volumen de un prisma de base cuadrada de lado y de 5 cm de altura. 5 Área total = = + 0 Volumen = 5 = 5 Identificas una identidad entre varias epresiones algebraicas? Cuál de las siguientes epresiones es una identidad? Justifícalo. a) ( 1)( + 1) = 4 1 b) ( 1) = 1 c) 8 5 = a) Es una identidad. ( 1)( + 1) = = 4 1 b) No es una identidad. ( 1) = + 1 = 4 + 1? 1 c) No es una identidad. Solo es verdadera si = 1. Operas con polinomios con agilidad y eficacia? 4 Efectúa y reduce: a) ( ) ( )( 1) b) 4 [ ( ) 4 4 ] a) ( ) ( )( 1) = ( 6 + ) = = = + 5 b) 4 [ ( ) 4 4 ] = 4 [ ] = = 16

32 Soluciones a la Autoevaluación 5 Multiplica por el mín.c.m. de los denominadores y simplifica: 5( 1) ( + 1) Pág. 5( 1) ( + 1) 8 6 [ ] = = 4(5 5) + (7 ) 18( + ) = = Manejas con soltura las identidades notables? 6 Escribe como cuadrado de una suma o de una diferencia: = ( ) 7 Epresa como producto: 9. 9 = (9 1) = ( + 1)( 1) Sabes operar con fracciones algebraicas sencillas? 8 Simplifica: = ( 1) ( 1) = 9 Efectúa: = ( ) + ( + 5) = = 5 + 6

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3 3 3 7 4. Escribe

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 5 Polinomios ACTIVIDADES INICIALES 5.I. Juntaos por parejas. Piensa en una figura geométrica (un cubo, una esfera, una pirámide, etc.), y escribe la epresión de su área o su volumen. Pídele a tu compañero

Más detalles

Polinomios. Objetivos. Antes de empezar

Polinomios. Objetivos. Antes de empezar 2 Polinomios Objetivos En esta quincena aprenderás a: Manejar las expresiones algebraicas y calcular su valor numérico. Reconocer los polinomios y su grado. Sumar, restar y multiplicar polinomios. Sacar

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones 3. Ecuaciones Taller de Matemáticas 2º ESO 1. Lenguaje algebraico 2. Generalización 3. Valores numéricos 4. Ecuaciones 5. Resolución de problemas mediante ecuaciones 2 Ecuaciones 1. Lenguaje algebraico

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 4 5 5 6 Resolver las siguientes ecuaciones

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero

Más detalles

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

2Soluciones a las actividades de cada epígrafe PÁGINA 42

2Soluciones a las actividades de cada epígrafe PÁGINA 42 PÁGINA 42 Pág. 20 cm r r l l 20 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones. Para hacerlo necesita saber su volumen

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = =

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = = NÚMEROS NATURALES Y ENTEROS. Efectúa a) ( ) ( ) 8 ( ) b) ( ) ( ) c) ( ) d) ( ) e) ( 8) ( ) f) ( ) ( ) g) [ ( ) ] h) ( ) ( ( ) ) ( ) ( ). Al enchufar la corriente a un congelador, la temperatura desciende

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

MATEMAGIA ENREDADORA.

MATEMAGIA ENREDADORA. Buscar relaciones algebraicas en enunciados lúdicos. Modelizar situaciones mágicas de forma matemática. Reconocer pautas de comportamiento entre números. 3º Ciclo - Papel y lápiz El primer ayudante de

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c).

PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c). PÁGINA 38 Entrénate 1 Indica, de estas epresiones algebraicas, cuáles son identidades y cuáles ecuaciones: a) + 3 = 8 b) ( + 3) = + 6 c) + 5 (1 ) = + 4 d) + 4 = + 4 Son ecuaciones a) y d). Son identidades

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios

RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios LENGUAJE ALGEBRAICO A. Expresa en lenguaje algebraico RELACIÓN 5: ALGEBRA 1 Lenguaje algebraico, monomios y polinomios 1) Un número cualquiera. 2) Dos números cualesquiera. 3) Dos números consecutivos.

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE º ESO PENDIENTE TEMA 5: ÁLGEBRA: MONOMIOS Y POLINOMIOS- OPERACIONES-, PRODUCTOS NOTABLES, ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA,

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de

Más detalles

Volumen de los cuerpos geométricos

Volumen de los cuerpos geométricos Volumen de los cuerpos geométricos Contenidos 1. Volumen y capacidad Unidades de volumen Capacidad y volumen 2. Volumen de un prisma Cubo Ortoedro Resto de prismas 3. Volumen de una pirámide Relación entre

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

EJERCICIOS DE EXPRESIONES ALGEBRAICAS

EJERCICIOS DE EXPRESIONES ALGEBRAICAS EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25 2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12 BOLETIN Nº MATEMÁTICAS º ESO Ecuaciones sistemas Curso / ) ( ) ) ( ) 8 ( ) ) ) 8 ( ) ( ) ) ( )( ) ) ( )( ) ( ) ) ( ) ( ) ( ) ( ) 8) ( ) 8( ) ( ) ) ( ) ( 8) ( ) ) (8 ) ( ) ( ) ) ( ) ( ) (8 ) ) ( ) ( ) (

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS 1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS

Más detalles

EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado El fin del mundo En octubre de la cárcel de Wittenberg acogió una curiosa reunión: allí estaba Lutero visitando a su íntimo amigo Michael Stifel. Este, aplicando a

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.

Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra. TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles