Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.
|
|
- Enrique José Miguel Martínez Santos
- hace 2 años
- Vistas:
Transcripción
1 reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del lugar dode se va a realizar la misma. Este cetro costa de cuartos secillos, cuartos dobles, 7 corredores y salas de sesioes. La limpieza del lugar debe ser realizada por dos empleados: Aiat y Bucsht. De la base de datos de la empresa se desprede que el empleado Aiat limpia cuartos secillos, 6 dobles, corredor y saloes por día. El limpiador Bucsht limpia cuartos secillos, dobles, corredores y salas de sesioes por día. El costo de cotratació de Aiat es de $5 por día y el de Bucsht es de $ por día. Formular como u problema de rogramació Lieal el problema de limpiar el lugar a costo míimo. Las variables de decisió so x A y x B, cuátos días cotratar a cada empleado. El objetivo es miimizar el costo diario: 5x A x B Las restriccioes so satisfacer la demada de limpieza: Habitacioes simples: x A x B Habitacioes dobles: 6x A x B Corredores: x A x B 7 Salas de sesioes: x A x B El problema queda formulado como u problema lieal de la siguiete maera: mi 5x A x B x A x B 6x A x B x A x B 7 x A x B x A, x B
2 reguta utos Utilizar el Método Simplex para determiar la solució óptima del siguiete problema lieal: max x x x x x x x x x, x Escribimos el problema e forma stadard agregado variables de holgura x, x y x 5 y cambiado el sigo de la fució objetivo: mi x x x x x x x x x x x 5 x, x, x, x, x 5 Al o cotar co ua base iicial factible evidete (por teer restriccioes de ), aplicamos fase I: mi y x x x x x x x x x 5 y x, x, x, x, x 5, y La base iicial es {x, x, y } y el tableau: x x x x x 5 y fase I fase II Despejamos la variable y de la fució objetivo (de fase I), restado la fila a la fila de costos: x x x x x 5 y fase I fase II
3 El costo reducido (e fase I) de x es egativo, x igresa a la base y sale y: x x x x x 5 y 8 / / / 7 / / / fase I / / / fase II Hemos ecotrado ua solució óptima para la fase I de costo, por lo tato teemos ua solució básica iical del problema origial. Elimiamos la variable y y la líea de costos de fase I y seguimos: x x x x x 5 8 / / 7 / / / / La variable x tiee costo reducido egativo, etoces igresa a la base y sale x. x x x x x 5 6 La variable x 5 tiee costo reducido egativo, etoces igresa a la base y sale x. x x x x x 5 / / / 5/ / / / / / / / / La variable x tiee costo reducido egativo, etoces igresa a la base y sale x. x x x x x 5 /5 /5 /5 /5 5/ / /5 /5 8 Los costos reducidos de las variables o básicas so positivos, etoces la solució es óptima. La solució óptima es x x, x x, x 5. El valor óptimo es 8.
4 reguta 6 utos Hallar u óptimo global del siguiete problema utilizado las codicioes de Kuh-Tucer: mi (x ) (x ) 6(x ) (x ) 9 x, x Sea: f(x, x ) (x ) (x ), la fució objetivo y g(x, x ) 6(x ) (x ) 9 la restricció (g(x, x ) ) Los gradietes so: f(x, x ) ( (x ), (x )) y g(x, x ) ( 6(x ), (x )). lateamos las codicioes de Kuh-Tucer: (x ) 6λ(x ) y () (x ) λ(x ) () 6(x ) (x ) 9 () λ () λ(6(x ) (x ) 9) (5) De (5), se deduce que λ o 6 (x ) (x ) 9. Si λ. Etoces, de () y (): x y x. Estos valores viola la ecuació (). or lo tato, λ (λ > ). Si λ >, etoces, teemos el sistema: (x ) 6λ(x ) (x ) λ(x ) 6(x ) (x ) 9 De la seguda ecuació, teemos ( λ)(x ). Es decir, λ o x. Como λ viola (), teemos x. Sustituyedo, teemos el sistema: (x ) 6λ(x ) 6(x ) 9 De la seguda, teemos x 5/. Sustituyedo e la primera, teemos λ /. or lo tato, x 5/, x y λ / cumple las codicioes de Kuh-Tucer. Como la fució objetivo y las restriccioes so covexas, las codicioes de Kuh-Tucer so suficietes para u óptimo global. or lo tato, x 5/, x es u óptimo global del problema. rueba de la covexidad La Hessiaa de la fució objetivo es, que es semidefiida positiva y la fució objetivo es covexa. La regió factible es de la forma {x f(x) α} co f(x, x ) 6(x ) (x ) y α 9. Como f es covexa, la regió es covexa.
5 reguta 7 utos (,,,,,, ) ara cada afirmació, idique si es Verdadera o Falsa. Las respuestas equivocadas resta puto. No se requiere justificació. a) Si f(x) y g(x) so fucioes covexas e el cojuto covexo S, etoces h(x) mi {f(x), g(x)} es ua fució covexa e S. b) Cosidere el siguiete problema y u puto x que o es óptimo local ( ) mi f ( x) x F Existe ua direcció factible de desceso e x si y sólo si F es covexo y f es difereciable y covexa e F. c) Los multiplicadores simplex correspodietes a la solució óptima del problema primal costituye ua solució óptima del problema dual. d) Sea los problemas ( M ) ( x) mi f g( x) x X y ( M ) λ mi f ( x) λg( x) x X Si $x λ es ua solució óptima de (M λ ) que cumple g( $x λ ), etoces $x λ es ua solució óptima de (M). e) Las ecuacioes de balace para Cadeas de Marov de Tiempo Cotíuo expresa, para ua distribució estacioaria y u subcojuto A del espacio de estados, que la tasa de salida de A es igual a la tasa de etrada a A. f) E u grafo cojutivo, u arco (i,j) co poderació w y u arco (j,i) co poderació w expresa la misma restricció potecial. g) Sea G u grafo cojutivo. Si G tiee u circuito de valor egativo, etoces o existe u cojuto de poteciales sobre G. a) FALSO b) FALSO c) VERDADERO d) VERDADERO e) VERDADERO f) FALSO g) FALSO 5
6 reguta 5 9 utos (,,, ) Cierto proyecto costa de 5 tareas cuyas duracioes y restriccioes de precedecia se idica e la tabla: Tarea Duració (e semaas) Restriccioes A - B - C Luego de semaa de comezada E D Luego de semaa de comezada E E A y B fializadas a) De el grafo potecial tareas asociado al problema. b) Aplique el algoritmo de Bellma para ecotrar los ordeamietos más tempraos y más tardíos. c) Idique u camio crítico. Es úico? d) Calcule el marge total, libre y seguro de la tarea C. a) Las restriccioes poteciales so: t C t E t D t E t E t A t E t B El grafo potecial tareas es el siguiete: A C E B D b) Luego de asigar las fehas más tempraas y más tardías, teemos (,) (,) (,) A (,) B (,) E C (,) D (,) 6
7 c) U camio crítico es (, A, E, ). No es úico, otro es (, B, E, ). d) Marge total: M C f c r C 7 Marge libre: m C mi [j U (C)] {r j (r C w Cj )} ( ) 7 Marge seguro: u C max {, mi [j U (C)] (r j w Cj ) max [ U (C)] (f w C )} ( ) 7. 7
8 reguta 6 utos (,,,, ) U sistema de filas de espera tiee dos servidores y ua sola fila. Los clietes llega al sistema segú u proceso de oisso de tasa llegada / miuto. Cada servidor atiede a ua tasa expoecial de atecioes / miuto siempre que el úmero de idividuos e el sistema sea meor o igual a. Si la catidad de idividuos e el sistema es mayor a, cada servidor atiede a tasa de ateció / miuto. a) Modelar este sistema como u roceso de Nacimieto y Muerte (dar el espacio de estados y las tasas). b) Calcular la distribució estacioaria del sistema e fució de. c) ara : i. calcular el tiempo medio de espera e la fila. ii. calcular la proporció del tiempo e la cual ambos servidores está ocupados. iii. calcular la probabilidad de que al llegar al sistema, u cliete o tega que esperar e la fila. a) El diagrama de tasas correspodiete al proceso es: Es decir, E {,,,...}. λ llegada/miuto para µ µ atecioes/miuto µ atecioes/miuto para µ atecioes/miuto para > b) ara calcular la distribució estacioaria, aplicamos las ecuacioes de balace: (/) (/)(/) (/)(/) E geeral, (/)(/) para (/) (/) (/) - (/) (/) - E geeral, (/) (/) para 8
9 9 Impoiedo que sea ua distribució de probabilidades, hallamos : ( ) or lo tato, 5. c) ara, las probabilidades e estado estacioario so: 7 6 para para i. El tiempo medio de espera e la fila se deduce de la ecuació de Little: f ν λt. ( ) ( ) ( ) ν La tasa de llegadas es costate, por lo tato λ. Sustituyedo e la ecuació de Little, teemos. 7 8 λ ν f t miutos. ii. Ambos servidores está ocupados e los estados,,, 5... or lo tato, la proporció del tiempo e que ambos servidores está ocupados es : iii. La probabilidad de que el cliete o tega que esperar e la fila, es la probabilidad de que al llegar ecuetre al sistema e los estados o. or ASTA, esa probabilidad es que, por la parte aterior, vale 8/9.
10 reguta 7 8 utos U taque T 8 esta emplazado e forma estática e u cierto lugar del desierto iraquí. El taque tiee tres modalidades de disparo: M, M y M. Depediedo de la modalidad de disparo, el taque puede ser detectado y parcialmete dañado o detectado y fuertemete dañado por el eemigo (el tiempo trascurrido etre la detecció y el daño es muy pequeño y puede supoerse igual a ). Se cooce los siguietes datos: El taque permaece e modalidad M u tiempo expoecial de parámetro λ. E las modalidades M y M el taque permaece e ambos casos u tiempo expoecial de parámetro λ. Además, siempre que o sea detectado, el taque cambia de modalidad de disparo e forma cíclica, es decir: M M M M... Estado e modalidad M el taque uca será detectado. Estado e modalidad M el taque es detectado e u tiempo expoecial de esperaza /λ. Cuado es detectado será parcialmete dañado co probabilidad / o fuertemete dañado co probabilidad /. Estado e modalidad M el taque es detectado e u tiempo expoecial de parámetro λ. Cuado es detectado será dañado fuertemete. Si el taque fue dañado (ya sea parcialmete o fuertemete) o puede efectuar disparos (o está e igua de las tres modalidades). Además: o Si fue dañado parcialmete, es reparado de acuerdo a u tiempo expoecial de parámetro λ y posteriormete pasa a estar operativo e modalidad M. o Si fue dañado fuertemete, es reparado de acuerdo a u tiempo expoecial de parámetro λ / y posteriormete pasa a estar operativo e modalidad M co probabilidad / o e modalidad M co probabilidad /. o Mietras esta siedo reparado o es detectado (o puede ser dañado uevamete). Modelar la operativa del taque como ua cadea de Marov de tiempo cotiuo, dado su espacio de estados, tiempos de permaecia e cada estado y probabilidades de trasició. El espacio de estados es E {M, M, M,, F}. Dode M i idica que el taque está operado e la modalidad de disparo i, idica que fue parcialmete dañado y esta siedo reparado, F idica que fue fuertemete dañado y esta siedo reparado. Estado M El taque permaece e M hasta que pasa el tiempo para cambiarse a M (a tasa λ ): E(T(M )) / λ. Ua vez que se abadoa el estado, siempre se va al estado M : p(m, M ). Estado M El taque permaece e M hasta que pasa el tiempo para cambiarse a M (a tasa λ ) o hasta que es detectado (a tasa λ ): E(T(M )) / (λ λ ). Ua vez que se abadoa el estado: Fue para cambiarse a M co p(m, M ) λ / (λ λ ). Fue detectado y parcialmete dañado co p(m, ) ¼ λ / (λ λ ). Fue detectado y fuertemete dañado co p(m, F) ¾ λ / (λ λ ).
11 Estado M El taque permaece e M hasta que pasa el tiempo para cambiarse a M (a tasa λ ) o hasta que es detectado (a tasa λ ). E(T(M )) / (λ λ ). Ua vez que se abadoa el estado: Fue para cambiarse a M co p(m, M ) λ / (λ λ ). Fue detectado y fuertemete dañado co p(m, F) λ / (λ λ ). Estado El taque permaece e hasta que es reparado (a tasa λ ). E(T()) /λ. Ua vez que abadoa el estado, va a M : p(, M ). Estado F El taque permaece e F hasta que es reparado (a tasa λ /). E(T(F)) /λ. Ua vez que abadoa el estado: Va a M : p(f, M ) /. Va a M : p(f, M ) /. El grafo asociado a la Cadea es: / λ ¼ λ / (λ λ ) / λ M M / (λ λ ) λ / (λ λ ) λ / (λ λ ) / (λ λ ) M / / ¾ λ / (λ λ ) λ / (λ λ ) F / λ
IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora
Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios
Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua
Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004
Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos
UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.
UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,
TEORÍA DE LÍNEAS DE ESPERA (COLAS)
TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema
TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:
TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe
IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,
ELEMENTOS DE ÁLGEBRA MATRICIAL
ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:
Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.
IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito
MARTINGALAS Rosario Romera Febrero 2009
1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre
Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas
Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció
-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4
IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha
IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,
5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras
Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS
Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes
MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.
MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre
TEMA 5: INTERPOLACIÓN
5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x
OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =
IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
Programación Entera (PE)
Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome
Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0
Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada
IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,
MC Fco. Javier Robles Mendoza Primavera 2009
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2
Medidas de Tendencia Central
EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los
CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA
CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery
SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.
págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,
IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:
Ley de los números grandes
Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.
7.2. Métodos para encontrar estimadores
Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la
Soluciones problemas del Tema 2
1 Solucioes problemas del Tema 1) a) E(W ) = E(X + Y + Z) = E(X) + E(Y ) + E(Z) = 0; V ar(w ) = V ar(x) + V ar(y ) + V ar(z) + (Cov(X, Y ) + Cov(X, Z) + Cov(Y, Z)) = 1 + 1 + 1 + ( 1 + 0 ) 1 4 4 = 3 b)
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A
IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices
MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO
FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo
Propuesta A. { (x + 1) 4. Se considera la función f(x) =
Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)
IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)
IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las
en. Intentemos definir algunas operaciones en
OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos
www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com
Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la
7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca
7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel
Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B
Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................
DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)
Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico
Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales
Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio
11. TRANSFORMADOR IDEAL
. TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la
OPERACIONES ALGEBRAICAS FUNDAMENTALES
MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,
Análisis de datos en los estudios epidemiológicos II
Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices
TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.
Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de
IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete
1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)
1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :
Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)
Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio
ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS
ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR. OSCILACIONES Y ONDAS CONTENIDO.1. MOVIMIENTO ARMONICO SIMPLE.. RELACION ENTRE MOVIMIENTO ARMONICO SIMPLE Y CIRCULAR
Transformaciones Lineales
Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,
INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS
INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel
Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general
5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)
IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir
IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)
Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema
Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio
Planificación contra stock
Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica
A N U A L I D A D E S
A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el
Estadística para Química - 1er. cuat. 2007 - Marta García Ben
Ej. 1 Podriamos cosiderar S={0,1,} (los resultados o sería igualmete probables). Pero tambie podemos defiir S={CC,CS,SC,SS} describiedo todos los resultados de tirar dos moedas y luego asociar CC, CS 1,
PRUEBAS DE HIPÓTESIS
PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.
ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)
ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger
Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.
UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios
OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con
Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE
1.1. Campos Vectoriales.
1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los
A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.
. POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía
BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON
págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:
Soluciones Hoja de Ejercicios 2. Econometría I
Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño
IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió
TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS
TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u
La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio.
La cotribució de la clase de Computació a la itroducció y desarrollo de coceptos elemetales de Matemática Numérica e el ivel medio. MsC. Rubé Rodríguez Ramos Lic. Eric Crespo Hurtado Dr. C. Tomás Crespo
Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)
Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos
REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL
375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la
Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA
APLICACIONES LINEALES.
APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B
LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2
LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos
Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones
Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio
Tema 9. Inferencia Estadística. Intervalos de confianza.
Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...
= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3
IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de
1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)
Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =
Recuerda lo fundamental
3 Progresioes Recuerda lo fudametal Curso:... Fecha:... PROGRESIONES SUCESIONES Ua sucesió es u cojuto de...... Se llama térmio geeral de ua sucesió a... Por ejemplo, e la sucesió 1, 4, 9, 16, 5, el térmio
Teorías de falla bajo cargas estáticas
Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto
CONCEPTOS BÁSICOS DE PRESTAMOS.
GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,
ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES
ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.
Señales y sistemas discretos (1) Transformada Z. Definiciones
Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas
SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN
Estimación puntual y por intervalos de confianza
Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció
MATEMÁTICAS FINANCIERAS
MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas
CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2
Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:
Análisis en el Dominio del Tiempo para Sistemas Discretos
OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is
UNIDAD 7: ESTADÍSTICA INFERENCIAL
UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució
CANTIDAD EN QUÍMICA QCA 07
.- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de
DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)
UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD
PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,