Sistemas de Ecuaciones Lineales y Matrices

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de Ecuaciones Lineales y Matrices"

Transcripción

1 Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre Invierno 2008, 10 de enero de 2008

2 Contenido 1 Sistemas de ecuaciones lineales y matrices Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Resumen 2 Vectores y matrices - productos vectorial y matricial Vectores y matrices - productos vectorial y matricial Resumen 3 Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales

3 Contenido 1 Sistemas de ecuaciones lineales y matrices Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Resumen 2 Vectores y matrices - productos vectorial y matricial Vectores y matrices - productos vectorial y matricial Resumen 3 Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales

4 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y y (x 2, y 2 ) x (x 1, y 1 ) x La línea recta Algunos hechos fundamentales sobre la línea recta son: Propiedad: La pendiente m de una recta que pasa por los puntos (x 1, y 1 ) y (x 2, y 2 ) está dada por: m = y 2 y 1 x 2 x 1 = y x si x 1 x 2

5 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y La línea recta Algunos hechos fundamentales sobre la línea recta son: y x = 0 (x 2, y 2 ) (x 1, y 1 ) x Propiedad: Si x 2 x 1 = 0 y y 2 y 1, entonces la recta es vertical y se dice que la pendiente es indefinida

6 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y b m = y x y = mx + b x La línea recta Algunos hechos fundamentales sobre la línea recta son: Propiedad: Cualquier recta (excepto una con pendiente indefinida) se puede describir escribiendo su ecuación en la forma pendiente-ordenada y = mx + b, donde m es la pendiente de la recta y b es la ordenada

7 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y b 2 b 1 y = mx + b L 2 : m 2 La línea recta Algunos hechos fundamentales sobre la línea recta son: Propiedad: Dos rectas distintas son paralelas si y sólo si tienen la misma pendiente L 1 : m 1 x

8 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y La línea recta Algunos hechos fundamentales sobre la línea recta son: m = a b ax + by = c x Propiedad: Si la ecuación de la recta se escribe en la forma ax + by = c (b 0), entonces, se puede calcular fácilmente la pendiente de la recta como, m = a b

9 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y La línea recta Algunos hechos fundamentales sobre la línea recta son: m 2 = 1 m 1 L 1 : m 1 L 2 : m 2 x Propiedad: Si m 1 es la pendiente de la recta L 1, y m 2 es la pendiente de la recta L 2, m 1 0 y L 1 y L 2 son perpendiculares, entonces m 2 = 1 m 1

10 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y La línea recta Algunos hechos fundamentales sobre la línea recta son: L : m = 0 Propiedad: Las rectas paralelas al eje x tienen una pendiente de cero x

11 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Propiedades de la línea recta y La línea recta Algunos hechos fundamentales sobre la línea recta son: L : m indefinida Propiedad: Las rectas paralelas al eje de las y tienen una pendiente indefinida x

12 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Dos ecuaciones lineales con dos incógnitas Sistema de ecuaciones Consideremos el sistema de dos ecuaciones con dos incógnitas: a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 Un sistema con una solución única Considere el sistema Solución x y = 7 x + y = Sumando ambas ecuaciones y después restándolas, obtenemos: x = 6 y = 1

13 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Dos ecuaciones lineales con dos incógnitas Sistema de ecuaciones Consideremos el sistema de dos ecuaciones con dos incógnitas: a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 Un sistema con un número infinito de soluciones Considere el sistema Solución x y = 7 2x 2y = 14 Para este sistema podemos observar que 2(x y = 7), por lo tanto la solución es de la forma: y = x 7

14 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Dos ecuaciones lineales con dos incógnitas Sistema de ecuaciones Consideremos el sistema de dos ecuaciones con dos incógnitas: a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 Un sistema sin solución Considere el sistema Solución x y = 7 2x 2y = 13 En este caso tenemos 2(x y = 13 2 ), por lo tanto las rectas son paralelas y diferentes

15 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Representación matricial de sistemas lineales La matriz de coeficientes, A es: A = Definición Una Matriz es un arreglo rectangular de números Por ejemplo, para el sistema de ecuaciones lineales: 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4

16 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Representación matricial de sistemas lineales La matriz aumentada del sistema es: Definición Una Matriz es un arreglo rectangular de números Por ejemplo, para el sistema de ecuaciones lineales: 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4

17 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Operaciones elementales en una matriz: Operaciones elementales con renglones 1 Multiplicar (o dividir) un renglón por un número diferente de cero 2 Sumar un múltiplo de un renglón a otro renglón 3 Intercambiar dos renglones Ejemplo: R R

18 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Operaciones elementales en una matriz: Operaciones elementales con renglones 1 Multiplicar (o dividir) un renglón por un número diferente de cero 2 Sumar un múltiplo de un renglón a otro renglón 3 Intercambiar dos renglones Ejemplo: R 2 R 2 2R

19 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Operaciones elementales en una matriz: Operaciones elementales con renglones 1 Multiplicar (o dividir) un renglón por un número diferente de cero 2 Sumar un múltiplo de un renglón a otro renglón 3 Intercambiar dos renglones Ejemplo: R 1 R

20 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote

21 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R R

22 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R 2 R 2 4R 1 R 3 R 3 3R

23 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R R

24 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i R 3 R 3 + R Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote

25 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R R

26 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 3x 1 + 1x 2 2x 3 = 4 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote x 1 + 2x 2 + 3x 3 = 9 1x 2 + 2x 3 = 4 1x 3 = 3 x 1 x 2 x 3 = 9 2x 2 3x 3 4 2x 3 3

27 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote

28 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = 30 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R R

29 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = 30 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R 2 R 2 4R 1 R 3 R 3 2R

30 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = 30 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R R

31 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = 30 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote R 1 R 1 2R 2 R 3 R 3 3R

32 Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Reducción de Gauss-Jordan Ejemplo 2x 1 + 4x 2 + 6x 3 = 18 4x 1 + x 2 + 6x 3 = 24 2x 1 + 7x x 3 = 30 Procedimiento: 1 Se selecciona el pivote 2 Se calcula R i (1/c i )R i 3 Se calcula R j R j c j R i 4 Se repite para todos los elementos del pivote x 1 x 3 = 1 1x 2 + 2x 3 = 4 x 1 x 2 = 1 + x 3 4 2x 3 x 3 x 3

33 Resumen Resumen Teorema El sistema a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 Tiene una solución única si y sólo si a 11 a 22 a 12 a 21 0 No tiene solución o tiene un número infinito de soluciones si y sólo si a 11 a 22 a 12 a 21 = 0

34 Resumen Resumen Reducción de Gauss & Gauss-Jordan En la eliminación Gaussiana se reduce por renglón la matriz de coeficientes a la forma escalonada por renglones, se despeja el valor de la última incógnita y después se usa la sustitución hacia atrás para las demás incógnitas En la eliminación de Gauss-Jordan se reduce por renglón la matriz de coeficientes a la forma escalonada reducida por renglones usando el procedimiento descrito

35 Resumen Resumen Problemas - Tarea 1 Pruebe que la distancia entre un punto (x 1, y 1 ) y la recta ax + by = c está dada por: d = ax 1+by 1 +c a 2 +b 2 2 Encuentre la distancia entre la recta 2x y = 6 y el punto de intersección de las rectas 2x 3y = 1 y 3x + 6y = 12

36 Resumen Resumen Problemas - Tarea - Reducción de Gauss-Jordan 1 Para qué valor de k tendrá soluciones no triviales el siguiente sistema?: 1x + 1y + 1z = 0 2x + 3y + 4z = 0 3x + 4y + kz = 0 2 Comprueba el resultado aplicando la reducción de Gauss-Jordan

37 Contenido 1 Sistemas de ecuaciones lineales y matrices Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Resumen 2 Vectores y matrices - productos vectorial y matricial Vectores y matrices - productos vectorial y matricial Resumen 3 Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales

38 Vectores y matrices - productos vectorial y matricial Definiciones y operaciones básicas Vector renglón de n componentes Se define a un vector renglón de n componentes como un conjunto ordenado de n números escritos de la siguiente manera: ( x1 x 2 x n ) Ejemplo: -vector renglón x = ( )

39 Vectores y matrices - productos vectorial y matricial Definiciones y operaciones básicas Vector columna de n componentes Un vector columna de n componentes es un conjunto ordenado de n números escritos de la siguiente manera: x 1 x 2 x n Ejemplo: 3-vector columna u = 1 1 0

40 Vectores y matrices - productos vectorial y matricial Definiciones y operaciones básicas Espacio vectorial R n Se usa el símbolo R n para denotar al conjunto de todos los n-vectores: a 1 a 2 cada a i es un número real a n

41 Vectores y matrices - productos vectorial y matricial Definiciones y operaciones básicas Matriz Una matriz A de m n es un arreglo rectangular de mn números agrupados en m renglones y n columnas A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2 a mj a mn

42 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Suma de matrices Consideremos A = (a ij ) y B = (b ij ) dos matrices m n Entonces la suma de A y B es una matriz m n, A + B dada por: A + B = a ij + b ij a 11 + b 11 a 12 + b 12 a 1n + b 1n a 21 + b 21 a 22 + b 22 a 2n + b 2n = a m1 + b m1 a m2 + b m2 a mn + b mn Es decir, A + B es una matriz de m n que se obtiene al sumar las componentes correspondientes de A y B

43 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Multiplicación de una matriz por un escalar Si A = (a ij ) es una matriz m n y si α es un escalar, entonces la matriz m n, αa, está dada por: αa = (αa ij ) αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n = αa m1 αa m2 αa mn Es decir, αa = (αa ij ) es una matriz obtenida al multiplicar cada componente de A por α

44 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

45 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

46 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

47 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

48 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

49 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

50 Vectores y matrices - productos vectorial y matricial Suma y multiplicación de matrices Teorema Sean A, B y C tres matrices de m n y sean α y β dos escalares Entonces: 1 A + 0 = A 2 0A = 0 3 A + B = B + A (ley conmutativa) 4 (A + B) + C = A + (B + C) (ley asociativa) α(a + B) = αa + αb (ley distributiva para escalares) 6 1A = A 7 (α + β)a = αa + βa

51 Vectores y matrices - productos vectorial y matricial Producto escalar Definición: Producto escalar a 1 b 1 a 2 Sean a = y b = b 2 a n b n dos vectores Entonces el producto escalar de a y b, representado por a b, está definido como: a b = a 1 b 1 + a 2 b 2 + a n b n Para poder realizar el producto escalar de a y b es necesario que a y b tengan el mismo número de componentes

52 Vectores y matrices - productos vectorial y matricial Producto escalar Teorema Sean a, b y c tres n-vectores y sea α un escalar Entonces: 1 a 0 = 0 2 a b = b a (ley conmutativa) 3 a (b + c) = a b + a c (ley distributiva) 4 (αa) b = α(a b)

53 Vectores y matrices - productos vectorial y matricial Producto escalar Teorema Sean a, b y c tres n-vectores y sea α un escalar Entonces: 1 a 0 = 0 2 a b = b a (ley conmutativa) 3 a (b + c) = a b + a c (ley distributiva) 4 (αa) b = α(a b)

54 Vectores y matrices - productos vectorial y matricial Producto escalar Teorema Sean a, b y c tres n-vectores y sea α un escalar Entonces: 1 a 0 = 0 2 a b = b a (ley conmutativa) 3 a (b + c) = a b + a c (ley distributiva) 4 (αa) b = α(a b)

55 Vectores y matrices - productos vectorial y matricial Producto escalar Teorema Sean a, b y c tres n-vectores y sea α un escalar Entonces: 1 a 0 = 0 2 a b = b a (ley conmutativa) 3 a (b + c) = a b + a c (ley distributiva) 4 (αa) b = α(a b)

56 Vectores y matrices - productos vectorial y matricial Producto de dos matrices Definición: Sea A = (a ij ) una matriz m n, y sea B = (b ij ) una matriz de n p Entonces el producto de A y B es una matriz de m p, C = (c ij ), en donde: c ij = (renglón i de A) (columna j de B) Es decir, el elemento ij de AB es el producto punto del renglón i de A y la columna j de B Si esto se extiende, se obtiene: c ij = a i1 b 1j + a i2 b 2j + + a in b nj Si el número de columnas de A es igual al número de renglones de B, entonces se dice que A y B son compatibles bajo la multiplicación

57 Vectores y matrices - productos vectorial y matricial Producto de dos matrices Ejemplificación de la multiplicación matricial (c ij ) = a 11 a 12 a 1n a 21 a 22 a 2n a i1 a i2 a in a m1 a m2 a mn b 11 b 12 b 1j b 1p b 21 b 22 b 2j b 2p b n1 b n2 b nj b np

58 Resumen Resumen La notación Σ El producto escalar y la multiplicación de dos matrices puede ser expresada de la siguiente forma: Producto escalar a b = a 1 b 1 + a 2 b a n b n n = a i b i i=1 Multiplicación de dos matrices c ij = a i1 b 1j + a i2 b 2j + + a in b nj n = a ik b kj k=1

59 Resumen Resumen Problemas - Tarea 1 Sean a 11, a 12, a 21 y a 22 números reales dados tales que a 11 a 22 a( 12 a 21 0 Encuentre ) ( los números ) ( b 11, b) 12, b 21 y b 22 a11 a tales que 12 b11 b = a 21 a 22 b 21 b Calcule A 2 si A = ( ) 3 Se dice que dos vectores a y b son ortogonales si a b = 0 Determine todos los números α y β tales que los vectores 1 4 α 2 y 2β sean ortogonales 3 7

60 Contenido 1 Sistemas de ecuaciones lineales y matrices Sistemas de ecuaciones lineales - eliminación de Gauss-Jordan Resumen 2 Vectores y matrices - productos vectorial y matricial Vectores y matrices - productos vectorial y matricial Resumen 3 Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales

61 Matrices y sistemas de ecuaciones lineales Representación matricial de un sistema de ecuaciones lineales Sistema de m ecuaciones y n incógnitas Consideremos el sistema de m ecuaciones lineales con n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m La matriz de coeficientes es: a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn

62 Matrices y sistemas de ecuaciones lineales Representación matricial de un sistema de ecuaciones lineales Sistema de m ecuaciones y n incógnitas Consideremos el sistema de m ecuaciones lineales con n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Los vectores x y b son: x = x 1 x 2 x n b = b 1 b 2 b m

63 Matrices y sistemas de ecuaciones lineales Representación matricial de un sistema de ecuaciones lineales Sistema de m ecuaciones y n incógnitas Consideremos el sistema de m ecuaciones lineales con n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Representación matricial de un sistema de ecuaciones: Ax = b Un sistema de ecuaciones lineales es homogéneo si: Ax = 0

64 Matrices y sistemas de ecuaciones lineales Representación matricial de un sistema de ecuaciones lineales Sistema de m ecuaciones y n incógnitas Consideremos el sistema de m ecuaciones lineales con n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Ejemplo: 1x 1 + 4x 2 2x 3 = 10 2x 1 + x 2 + 3x 3 = 8 3x 1 + 1x 2 2x 3 = 4 A =

65 Matrices y sistemas de ecuaciones lineales Representación matricial de un sistema de ecuaciones lineales Sistema de m ecuaciones y n incógnitas Consideremos el sistema de m ecuaciones lineales con n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Ejemplo (continuación): 1x 1 + 4x 2 2x 3 = 10 2x 1 + x 2 + 3x 3 = 8 3x 1 + 1x 2 2x 3 = 4 x = x 1 x 2 x 3, b =

66 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 La representación de la matriz aumentada de Ax = b es:

67 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 Reduciendo la matriz aumentada a la forma escalonada, tenemos: R 2 R 2 4R 1 R 3 R 3 6R

68 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 Reduciendo la matriz aumentada a la forma escalonada, tenemos (continuación): R 2 R

69 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 Reduciendo la matriz aumentada a la forma escalonada, tenemos (continuación): R 1 R 1 R 2 R 3 R 3 + R

70 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 La reducción queda como: La solución sería: x 1 x 2 x 3 = 11 4 x x 3 x 3

71 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 Considerando las soluciones x 1 y x 2 para x 3 = 1 y x 3 = 2, respectivamente: x 1,2 = x 1 x 2 x 3 La soluciones serían: x 1 = = 11 4 x x 3 x 3 x 2 =

72 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Ejemplo: 1x 1 + 1x 2 1x 3 = 7 4x 1 1x 2 + x 3 = 4 6x 1 + 1x 2 + 3x 3 = 18 Consideremos ahora el vector x = x 1 x 2 : x = = efectuando la multiplicación Ax: =

73 Matrices y sistemas de ecuaciones lineales Ejemplo - Sistema homogéneo y no homogéneo Teorema Sean x 1 y x 2 soluciones al sistema no homogéneo Entonces su diferencia x 1 x 2, es una solución al sistema homogéneo relacionado A(x 1 x 2 ) = Ax 1 Ax 2 = 0 Consideremos ahora el vector x = x 1 x 2 : x = = efectuando la multiplicación Ax: =

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. García Alonso, Fernando Luis. Dr. García Ferrández, Pedro Antonio. -- RESUMEN TEORÍA DE ÁLGEBRA Matrices Las matrices constituyen una herramienta fundamental para la ejecución

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Lección 2. Puntos, vectores y variedades lineales.

Lección 2. Puntos, vectores y variedades lineales. Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de

Más detalles

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1 UNIVERSIDAD NACIONAL DE RIO CUARTO FACULTAD DE CIENCIAS ECONOMICAS Cátedra: ÁLGEBRA LINEAL UNIDAD V ESPACIOS VECTORIALES 1.V Definición de vector VECTOR EN R n y PUNTO EN EL ESPACIO N-DIMENSIONAL SON,

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

TEMA 1. VECTORES Y MATRICES

TEMA 1. VECTORES Y MATRICES TEMA 1. VECTORES Y MATRICES 1.1. Definición de vector. Operaciones elementales 1.2. Matrices. Operaciones elementales 1.3. Traza y Determinante 1.4. Aplicaciones 1.1. DEFINICIÓN DE VECTOR. OPERACIONES

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL

INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL Araceli Rendón Trejo, Jesús Rodríguez Franco, Andrés Morales Alquicira UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD XOCHIMILCO Casa abierta

Más detalles

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO ÁLGEBRA LINEAL ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma, Tlalnepantla,

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales.

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 3 Matrices, determinantes y sistemas de ecuaciones lineales 3- Matrices

Más detalles

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d GRADO EN I. TELEMÁTICA. HOJA : ESPACIOS VECTORIALES. ESPACIOS NULO Y COLUMNA.- Sea W el conjunto de todos los vectores de R de la forma subespacio de R. s + t s t s t t, con s, t R. Probar que W es un.-

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular

Más detalles

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques MATEMÁTICAS I Licenciatura de Administración y Dirección de Empresas Fernando Casas, María Vicenta Ferrer, Pura Vindel Departament de Matemàtiques Universitat Jaume I 2 Estas notas constituyen el material

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Matemáticas II para Alumnos de Bachillerato

Matemáticas II para Alumnos de Bachillerato Matemáticas II para Alumnos de Bachillerato ESTRUCTURA DE LOS EXÁMENES El examen constará de dos opciones (A y B) con cuatro cuestiones cada una. El alumno deberá elegir una opción (A o B) y resolver las

Más detalles

Tronco común 1 Semestre

Tronco común 1 Semestre Tronco común 1 Semestre Programa de la asignatura: Álgebra lineal Universidad Abierta y a Distancia de México Tronco Común 1 Índice... 3 Presentación de la unidad... 3 Propósitos... 3 Competencia específica...

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

Tema 4.- El espacio vectorial R n.

Tema 4.- El espacio vectorial R n. Tema 4- El espacio vectorial R n Subespacios vectoriales de R n Bases de un subespacio Rango de una matriz 4 Bases de R n Cambios de base 5 Ejercicios En este tema estudiamos la estructura vectorial del

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Matemáticas para la economía y la empresa. Departamento de Economía Financiera y Matemática

Matemáticas para la economía y la empresa. Departamento de Economía Financiera y Matemática Matemáticas para la economía y la empresa M. J. Canós Darós, C. Ivorra Castillo, V. Liern Carrión Departamento de Economía Financiera y Matemática Índice General Prólogo vii Álgebra Lineal 1 Algebra matricial

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Fundamentos matemáticos de la ingeniería

Fundamentos matemáticos de la ingeniería Fundamentos matemáticos de la ingeniería Pura Vindel Departament de Matemàtiques Codi assignatura 8 Pura Vindel - ISBN: 978-84-69-98-4 Edita: Publicacions de la Universitat Jaume I. Servei de Comunicació

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Matemáticas Serie 1 Responda a CINCO de las siguientes seis cuestiones. En las respuestas, explique siempre qué es lo que quiere hacer y por qué. Cada cuestión

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal 9 de noviembre de 2009 Deseo agradecer la cuidadosa lectura, las correcciones y las sugerencias para mejorar este documento realizadas por el M.C. César Rincón Orta. Deseo agradecer

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

TRANSFORMACIONES LINEALES. Transformaciones. TRANSFORMACIONES LINEALES Ejemplo. TRANSFORMACIONES LINEALES Ejemplo

TRANSFORMACIONES LINEALES. Transformaciones. TRANSFORMACIONES LINEALES Ejemplo. TRANSFORMACIONES LINEALES Ejemplo TRANSFORMACIONES LINEALES Transformaciones Conceptos básicos Gilberto Aguilar Miranda Instituto Tecnologico de Chihuahua : Una transformación lineal L de R n en R m (L : R n R m ) es una función que asigna

Más detalles

Vectores, Rectas y Planos. http://www.cidse.itcr.ac.cr/cursos-linea/

Vectores, Rectas y Planos. http://www.cidse.itcr.ac.cr/cursos-linea/ Vectores, Rectas y Planos. http://www.cidse.itcr.ac.cr/cursos-linea/ Walter Mora F. wmora2@yahoo.com.mx Centro de Recursos Virtuales - CRV Reista digital Matemática, Educación e Internet Escuela de Matemática

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Métodos numéricos ENRIQUE RAFAEL ESPINOSA SANCHEZ. Red Tercer Milenio

Métodos numéricos ENRIQUE RAFAEL ESPINOSA SANCHEZ. Red Tercer Milenio Métodos numéricos ENRIQUE RAFAEL ESPINOSA SANCHEZ Red Tercer Milenio MÉTODOS NUMÉRICOS MÉTODOS NUMÉRICOS ENRIQUE RAFAEL ESPINOSA SANCHEZ RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero.

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero. Vectores. Dados los vectores a y b del espacio. Siempre es posible encontrar otro vector c tal que multiplicado vectorialmente por a nos de el vector b?. Por que?. No siempre será posible. El vector a

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles