2n = 4 cromosomas. Eje proteico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2n = 4 cromosomas. Eje proteico"

Transcripción

1 meiosis 22 + X 22 + X 22 + X XY 22 + Y Y 22 + Y La meiosis es u proceso de divisió celular por el que a partir de ua célula madre diploide (2) se obtiee cuatro células hijas haploides () Durate la meiosis se produce dos divisioes celulares cosecutivas coocidas como meiosis I y meiosis II. La primera de las divisioes, que es más compleja que la seguda, es ua divisió reduccioal e la cual se pasa de ua célula diploide (co 2 cromosomas) a dos células haploides (co cromosomas) cada ua de ellas co 2 cromátidas. La seguda divisió es mucho más secilla y similar a ua divisió mitótica, y e ella a partir de las dos células haploides () ateriormete formadas se obtiee cuatro células haploides () co cromátidas cada ua de ellas. Las úicas células que sufre el proceso meiótico so las de la liea germial, es decir, aquellas que va a formar los gametos masculios y femeios. E la fotografía se puede ver los coductos semiíferos de los testículos co las células germiales. Cromátidas hermaas FASE S Ates de comezar la meiosis el material geético de la célula sufre u proceso de replicació (duplicació del ADN), co lo que cada cromosoma pasa a teer dos cromátidas hermaas (las cromátidas hermaas so copias exactas etre sí). E esta fase tambié se produce u rejuveecimieto del citoplasma y de los orgáulos celulares. Además u pequeño porcetaje de los cromosomas (aproximadamete el 2%) queda si replicarse. A diferecia de lo que ocurre durate la mitosis, e este caso tras la fase de sítesis de ADN (S) o tiee lugar ua fase G2, co lo que ua vez cocluida la fase S comieza directamete la divisió meiótica. 2 = 4 cromosomas Leptoteo Durate toda la profase I la membraa uclear permaece ialterada. E el leptoteo los cromosomas comieza a codesarse pero matiee sus telómeros uidos a la membraa uclear. A lo largo de los cromosomas va apareciedo uos pequeños egrosamietos deomiados cromómeros. E este mometo de la profase I sólo es posible visualizar ua de las dos cromátidas hermaas de cada cromosoma debido a que ambas se ecuetra muy próximas etre sí. No será hasta el fial de la profase I cuado se pueda empezar a distiguir las dos cromátidas hermaas de cada cromosoma. E los cromosomas se puede apreciar u eje proteico que posteriormete tedrá ua gra importacia e el apareamieto de los cromosomas homólogos. Eje proteico

2 Zigoteo Los cromosomas homólogos comieza a acercarse hasta quedar apareados e toda su logitud. Los homólogos queda fialmete apareados cromómero a cromómero. La disposició de los cromómeros a lo largo del cromosoma parece estar determiado geéticamete. Tal es así que icluso se utiliza la disposició de estos cromómeros para poder distiguir cada cromosoma durate la profase I meiótica. Los cromosomas homólogos se recooce etre sí gracias a que los telómeros de éstos se ecuetra aclados e regioes próximas de la membraa uclear. Además el eje proteico cetral observado e el leptoteo pasa a jugar u papel importate e el apareamieto de los homólogas al formar los elemetos laterales del complejo siaptoémico, ua estructura proteica co forma de escalera formada por dos elemetos laterales y uo cetral que se va cerrado a modo de cremallera y que garatiza el perfecto apareamieto etre homólogos. E el apareamieto etre homólogos tambié está implicada la secuecia de gees de cada cromosoma, lo cual evita el apareamieto etre cromosomas o homólogos. Además durate el zigoteo cocluye la replicació del ADN (2% restate) que recibe el ombre de zig-adn. Cromosoma Elemeto lateral Elemeto cetral Cromosoma Paquiteo Ua vez que los cromosomas homólogos está perfectamete apareados formado estructuras que se deomia bivaletes se produce el feómeo de recombiació geética, esto es, el itercambio de material geético etre los cromosomas homólogas de cada pareja. La recombiació geética está mediada por la aparició etre los dos homólogas de ua estructura proteica de 90 m de diámetro llamada ódulo de recombiació. E él se ecuetra las ezimas que media e el proceso de recombiació. Durate esta fase se produce ua pequeña sítesis de ADN, que probablemete está relacioada co feómeos de reparació de ADN ligados al proceso de recombiació. Diploteo Los cromosomas cotiúa codesádose hasta que se puede comezar a observar las dos cromátidas de cada cromosoma, por lo que a los bivaletes del paquiteo los podemos deomiar ahora tétradas. Además e este mometo se puede observar los lugares del cromosoma dode se ha producido la recombiació. Estas estructuras e forma de X recibe el ombre quiasmas. E este puto la meiosis puede sufrir ua pausa, como ocurre e el caso de la formació de los óvulos humaos. Así, la líea germial de los óvulos humaos sufre esta pausa hacia el séptimo mes del desarrollo embrioario y su proceso de meiosis o cotiuará hasta alcazar la madurez sexual. A este estado de latecia se le deomia dictiotea. Quiasmas

3 Diaciesis Esta etapa apeas se distigue del diploteo. Podemos observar los cromosomas algo más codesados y los quiasmas. El fial de la diaciesis y por tato de la profase I meiótica viee marcado por la rotura de la membraa uclear. Durate toda la profase I cotiuó la sítesis de ARN e el úcleo. Al fial de la diaciesis cesa la sítesis de ARN y desaparece el ucleolo. METAFASE I Comieza co la rotura de la membraa uclear. Se forma el huso acromático a partir de los cetrosomas que se coloca e los polos de la célula. Las parejas de cromosomas homólogos se ue al huso e el cetro de la célula a través de sus cetrómeros. Los quiasmas so todavía visibles ANAFASE I Los cromosomas homólogos se separa y se mueve hacia polos opuestos guiados por las fibras del huso. Como cosecuecia desaparece los quiasmas. (Obsérvese que los cromosomas resultates so cromosomas recombiates).

4 TELOFASE I Se forma dos uevas membraas ucleares y se separa las dos uevas células haploides () co 2 cromátidas cada ua de ellas. Esta parte del ciclo meiótico varía de uos orgaismos a otros, así e alguos o se forma membraa uclear y se pasa directamete a la seguda divisió meiótica. E cualquier caso lo que uca se produce etre la primera y la seguda divisió meiótica es la sítesis de uevo ADN. I E este ometo cada célula cotiee u úmero haploide de cromosomas, cada uo de ellos co dos cromátidas. La membraa uclear se rompe y comieza la sítesis del uevo huso acromático. METAFASE II Los cromosomas se dispoe e el cetro de la célula uidos al huso por su cetrómero y co cada ua de las cromátidas dirigidas a polos opuestos de la célula, formado u estructura llamada placa ecuatorial.

5 ANAFASE II Los cetrómeros se separa y las cromátidas hermaas so arrastradas hacia polos opuestos arrastradas por las fibras del huso. TELOFASE II Se vuelve a formar los úcleos alrededor de los cromosomas situados e los polos. E esta fase tambié desaparece el huso acromático y los cromosomas se recodesa. Co esto se habrá formado cuatro células haploides co cromátidas cada ua de ellas. BIBLIOGRAFÍA David T. Suzuki, Athoy J. F. Griffiths, Jeffrey H. Miller, Richard C. Lewoti Geética INTERAMERICANA-McGRAW-HILL, Madrid, 1992 Athoy J. F. Griffiths, William M. Gelbart, Jeffrey H. Miller, Richard C. Lewoti Geética modera INTERAMERICANA-McGRAW-HILL, Madrid, 2000 Bruce Alberts, Deis Bray, Julia Lewis, Marti Raff, Keith Roberts, James D. Watso Biología molecular de le célula EDICIONES OMEGA, Barceloa, 1987 Do W. Fawcett, M.D. Tratado de Histología NTERAMERICANA-McGRAW-HILL, Madrid, 1988 Barbara Youg, Joh W. Heath Wheater's Histología fucioal HARCOURT, Madrid, 2000

MEIOSIS. n = 23 zigoto R R 2n = 46 2n = 46 2n = 46 n = 23

MEIOSIS. n = 23 zigoto R R 2n = 46 2n = 46 2n = 46 n = 23 MEIOSIS Básicamete, la meiosis cosiste e u tipo de divisió celular e la que se obtiee cuatro células hijas co la mitad de la dotació cromosómica, la mitad de iformació geética. Al fial, se obtiee cuatro

Más detalles

CAPÍTULO 13 DIVISIÓN CELULAR

CAPÍTULO 13 DIVISIÓN CELULAR DIVISIÓN CELULAR 1. FISIÓN BINARIA Ocurre en procariontes: tras la duplicación del ADN, se segregan las moléculas hijas y se divide el citoplasma. Bacteria en Fisión Binaria Esquema de la Fisión Binaria

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

La meiosis consta de dos divisiones sucesivas de la célula con una única replicación del ADN. El producto final son cuatro células con n cromosomas.

La meiosis consta de dos divisiones sucesivas de la célula con una única replicación del ADN. El producto final son cuatro células con n cromosomas. 8) LA MEIOSIS LA MEIOSIS: CONCEPTO La meiosis es un mecanismo de división celular que permite la obtención a partir de células diploides (2n) de células haploides (n) con diferentes combinaciones de genes.

Más detalles

Curso acceso mayores de 25 años

Curso acceso mayores de 25 años 1. La reproducción celular 2. El ciclo celular 3. División celular: mitosis y meiosis. Significado biológico, semejanzas y diferencias de estos procesos 4. División del citoplasma 5. Ciclos biológicos

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

10.2. LA MEIOSIS. Animación: La meiosis

10.2. LA MEIOSIS. Animación: La meiosis 10.2. LA MEIOSIS Las células germiales se divide mediate el proceso deomiado meiosis, e el que a partir de ua célula se origia cuatro que tiee la mitad de iformació geética que la paretal. Por u lado,

Más detalles

CICLO CELULAR LA INTERFASE:

CICLO CELULAR LA INTERFASE: CICLO CELULAR El ciclo celular o ciclo vital de una célula es el período de tiempo que abarca desde que se forma una célula hasta que se divide dando lugar a dos nuevas células. Comprende dos etapas muy

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

CICLO CELULAR. MITOSIS. MEIOSIS

CICLO CELULAR. MITOSIS. MEIOSIS CCLO CELULAR. MTO. MEO 1) Ciclo celular Es la capacidad que tienen las células de reproducirse. Consta de dos etapas fundamentales: nterfase y la división celular. La interfase consta de tres etapas: G1:

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

La división celular. .Interfase

La división celular. .Interfase .Interfase La división celular El conjunto de procesos propios de la interfase hacen posible el mantenimiento o el incremento de las estructuras celulares, lo que conlleva, en principio, un incremento

Más detalles

TEMA 10: CICLO Y DIVISIÓN CELULARES

TEMA 10: CICLO Y DIVISIÓN CELULARES 1. El ciclo celular en las células eucariotas TEMA 10: CICLO Y DIVISIÓN CELULARES La reproducción es el mecanismo mediante el cual se perpetúan las especies y la vida. La reproducción celular consiste

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

6) EL CICLO CELULAR. LA MITOSIS. La vida de una célula consta de dos etapas diferentes: interfase y división

6) EL CICLO CELULAR. LA MITOSIS. La vida de una célula consta de dos etapas diferentes: interfase y división 6) EL CICLO CELULAR. LA MITOSIS La vida de una célula consta de dos etapas diferentes: interfase y división La interfase es una etapa muy larga en la cual tiene lugar el crecimiento de la célula y el desarrollo

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO Coteido: Resume ejecutivo I. Los estadígraos e la ormació de portaolios de activos iacieros II. Portaolios

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012.

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012. INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA Curso 01 Práctico I Itroducció a los Métodos Estadísticos. Fecha de Etrega: 5 de Setiembre de 01. 1 Parte A: Ejercicios Teóricos: Ejercicio N o 1 Pruebas de Beroulli

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Tema 4.- LA CÉLULA Biología y Geología 4º ESO: La célula

Tema 4.- LA CÉLULA Biología y Geología 4º ESO: La célula Tema 4.- LA CÉLULA 1 Teoría Celular. Robert Hooke en 1665 observó las primeras células. Al analizar corcho vió unas estructuras semejantes a una panal y les llamó cellulas (celdillas). 2 Teoría Celular.

Más detalles

El ciclo celular. Mitosis y Meiosis.

El ciclo celular. Mitosis y Meiosis. El ciclo celular. Mitosis y Meiosis. (Láminas 46 a 51 de Eurobio 4-5) 1.EL CICLO CELULAR: CONCEPTO Y ETAPAS. Todas las células, según estableció Virchow en 1.858, se forman por división de otra ya existente.

Más detalles

DIVISION CELULAR MITOSIS Y MEIOSIS

DIVISION CELULAR MITOSIS Y MEIOSIS DIVISION CELULAR MITOSIS Y MEIOSIS MITOSIS. División celular simple. Realizada por las células somáticas. Se originan dos células hijas idénticas entre si y a la célula que les dio origen. Es un proceso

Más detalles

Guía de servicio al cliente VAIO-Link

Guía de servicio al cliente VAIO-Link Guía de servicio al cliete VAIO-Lik "Tratamos cada problema de cada cliete co cuidado, ateció y respecto y queremos que todos uestros clietes se sieta bie sobre la experiecia que tiee co VAIO-Lik." Guía

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA 1. INTRODUCCIÓN

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado e matemática, obedece a la siguiete idea:

Más detalles

Sumando la Derivada de la Serie Geométrica

Sumando la Derivada de la Serie Geométrica Boletí de la Asociació Matemática Veezolaa, Vol. X, No. 1 (2003) 89 MATEMÁTICAS RECREATIVAS Sumado la Derivada de la Serie Geométrica Lyoell Boulto y Mercedes H. Rosas 1. Itroducció Jacobo Beroulli (1654

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Grupos Puntuales de Simetría

Grupos Puntuales de Simetría Grupos Putuales de Simetría Operació de Simetría: Trasformació de la posició de u cuerpo tal que la posició fial y es físicamete idistiguible de la iicial y las distacias etre todas las parejas de putos

Más detalles

INTRODUCCIÓN AL USO DE PLANILLAS DE CÁLCULO PARTE 1

INTRODUCCIÓN AL USO DE PLANILLAS DE CÁLCULO PARTE 1 UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO INTRODUCCIÓN AL USO DE PLANILLAS DE CÁLCULO PARTE FUNDAMENTOS DE INFORMATICA Igeiería Química Dra. Soia J. Bez Ig. Patricia L. Mores Ig. Evagelia

Más detalles

GUIAS, TALLERES Y EVALUACIÓN

GUIAS, TALLERES Y EVALUACIÓN INSTITUCIÓN EDUCATIVA COLEGIO GREMIOS UNIDOS MANUAL DE PROCESO MISIONAL GESTIÓN ACADÉMICA GUIAS, TALLERES Y EVALUACIÓN GA-F29 Versión: 1 Fecha: 2013-01-21 FECHA: 2014-02-06 GUIA x TALLER EVALUACIÓN DOCENTE:

Más detalles

Actividad: Cómo se multiplican las células?

Actividad: Cómo se multiplican las células? Nivel: 2º medio Subsector: Biología Unidad temática: Material Genético y Reproducción celular Actividad: La célula es la unidad fundamental de vida. A través de la célula se realizan todas las funciones

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona Edició # 53 EL SALVADOR iss : 2075-6631 Lic. Luis Barahoa Destacado abogado acioal y regioal e el área del derecho tributario. Co más de 20 años de recorrido profesioal. Socio de la firma Arias & Muñoz.

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

RECOMENDACIONES A LOS ALUMNOS

RECOMENDACIONES A LOS ALUMNOS GUIA DE TRABAJO PRACTICO Nº PAGINA Nº RECOMENDACIONES A LOS ALUMNOS La Asigatura Matemáticas de las carreras Profesorado y Liceciatura e Biología, correspode a primer año; su régime es aual, co tres horas

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

Este documento es propiedad de Basquetour, S.A. Prohibida su reproducción parcial o total sin autorización expresa.

Este documento es propiedad de Basquetour, S.A. Prohibida su reproducción parcial o total sin autorización expresa. Este documeto es propiedad de Basquetour, S.A. Prohibida su reproducció parcial o total si autorizació expresa. 218 Cuál es el motivo fudametal de visita a Hasta qué puto se cosulta iformació acerca del

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

M E I O S I S La MEIOSIS es un proceso que ocurre en las gónadas de los organismos eucariotas,

M E I O S I S La MEIOSIS es un proceso que ocurre en las gónadas de los organismos eucariotas, Tema 4 Genética Tema 4. Genética 1) La meiosis. 2) Ciclos de vida (con reproducción sexual). 3) Las leyes de la herencia de Mendel. 4) DNA: la molécula de la herencia. M E I O S I S La MEIOSIS es un proceso

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos Tratamieto para la apea del sueño Revisió de la ivestigació para adultos Es apropiada si: U médico le dijo que tiee "apea obstructiva del sueño (OSA por su sigla e iglés) de grado leve, moderata o grave.

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

La sucesión de Fibonacci

La sucesión de Fibonacci La sucesió de Fiboacci María Isabel Viggiai Rocha Sea la sucesió {a } defiida por: a = a -1 + a -2 si 3 y a 1 = a 2 = 1. Esta sucesió es coocida como la sucesió de Fiboacci y la aparició de la misma brota

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

E2 - INDICADORES DE FRAGMENTACIÓN DE LOS ECOSISTEMAS

E2 - INDICADORES DE FRAGMENTACIÓN DE LOS ECOSISTEMAS Defiició: Se ha formulado cuatro idicadores que mide la fragmetació de los ecosistemas: a. Número de fragmetos de u ecosistema ( N P ) : Es el úmero de fragmetos j e que se ecuetra dividido u ecosistema

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia *

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia * Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. Articulació de los sectores de salud, protecció y educació e la ateció a la primera

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

I- CÁLCULO DE ERRORES EN LAS MEDIDAS.

I- CÁLCULO DE ERRORES EN LAS MEDIDAS. FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO DE FÍSICA DE LA MATERIA CONDENSADA I- CÁLCULO DE ERRORES EN LAS MEDIDAS. 1. Itroducció. La medida es fudametal e el crecimieto y

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/

Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/ 4º E.S.O. Biología y Geología - Unidad 5.- La herencia biológica Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/ Alumno/a... Fecha... 1.- Completa: Todos los seres vivos tienen

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1.

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1. BS Factura Guía de Etesioes del sector turístico Guía de Etesioes del sector turístico Barceloa, Eero 2007 Guía de formato de factura ST Versió 1.1 I d i c e 0. Itroducció... 3 1. Etesioes del sector turístico...

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Tema 5.- Ciclo celular. Mitosis. Meiosis. 12.- 13.- 14.- 15.-

Tema 5.- Ciclo celular. Mitosis. Meiosis. 12.- 13.- 14.- 15.- Tema 5.- Ciclo celular. Mitosis. Meiosis. 12.- El ciclo celular. Descripción de las fases. 13.- División celular: Mitosis y citocinesis. Descripción morfológica y genética de la secuencia de acontecimientos

Más detalles