Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas"

Transcripción

1 Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias Ecoómicas y Emresariales Deartameto de Ecoomía Fiaciera y Cotabilidad I Camus de Somosaguas 83 Pozuelo de Alarcó (Madrid) RESUMEN Dado que el cojuto de fucioes homogéeas de grado r forma u esacio vectorial real, el objetivo de este trabajo es mostrar que el cojuto de fucioes de Cobb- Douglas de grado r, X α Y r-α, forma ua base de dicho esacio vectorial, lo que uede resultar de iterés dada la imortacia que las fucioes de Cobb- Douglas tiee e Ecoomía. ABSTRACT Give that the set of all the homogeeous fuctios of degree r forms a real vector sace, the objective of this work is to show that the set of Cobb-Douglas fuctios of degree r, X α Y r-α, forms a base of this vector sace, which could be of iterest give the imortace of the Cobb-Douglas fuctios i Ecoomics. PALABRAS CLAVE: Fucioes homogéeas, fucioes de Cobb-Douglas, esacio vectorial, base.

2 INTRODUCCIÓN La teoría ecoómica clásica, la así deomiada teoría margialista del siglo XIX, artió de la idea de que e u roceso roductivo los factores roductivos debería ser retribuidos or el valor de sus roductos margiales. Su razoamieto fue el siguiete: ) Suogamos que ua emresa roduce u úico bie emleado dos factores roductivos distitos K, L, el caital y el trabajo. Sea y = f ( K, L) la fució de roducció de la emresa cosiderada, dode y simboliza la catidad de roducto y K y L las catidades de rimer y segudo factor roductivos emleadas. ) Los margialistas se situaro e codicioes de equilibrio e el que las codicioes de mercado hacía que la emresa o tuviese ifluecia i e el recio uitario de lo roducido,, i e el de los factores de roducció, y. 3) Por cosiguiete, de ua arte, lo agado or la emresa ara roducir ua catidad y de roducto sería K + L y, de otra arte, el recio total de lo roducido sería f ( K, L ) co lo que, dadas las codicioes de equilibrio, estas dos catidades debería ser iguales etre sí: K + L= f K L. ( ), 4) Ahora bie, dado que los factores roductivos K, L, debe ser retribuidos e fució de su roductividad margial, obteemos que f f = y = K L co lo que llegamos a la ecuació fudametal, f f K + L = f ( K, L) K L que iguala el coste de los factores roductivos, exresado or su roductividad margial, co el valor de lo roducido. Elimiado e ambos miembros, obteemos ua ecuació e derivadas arciales cuyas solucioes, de acuerdo co el coocido teorema de EULER ara las fucioes homogéeas, será fucioes homogéeas de grado. Cabe eserar, or cosiguiete, que el estudio de este tio de fucioes, las fucioes homogéeas, sea relevate ara la teoría ecoómica del equilibrio. El objetivo de este artículo es mostrar alguas de sus osibles alicacioes.

3 . FUNCIONES HOMOGÉNEAS Y ALGUNAS DE SUS PROPIEDADES. Defiició: Fucioes homogéeas. Se dice que ua fució f : es homogéea de grado r si se cumle que: ( λ,..., λ ) = λ r (,..., ) f x x f x x ara todo λ > y ara todo (x,...,x ) erteeciete al domiio de defiició de f. Por la defiició aterior, el domiio de defiició de f deberá ser u coo de, es decir, u cojuto C de co la roiedad de que si x,..., x C λx,..., λx C. Como además, e el caso ecoómico, los factores ( ) ( ) roductivos debería ser ositivos se ve que el domiio de f será de la forma L K Proiedades de las fucioes homogéeas.. Las fucioes homogéeas de grado r co el mismo domiio de defiició forma u ESPACIO VECTORIAL REAL: Si f y g so homogéeas de grado r tambié lo so las fucioes f + g y α f α. Este hecho es la roiedad fudametal que utilizaremos.. Ua fució homogéea queda determiada coociedo los valores que toma sobre la frotera de la bola uidad. 3

4 L K 3. Si f ( K, L ) es homogéea de grado r, f (, ) K L uede escribirse como r L r K f ( K, L) = K g = Lh K L, dode g y h so fucioes de ua variable, y, recírocamete, cualquier fució de ua variable (K/L) multilicada or L r o de ua variable (L/K) multilicada or K r so fucioes homogéeas. La roiedad de las fucioes homogéeas de grado r, defiidas sobre el mismo coo C de R, de formar u esacio vectorial sobre el cuero de los úmeros reales os asegura, or el teorema de la existecia de ua base de la teoría de los esacios vectoriales, que dicho esacio vectorial ha de teer ua base. Como es sabido, ua de las fucioes homogéeas más usadas e Ecoomía es la fució de Cobb-Douglas r f ( K, L) = K α L α, u oliomio homogéeo de grado r. U teorema, recietemete demostrado or osotros (García Pieda, M. P. y Núñez del Prado, J. A., 3), muestra que dichas fucioes de Cobb-Douglas, coforme α varía e algú itervalo [ AB, ] o e so base de dicho esacio vectorial. TEOREMA, [, ] ) Sea C u coo de CD u itervalo e el que varía los exoetes α. D Etoces f ( ) x α y r α α d α = ( x, y ) C f ( α), es decir, las C r x α α y so liealmete ideedietes. fucioes de Cobb-Douglas { } α [ CD, ] 4

5 ) Sea H( x, y ) ua fució homogéea cotiua e u coo C de +. Etoces H( x, y ) uede escribirse como D (, ) = ( α ) C ara ua cierta fució ( ) r { x α α y } α [ CD, ] α r α H x y f x y d so sistema de geeradores. α f α, es decir, las fucioes de Cobb-Douglas Este teorema, juto co la ecuació de EULER que caracteriza las fucioes de roducció de la teoría margialista clásica como fucioes homogéeas difereciables, da ua justificació matemática de la imortacia que las fucioes de Cobb-Douglas ha teido siemre e Ecoomía ya que, e codicioes de equilibrio de mercado, las fucioes de roducció ha de ser, or el teorema de EULER, homogéeas, y, segú el teorema aterior, todas las fucioes homogéeas difereciables de grado r so combiacioes lieales de las de Cobb-Douglas que aarece así como las comoetes básicas de las fucioes de roducció homogéeas.. APLICACIONES. Cosideraremos dos osibles alicacioes:. La rimera alicació cosiste e dar ua iterretació ecoómica del sigificado de las combiacioes lieales de varias fucioes de Cobb-Douglas que geera todas las fucioes homogéeas de roducció. Sea, or simlicidad, ua combiació lieal α r α α r α AK L + BK L de dos fucioes de Cobb-Douglas: esta fució de roducció se iterreta, de modo atural, como la fució de roducció de u emresario que osee dos emresas que fabrica u mismo roducto co dos sistemas de roducció α r α diferetes; e la rimera emresa el caital y el trabajo roduce como K L α r α mietras que e la seguda, más modera, la roducció viee dada or K L co lo que la roducció total de ambas fábricas es la combiació lieal de ambas roduccioes, o lo que es lo mismo, la combiació lieal de dos fucioes de roducció liealmete ideedietes de Cobb-Douglas. Se ve así que, e geeral, ua fució de roducció homogéea difereciable arbitraria uede imagiarse como si fuese la suma o combiació lieal de u úmero fiito o ifiito de emresas, cada ua de las cuales se ajusta a ua fució de roducció de Cobb-Douglas.. Fucioes CES. Las fucioes de roducció CES, fucioes de elasticidad costate, so fucioes de roducció muy estudiadas e Ecoomía de la forma f(k, L) = [A K + A L ] /. So fucioes de redimietos costates a escala y se comrueba que, auque o so fucioes de roducció de COBB-DOUGLAS, sí so fucioes homogéeas de grado : 5

6 f(λk, λl) = [A (λk) + A (λl) ] / = [λ (A K + A L )] / = λ[a K + A L ] / = λ f(k, L). Por cosiguiete odrá exresarse como combiacioes lieales de fucioes de roducció de COBB-DOUGLAS de grado. E este caso la combiació lieal se obtiee de la siguiete forma: e rimer lugar odemos escribir f(k, L) como (, K f K L) = AK + AL = L A + A L que o es otra cosa que ua (la tercera) de las roiedades de las fucioes homogéeas que exusimos ateriormete. Ahora se cosidera la fució K K g = A + A L L que es fució difereciable C y la desarrollamos e serie de otecias e u uto K L obteiedo: K K g K K g K K g = g + ( K, L) + ( K, L) + L L K L L L L L! g K K ( K, L) +... K L L K K f K L Lg Lg (, ) = = + L L g g K g g K ( K, L ) K ( K, L ) L+ ( K, L ) K ( K, L ) L+ K K L L L L g g K g K - ( K, L) K L + ( K, L) L ( K, L) K +...! K K L K L 6

7 desarrollo e el que se ve que todos los térmios so múltilos de fucioes homogéeas de COBB-DOUGLAS de grado e las variables K y L or lo que las fucioes de roducció CES so ua combiació lieal umerable de las de COBB- DOUGLAS. Como ates, ua emresa cuya fució de roducció sea CES uede imagiarse descomuesta e ua catidad umerable de subemresas cada ua del tio de COBB-DOUGLAS. 7

8 BIBLIOGRAFÍA Abellaas, L. y Galido, A. (987). Esacios de Hilbert. Eudema Uiversidad. Madrid. Athoy, M. y Biggs, N. (). Matemáticas ara la Ecoomía y las Fiazas. Cambridge Uiversity Press. Madrid. Aubi, J. P. (979). Alied Fuctioal Aalysis. Joh Wiley & Sos. New York. Aubi, J. P. (994). Iitiatio á l Aalyse Aliquée. Masso. París. De La Hoz Gádara, M. A. y Gozález Motesios, M. T. (). Itroducció al Aálisis Matemático ara la Ecoomía. Servicio de Publicacioes de la Uiversidad de Cádiz. García Pieda, M. P. y Núñez del Prado, J. A. (3). Ua base del esacio de fucioes homogéeas. Documeto de Trabajo o ublicado. Uiversidad Comlutese de Madrid. Griffel, D. H. (993). Alied fuctioal aalysis. Ellis Horwood. Lodo. Kres, D. M. (994). Curso de teoría microecoómica. McGraw-Hill. Madrid. Riesz, F. y Nagy, B. (99). Fuctioal Aalysis. Dover Publicatios. New York. Varia, H. R. (998). Aálisis Microecoómico. Atoi Bosch, editor. Barceloa. 8

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios Estadística (Q) Diaa M. Kelmasy 62 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució

Más detalles

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS GENNY ALEXANDRA NAVARRETE MOLANO Trabajo de grado para optar por el titulo de Matemático DIRECTOR: JOSÉ JOAQUÍN VALDERRAMA Matemático Uiversidad Nacioal de

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

SOBRE UNA FORMULA DE L. SCHWARTZ. Susana Elena Trione

SOBRE UNA FORMULA DE L. SCHWARTZ. Susana Elena Trione Revista de la Ui5 Matem~~ica Volume 6, 1973. Argetia SOBRE UNA FORMULA DE L. SCHWARTZ Susaa Elea Trioe SUMMARY. We obtai a causal (aticausal) geeralizatio (1.7) of a importat formula due to L. Schwartz

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

[ ] La ecuación (2) se conoce como la forma autoadjunta de la ecuación (1) EJEMPLO 1.- La forma autoadjunta de la ecuación de Legendre.

[ ] La ecuación (2) se conoce como la forma autoadjunta de la ecuación (1) EJEMPLO 1.- La forma autoadjunta de la ecuación de Legendre. CAPITULO III ORTOGONALIDAD Y SISTEMAS DE STURM LIOUVILLE [ ] Ua trasformació lieal LC : ab, C[a,b] es u operador diferecial lieal de orde (e el itervalo [a,b]) si puede epresarse e la forma : L = a ()D

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

La sucesión de Fibonacci

La sucesión de Fibonacci La sucesió de Fiboacci María Isabel Viggiai Rocha Sea la sucesió {a } defiida por: a = a -1 + a -2 si 3 y a 1 = a 2 = 1. Esta sucesió es coocida como la sucesió de Fiboacci y la aparició de la misma brota

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio.

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio. La cotribució de la clase de Computació a la itroducció y desarrollo de coceptos elemetales de Matemática Numérica e el ivel medio. MsC. Rubé Rodríguez Ramos Lic. Eric Crespo Hurtado Dr. C. Tomás Crespo

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

TEMA IV INTEGRALES INDEFINIDAS

TEMA IV INTEGRALES INDEFINIDAS Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

Sumando la Derivada de la Serie Geométrica

Sumando la Derivada de la Serie Geométrica Boletí de la Asociació Matemática Veezolaa, Vol. X, No. 1 (2003) 89 MATEMÁTICAS RECREATIVAS Sumado la Derivada de la Serie Geométrica Lyoell Boulto y Mercedes H. Rosas 1. Itroducció Jacobo Beroulli (1654

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles