Manual Teórico Práctico del Módulo Autocontenido Transversal: Aplicación de Corriente Alterna Para las carreras de Profesional Técnico-Bachiller en:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Manual Teórico Práctico del Módulo Autocontenido Transversal: Aplicación de Corriente Alterna Para las carreras de Profesional Técnico-Bachiller en:"

Transcripción

1 Manual Teórico Práctico del Módulo Autocontenido Transversal: Para las carreras de Profesional Técnico-Bachiller en: Mantenimiento de Sistemas Automáticos Sistemas Electrónicos de Aviación e-cbcc Capacitado por: Educación-Capacitación Basadas en Competencias Contextualizadas 1

2 PARTICIPANTES Suplente del Director General Joaquín Ruiz Nando Secretario de Desarrollo Académico y de Capacitación Marco Antonio Norzagaray Director de Diseño de Curricular de la Formación Ocupacional Gustavo Flores Fernández Coordinadores de Área: Jaime G. Ayala Arellano Grupo de Trabajo para el Diseño del Módulo Especialistas de Contenido Asociacion Mexicana de Ingenieros Mecanicos y Electricistas A.C Especialista Pedagógico Asociacion Mexicana de Ingenieros Mecanicos y Electricistas A.C Revisor del Contenido Revisión Pedagógica Revisores de Contextualización Agustín Valerio Guillermo Prieto Becerril Manual del curso módulo Autocontenido Transversal Aplicación de Correinte Alterna Mantenimiento de Motores y Planeadores y sistemas Electrónicos de Aviación D.R CONALEP. Prohibida la reproducción total o parcial de esta obra, incluida la portada, por cualquier medio sin autorización por escrito del CONALEP. Lo contrario representa un acto de piratería intelectual perseguido por la Ley Penal. E-CBCC Av. Conalep N 5, Col. Lázaro Cárdenas, C.P Metepec, Estado de México. Índice I. Mensaje al alumno 4 II. Como utilizar este manual 5 III. Propósito del módulo autocontenido 8 2

3 IV. Normas de competencia laboral 9 V. Especificaciones de evaluación 10 VI. Mapa curricular del módulo autocontenido 11 Capitulo 1 Introducción a la Corriente Alterna Componentes de la corriente alterna Características de la corriente alterna Terminología de la corriente a alterna 26 Capitulo 2 Aplicación de la corriente alterna circuitos con corriente alterna impedancia Tipos de transformadores 51 Capitulo 3 Generación y uso de la corriente alterna Generadores Tipos de generadores 68 Capitulo 4 Equipos mediadores y convertidores de corriente Equipos medidores Equipos de medición Equipos convertidores de energía 141 Practicas y Listas de cotejo 156 Autoevaluacion de conocimientos 258 Respuestas a la autoevaluacion de conocimientos 259 Glosario de Términos 261 Referencias Documentales 263 I. MENSAJE AL ALUMNO CONALEP TE DA LA BIENVENIDA AL CURSO- MÓDULO AUTOCONTENIDO TRANSVERSAL MANEJO DEL PROCESO ADMINISTRATIVO! EL CONALEP, a partir de la Reforma Académica 2003, diseña y actualiza sus carreras, innovando sus perfiles, planes y programas de estudio, manuales teóricoprácticos, con los avances educativos, científicos, tecnológicos y humanísticos predominantes en el mundo globalizado, acordes a las necesidades del país para Contextualizadas, con el fin de ofrecerte una alternativa efectiva para el desarrollo de conocimientos, habilidades y actitudes que contribuyan a elevar tu potencial productivo y, a la vez que satisfagan las demandas actuales del sector laboral, te formen de manera integral con la oportunidad de realizar estudios a nivel superior. Esta modalidad requiere tu participación y que te involucres de manera activa en ejercicios y prácticas con simuladores, vivencias y casos reales para promover un 3

4 conferir una mayor competitividad a sus egresados, por lo que se crea la modalidad de Educación y Capacitación Basada en Competencias Contextualizadas, que considera las tendencias internacionales y nacionales de la educación tecnológica, lo que implica un reto permanente en la conjugación de esfuerzos. Este manual teórico práctico que apoya al módulo autocontenido, ha sido diseñado bajo la Modalidad Educativa Basada en Competencias Colegio Nacional de Educación Profesional Técnica aprendizaje integral y significativo, a través de experiencias. Durante este proceso deberás mostrar evidencias que permitirán evaluar tu aprendizaje y el desarrollo de competencias laborales y complementarias requeridas. El conocimiento y la experiencia adquirida se verán reflejados a corto plazo en el mejoramiento de tu desempeño laboral y social, lo cual te permitirá llegar tan lejos como quieras en el ámbito profesional y laboral. 4

5 II. CÓMO UTILIZAR ESTE MANUAL Las instrucciones generales que a continuación se te pide que cumplas, tienen la intención de conducirte a vincular las competencias requeridas por el mundo de trabajo con tu formación de profesional técnico. Redacta cuáles serían tus objetivos personales al estudiar este curso-módulo autocontenido. Analiza el Propósito del curso-módulo autocontenido que se indica al principio del manual y contesta la pregunta Me queda claro hacia dónde me dirijo y qué es lo que voy a aprender a hacer al estudiar el contenido del manual? Si no lo tienes claro, pídele al docente te lo explique. Revisa el apartado Especificaciones de evaluación, son parte de los requisitos por cumplir para aprobar el curso-módulo. En él se indican las evidencias que debes mostrar durante el estudio del mismo para considerar que has alcanzado los resultados de aprendizaje de cada unidad. Es fundamental que antes de empezar a abordar los contenidos del manual tengas muy claros los conceptos que a continuación se mencionan: competencia laboral, competencia central, competencia básica, competencia clave, unidad de competencia (básica, genéricas específicas), elementos de Analiza la Matriz de contextualización del autocontenido transversal operación de Herramientas de Cómputo. Puede ser entendida como la forma en que, al darse el proceso de aprendizaje, el sujeto establece una relación activa del conocimiento y sus habilidades sobre el objeto desde un contexto científico, tecnológico, social, cultural e histórico que le permite hacer significativo su aprendizaje, es decir, el sujeto aprende durante la interacción social, haciendo del conocimiento un acto individual y social. Competencia, criterio de desempeño, campo de aplicación, evidencias de desempeño, evidencias de conocimiento, evidencias por producto, norma técnica de institución educativa, formación ocupacional, módulo autocontenido, módulo integrador, unidad de aprendizaje, y resultado de aprendizaje. Si desconoces el significado de los componentes de la norma, te recomendamos que consultes el apartado Glosario, que encontrarás al final del manual. Analiza el apartado Normas Técnicas de Competencia Laboral, Norma Técnica de Institución Educativa. Revisa el Mapa Curricular del módulo autocontenido transversal operación de Herramientas de Cómputo. Esta diseñado para mostrarte esquemáticamente las unidades y los resultados de aprendizaje que te permitirán llegar a desarrollar paulatinamente las competencias laborales requeridas por la ocupación para la cual te estás formando. Revisa la Matriz de Competencias del autocontenido transversal operación de Herramientas de Cómputo. Describe las competencias laborales, básicas y claves que se contextualizan como parte de la metodología que refuerza el aprendizaje lo integra y lo hace significativo En el desarrollo del contenido de cada capítulo, encontrarás ayudas visuales como las siguientes, haz lo que ellas te sugieren. Si no lo haces no aprendes, no desarrollas habilidades, y te será difícil realizar los ejercicios de evidencias de conocimientos y los de desempeño. 5

6 Realiza la lectura del contenido de cada capítulo y las actividades de aprendizaje que se te recomiendan. Recuerda que en la educación basada en normas de competencia laborales la responsabilidad del aprendizaje es tuya, pues eres quien desarrolla y orienta sus conocimientos y habilidades hacia el logro de algunas competencias en particular. 6

7 IMÁGENES DE REFERENCIA Colegio Nacional de Educación Profesional Técnica Estudio Individual Investigación documental Consulta con el docente Redacción de trabajo Comparación del resultado con otros compañeros Repetición del ejercicio Trabajo en equipo Sugerencias o notas Realización del Ejercicio Resumen Observación Consideraciones sobre seguridad e higiene Investigación de campo Portafolio de evidencias 7

8 III. Propósito del módulo autocontenido Este módulo está diseñado para desarrollar habilidades en el manejo de electrónica básica, que los alumnos de la carrera de P.T.-B. en Mantenimiento de Sistemas Automáticos, requieren para instalar, operar y dar mantenimiento a controles y sistemas de automatización. Resulta de vital importancia el estudio de éste módulo dentro de la carrera, debido a que los módulos restantes aplicarán las competencias desarrolladas en este módulo. El propósito dará como resultado un desarrollo incremental del alumno para competir en el ambiente laboral de este país, contribuyendo el buen desarrollo y desempeño del puesto que tenga a su cargo, destacando por el conocimiento que este obtenga con el modulo aquí presentado. Este modulo basado en lo que se denomino competencias contextualizadas crea en el alumno una base de los conocimientos que se deben de tomar en cuenta para así facilitar al alumno el porque de cada tema y porque la importancia de este. Como se ha mencionado a lo largo de este contexto el propósito principal de este modulo es que el alumno obtenga el mayor beneficio que pueda para así sobresalir y que este destaque por sus habilidades y que de mayor confianza a todo aquel alumno que egrese del CONALEP. Además de que los conocimientos adquiridos gracias a este modulo sirvan para que el individuo aplique lo que aprendió durante el transcurso de su vida, y que por lo tanto forme parte de su formación como técnico y como persona. 8

9 IV. NORMAS TÉCNICAS DE COMPETENCIA LABORAL Para que analices la relación que guardan las partes o componentes de la NTCL o NIE con el contenido del programa del curso módulo autocontenido de la carrera que cursas, te recomendamos consultarla a través de las siguientes opciones: Acércate con el docente para que te permita revisar su programa de estudio del cursomódulo autocontenido de la carrera que cursas, para que consultes el apartado de la norma requerida. Visita la página WEB del CONOCER en en caso de que el programa de estudio del curso - módulo ocupacional esta diseñado con una NTCL. Consulta la página de Intranet del CONALEP en caso de que el programa de estudio del curso - módulo autocontenido está diseñado con una NIE 9

10 V ESPECIFICACIONES DE EVALUACIÓN Colegio Nacional de Educación Profesional Técnica Durante el desarrollo de las prácticas de ejercicio también se estará evaluando el desempeño. El docente, mediante la observación directa y con auxilio de una lista de cotejo, confrontará el cumplimiento de los requisitos en la ejecución de las actividades y el tiempo real en que se realizó. En éstas quedarán registradas las evidencias de desempeño. Las autoevaluaciones de conocimientos correspondientes a cada capítulo, además de ser un medio para reafirmar los conocimientos sobre los contenidos tratados, son también una forma de evaluar y recopilar evidencias de conocimiento. Al término del curso-módulo deberás presentar un Portafolios de Evidencias1, el cual estará integrado por las listas de cotejo correspondientes a las prácticas de ejercicio, las autoevaluaciones de conocimientos que se encuentran al final de cada capítulo del manual y muestras de los trabajos realizados durante el desarrollo del curso-módulo, con esto se facilitará la evaluación del aprendizaje para determinar que se ha obtenido la competencia laboral. Deberás asentar datos básicos, tales como: nombre del alumno, fecha de evaluación, nombre y firma del evaluador y plan de evaluación 1 El portafolio de evidencias es una compilación de documentos que le permiten al evaluador, valorar los conocimientos, las habilidades y las destrezas con que cuenta el alumno, y a éste le permite organizar la documentación que integra los registros y productos de sus competencias previas y otros materiales que demuestran su dominio en una función específica (CONALEP. Metodología para el diseño e instrumentación de la educación y capacitación basada en competencias, Pág. 180). 10

11 VI. Mapa curricular del módulo ocupacional Aplicación de Corriente Alterna Módul 90 Hrs. Unidad de Aprendizaje 1. Inducción a la corriente alterna. 2. Aplicación de la corriente Alterna. 3. Generación y uso de la Corriente alterna 4. Equipos Medidores y convertidores de Corriente Identificar los Componentes de la corriente alterna. 5 hrs. 1.2 Identificar las Características de la corriente alterna 5 hrs Identificar 15 Hrs. la terminología 25de Hrs. la corriente alterna. 25 Hrs. 525 hrs. Hrs Identificar Los circuitos con corriente alterna. 9 hrs. Resultados de Aprendizaje 2.2. Identificar la inductancia en la corriente alterna. 7 hrs Identificar los diferentes tipos de transformadores. 9 hrs Identificar los Generadores de Corriente Alterna. 14 hrs Identificar los Motores de Corriente Alterna. 11 hrs Identificar los Equipos Medidores. 12 hrs Identificar los Equipos Convertidores de Energía. 13 hrs. 11

12 1 INTRODUCCIÓN A LA CORRIENTE ALTERNA Al finalizar la unidad, el alumno identificara los componentes, las características y la terminología de la corriente alterna. 12

13 Mapa curricular del módulo ocupacional Aplicación de Corriente Alterna Módul 108 Hrs. Unidad de Aprendizaje 1. Inducción a la corriente alterna. 2. Aplicación de la corriente Alterna. 3. Generación y uso de la Corriente alterna 4. Equipos Medidores y convertidores de Corriente Identificar los Componentes de la corriente alterna. 5 hrs. 1.2 Identificar las Características de la corriente alterna 5 hrs Identificar 15 Hrs. la terminología 25de Hrs. la corriente alterna. 25 Hrs. 525 hrs. Hrs Identificar Los circuitos con corriente alterna. 9 hrs. Resultados de Aprendizaje 2.2. Identificar la inductancia en la corriente alterna. 7 hrs Identificar los diferentes tipos de transformadores. 9 hrs Identificar los Generadores de Corriente Alterna. 14 hrs Identificar los Motores de Corriente Alterna. 11 hrs Identificar los Equipos Medidores. 12 hrs Identificar los Equipos Convertidores de Energía 13 hrs. 13

14 1. INTRODUCCIÓN A LA CORRIENTE ALTERNA Sumario Componentes de la corriente alterna Características de la corriente alterna Terminología de la corriente alterna RESULTADO DE APRENDIZAJE 1.1. Identificar los Componentes de la corriente alterna Identificar las Características de la corriente alterna 1.3. Identificar la terminología de la corriente alterna Qué es corriente alterna? La corriente es el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente fluye en tanto exista una diferencia de potencial. Si la polaridad de la diferencia de potencial no varía, la corriente siempre fluirá en una dirección y se denominara corriente. Existe un tipo de corriente eléctrica que no siempre fluye en la misma dirección, sino que alterna y fluye primero hacia una dirección y luego se invierte y fluye hacia la otra. A este tipo de corriente se le llama corriente alterna o c-a. Colegio Nacional de Educación Profesional Técnica En todo circuito la corriente fluye de la terminal negativa de la fuente hacia la terminal positiva, por tanto es obvio que para haber flujo de corriente alterna la polaridad de la fuente debe alternar o cambiar de dirección. Las fuentes que pueden hacer esto se llaman fuentes de potencia de c-a. Los circuitos alimentados por fuentes de energía de c-a y que, por lo tanto, tienen corriente alterna, se llaman circuitos de c-a. En forma similar, la potencia consumida en un circuito, de c- a es potencia de c-a. 1.1 Componentes de la corriente alterna 14

15 Movimiento angular La espira de alambre en el generador sencillo que se describió anteriormente, giraba con el campo magnético. Y, como se sabe, la rotación es movimiento en círculo, tal como la rotación de la hélice de un aeroplano. Más tarde se encontrará que con frecuencia es necesario hablar acerca de la tensión que resulta de cada posición de la espira de alambre al girar. Para esto, es preciso comprender lo que significa movimiento angular y la forma en que se expresa. El movimiento angular es un movimiento en círculo y generalmente se describe dividiendo la circunferencia de un círculo en 360 partes iguales. Si de los extremos de cualquiera de estas partes se trazan líneas al centro del círculo, a la distancia entre dichas líneas se le llama grado. Puesto que esto se puede hacer en cada una de las '360 longitudes iguales, existen 360 grados en el círculo. Una línea de la circunferencia al centro del círculo se llama radio. De manera que la distancia entre dos radios cualesquiera de un círculo se mide en grados. Esta distancia se mide siempre en sentido inverso a la rotación, de las manecillas del reloj, de un radio al otro. En la práctica, un radio corresponde al cuerpo u objeto que está girando. El otro radio es un punto de referencia, a partir del cual se mide la posición del primero. Colegio Nacional de Educación Profesional Técnica una forma de onda en papel milimétrico, con lo cual se obtiene una representación gráfica de la corriente y la tensión. Una forma de onda muestra la magnitud y dirección de la corriente o la tensión en cualquier instante. Para granear una forma de onda, se definen los dos ejes como se ilustra en la figura. Un eje, generalmente el vertical, es el de corriente o de tensión y se grafica con el número adecuado de divisiones de corriente o tensión. Generalmente, el otro eje es el eje de tiempo, y se divide en unidades adecuadas de tiempo, por ejemplo, segundos. Con los ejes identificados, se puede graficar la corriente o tensión en cada unidad de tiempo, como un punto en la gráfica. Y cuando todos los puntos se unen con una línea continua, la figura resultante es la forma de onda. A veces, cuando se estudian fuentes de potencia de c-a, se desea conocer cómo varía la tensión de un generador al cambiar la posición de la armadura durante su rotación. En este caso, en lugar de marcar el eje horizontal en unidades de tiempo, se dividiría en grados de rotación. Entonces, la forma de onda indicará la magnitud y polaridad de la tensión para cada posición de la armadura. Formas de onda de c-a A menudo es muy útil saber cómo cambian la corriente y la tensión al transcurrir el tiempo. La forma más fácil de hacer esto consiste en graficar 15

16 Formas de onda de c-a y de c-c La polaridad y magnitud de una corriente o una tensión continuas nunca cambian. Por lo tanto, la forma de onda de una tensión continua de 2 volts sería una línea recta. Una corriente o una tensión alternas cambian tanto en magnitud como en polaridad. Esto puede apreciarse por la forma de onda de una corriente alterna. Cuando la onda está arriba de la línea de corriente cero, la corriente fluye en una dirección, a la que se le llama dirección positiva, en este caso. Cuando la onda está abajo de la línea de corriente cero, como se muestra en color, la corriente ha invertido su sentido y fluye en la dirección opuesta. Obsérvese que la corriente representada por la onda, fluye primero en una dirección; luego se invierte y fluye en la otra dirección, repitiéndose las inversiones nuevamente; las dos primeras inversiones se realizan en un tiempo de 8 segundos. Colegio Nacional de Educación Profesional Técnica La onda sinusoidal La tensión producida por el generador simple de c- a descrito anteriormente, tiene una forma de onda característica que es importante en el estudio de toda la teoría de circuitos de c-a. Esta forma de onda representa la tensión de salida del generador durante una revolución completa de la armadura. La tensión comienza en cero cuando la armadura no corta líneas magnéticas de fuerza. Al girar la armadura, la tensión aumenta desde cero hasta un valor máximo en una dirección. Luego disminuye otra vez hasta cero. En este punto la tensión cambia de polaridad y aumenta hasta que llega a un máximo con esta polaridad opuesta. Luego disminuye nuevamente hasta cero. Entonces, la armadura del generador ha completado una revolución. La distancia de cualquier punto de la onda al eje de tiempo es la magnitud de la corriente en ese instante. Así, en un segundo, la corriente tiene un valor de 1 ½ amperes, como lo indica el punto de la onda. En forma similar, a 8 segundos no hay distancia entre la onda y el eje de tiempo, de manera que la corriente es nula. En cada revolución que realice la armadura, la tensión variará en esta misma forma. La onda que representa esta variación de tensión en una revolución completa de la armadura, recibe el nombre de onda sinusoidal. Recibe este nombre del hecho de que la tensión generada en cualquier punto del recorrido de la armadura es proporcional al seno del ángulo entre el campo magnético y la dirección de movimiento de la armadura. 16

17 Simetría en las formas de onda Quizás el lector haya notado en la página anterior que la parte de la onda sinusoidal que queda abajo del eje horizontal tiene la misma forma que la parte de arriba del eje, ambas tienen la misma altura y varían de la misma manera. En otras palabras, si la parte negativa de la onda se hiciese girar con respecto al eje y se hiciera coincidir con la parte positiva, ambas mitades de la onda serían idénticas. Esta simetría entre las partes positiva y negativa de las ondas es característica de las tensiones y corrientes alternas. Cuando la onda no es simétrica con respecto al eje horizontal no se trata de c-a pura. Por lo tanto, la corriente o tensión alternas se pueden definir como aquellas que cambian periódicamente de dirección y que, en ambas direcciones varían exactamente en la misma forma. Al trabajar con c-a, el lector conocerá bien otras ondas además de la sinusoidal. Dos de las más comunes, con las cuales habrá de familiarizarse, son la onda cuadrada y la onda diente de sierra. Colegio Nacional de Educación Profesional Técnica En realidad, la corriente y la tensión no pueden cambiar entre sus valores máximos y cero instantáneamente. Sin embargo, estos cambios se efectúan tan rápidamente que, desde el punto de vista práctico, se pueden considerar instantáneos. Se observará que esto ocurre con mucha frecuencia en el campo de la electricidad. Muchas cosas suceden con tal rapidez que se pueden considerar, y se les llamará instantáneas, a pesar de que, estrictamente, no lo sean. Ondas cuadradas Un tipo muy común de onda en la cual la magnitud de la corriente o la tensión no varían continuamente, se llama onda cuadrada. En una onda cuadrada, la corriente o tensión aumenta instantáneamente de cero a un valor máximo. Luego, no varía, sino que se mantiene a este, valor máximo durante un período, después del cual la corriente o la tensión hacen instantáneamente tres cosas: 1) Disminuye a cero. 2) Invierte su dirección. 3) Aumenta hasta su valor máximo en esta dirección opuesta. Cómo se genera una onda cuadrada Si un interruptor en el circuito cambia de posición alternativamente entre A y B, la onda de tensión en la resistencia será una onda cuadrada. Por ejemplo, cuando el interruptor está primeramente en la posición A la corriente fluye de la batería E1 hacia el resistor e instantáneamente se constituye una caída de 2 volts en el resistor. Esta tensión se mantiene en 2 volts mientras el interruptor se encuentre en A Se mantiene en este valor máximo negativo durante un tiempo y luego disminuye instantáneamente a cero. Por lo tanto, la onda está formada de una serie de líneas rectas, según se ilustra. 17

18 incremento igual o unidad de tiempo, la corriente o la tensión cambian en una cantidad diferente. Por ejemplo, en el primer segundo, la corriente puede variar de cero a cinco amperes, o aumentar 5 amperes. En el siguiente segundo puede pasar de 5 a 8 amperes; o sea, un aumento de 3 amperes; y en el siguiente segundo puede elevarse a 10 amperes; o sea, aumentar 2 amperes. Por lo tanto, en incrementos iguales, de 1 segundo, la corriente ha tenido aumentos de 5, 3 y 2 amperes. Si después de 3 segundos el interruptor cambia a la posición B, la tensión producida por la corriente E1 en el resistor disminuye hasta cero. Entonces, la corriente de E; fluye a través del resistor en dirección opuesta y produce una caída de 2 volts en el resistor. La tensión sigue siendo de 2 volts, pero la polaridad está invertida en relación con la que E2 produjo anteriormente. Si después de 3 segundos se quita el interruptor de la posición B, la corriente de E2 cesa y la tensión en el resistor baja a cero. La tensión en el resistor ha completado así una onda cuadrada completa. Si el interruptor se regresa a la posición A y se repite.el proceso, se generará otra onda cuadrada. Este es un cambio no lineal de corriente. Para cambiar linealmente, la corriente o la tensión deben variar cantidades iguales en intervalos de tiempo iguales. Esto significa que en el ejemplo anterior hubiera tenido que pasar de cero a 5 amperes en el primer segundo, de 5 a 10 amperes en el segundo siguiente y de 10 a 15 amperes en el tercer segundo. Su aumento lineal seria de 5 amperes por segundo. En una onda, un cambio lineal de la corriente o la tensión se representa con una recta inclinada. Ondas diente de sierra Probablemente se ha notado que las ondas reciben sus nombres, según sus formas. Por lo tanto, una onda cuadrada es cuadrada, o posiblemente rectangular, y una onda sinusoidal tiene la forma de curva que representa la variación de un seno trigonométrico. Existe otra onda muy común y, en cuanto se sepa su nombre, probablemente se tendrá una buena idea de su forma. A ésta se le llama onda diente de sierra y se asemeja mucho a los dientes de una sierra común. Para comprender cómo se produce una onda "diente de sierra", primero se debe saber lo que es un aumento lineal de corriente o tensión. Ya se sabe que un cambio instantáneo en corriente o tensión se representa por medio de una onda, por una línea recta vertical. Por ejemplo, las líneas curvas de una onda sinusoidal, indican que la corriente o la tensión cambian en forma no lineal. Esto significa que en cada La onda diente de sierra comienza en cero y aumenta linealmente a su valor máximo, en una dirección. Luego, instantáneamente desciende a cero, invierte su dirección y aumenta a su valor máximo en esta otra dirección. En el instante en que llega a su valor máximo, comienza a disminuir linealmente, nuevamente a cero. c-c fluctuante Se sabe que toda corriente tiene una magnitud y una dirección. En el caso de corriente directa, tanto la magnitud como la dirección son constantes y nunca cambian. En el caso de corriente alterna, ambas cambian, invirtiéndose periódicamente la dirección y variando la magnitud entre cero y algún valor máximo, en ambas direcciones. Existe otro tipo de corriente en 18

19 la cual la magnitud varía pero la dirección nunca cambia. A esta corriente se le llama c-c fluctuante, en virtud de que se puede considerar como una corriente directa cuyo valor fluctúa o cambia. Colegio Nacional de Educación Profesional Técnica La onda para una tensión o una corriente de este tipo es idéntica a una onda de c-a, excepto porque se encuentra completamente arriba del eje horizontal. La referencia de c-c para este tipo de onda es la línea horizontal que divide a la mitad a la onda de manera que una mitad queda arriba y la otra abajo. Así pues, la componente de c-a varía con respecto a la referencia de c-c. Por medio de dispositivos llamados transformadores y capacitores se puede separar la componente de c- a de su referencia de c-c y convertirla en tensión o corriente alterna pura que varía con respecto a cero. Puesto que la c-c fluctuante nunca cambia de dirección, la onda de cualquier corriente directa fluctuante o de tensión, está completamente encima del eje horizontal (cero). Nunca baja del eje o se vuelve negativa. Sin embargo, la forma de la onda puede ser similar a cualquier onda de c-a. Transmisión de potencia eléctrica Componente de c-a La corriente continua fluctuante es similar a la c-c común en que no cambia de dirección. También es similar a la c-a, ya que varía en magnitud. Algunos tipos de c-c fluctuante se pueden considerar como combinaciones de c-a y c-c a menudo se hace esto en circuitos eléctricos reales. Una tensión o una corriente continua se combinan con una tensión o una corriente alterna y se produce c-c fluctuante. Cuando esto sucede, la magnitud de la c-c varía en la misma forma que la de- la c-c. La variación de c-a se llama componente de c-a y a la c-c se llama nivel de referencia de c-c. En un circuito eléctrico ideal, toda la energía producida por la fuente, la carga la convertirá en alguna forma útil, por ejemplo luz o calor. Sin embargo, en la práctica, es imposible construir un circuito ideal. Parte de la energía que procede de la fuente se consume en los conductores de interconexión del circuito y parte se consume dentro de la misma fuente de potencia. Este consumo de energía fuera de la carga es energía desperdiciada o potencia desperdiciada, por lo que su valor debe mantenerse al mínimo posible. La mayor parte de estas pérdidas de potencia son en forma de calor generado cuando la corriente del circuito fluye a través de la resistencia en el alambrado y la resistencia interna de la fuente. Estas resistencias generalmente son muy bajas y que, en consecuencia, las pérdidas de potencia serán muy pequeñas. No obstante, una excepción importante a esto ocurre cuando el alambrado entre la fuente y la carga es muy largo, como en el caso de la transmisión de potencia eléctrica desde las estaciones generadoras hasta los usuarios. Estas líneas de fuerza eléctrica con las que el lector seguramente está familiarizado, pueden tener longitudes de cientos de kilómetros. Aun un alambre de cobre de gran diámetro, cuya 19

20 resistencia es muy baja, tiene una resistencia total considerable cuando se trata de cientos de kilómetros. Podría usarse el alambre de plata, que tiene la resistencia más baja de todas, pero esto no reduciría sustancialmente la resistencia total y su costo sería excesivo. Colegio Nacional de Educación Profesional Técnica las pérdidas de potencias es reducir la corriente. Sin embargo, los usuarios de energía eléctrica necesitan tener, grandes corrientes al final de la línea de transmisión. Por lo tanto, lo más conveniente es un método por el cual se transmitan bajas corrientes por las líneas de transmisión, pero se pueden obtener altas corrientes al final de la línea. Esto es posible con potencia producida por c-a. En las líneas se envían corrientes relativamente bajas y, cuando llegan al punto donde debe consumirse, se convierten en corrientes elevadas. Transmisión de potencia de c-a Cómo pueden entonces, transmitirse grandes cantidades de potencia eléctrica a través de grandes distancias sin grandes pérdidas en las líneas de transmisión? Esto no se puede hacer con c-c. Sin embargo, es relativamente fácil lograrlo con c-a. Pérdidas de potencia por transmisión Al transmitirse energía eléctrica, una parte de ésta se convierte en calor a lo largo de la línea de transmisión. Esta pérdida en forma de calor es directamente proporcional a la resistencia y al cuadrado de la corriente. Esto se puede apreciar en la siguiente fórmula para pérdida de potencia: P = I 2 R Así, las pérdidas en forma de calor o de potencia (P) se pueden reducir si se baja la corriente (I) que lleve la línea de transmisión o la resistencia (R) del conductor, o bien, ambas. Sin embargo, la resistencia tiene mucho menos efecto en la pérdida de potencia que la corriente, ya que la corriente está elevada al cuadrado. Tal vez parezca raro que se pueda transmitir potencia eléctrica con baja corriente en la línea de transmisión y, en cambio, obtener potencia con alta corriente al final de la línea. Para comprender esto debe tenerse presente la relación que hay entre potencia eléctrica, tensión y corriente, según la siguiente ecuación: P = EI Se concluye de esta ecuación que puede producirse la misma potencia eléctrica (P) con muchas combinaciones de corriente (I) y tensión (E). Por ejemplo, puede obtenerse una potencia de 1,000 watts con una tensión de 100 volts y una corriente de 10 amperes, o con una tensión de 200 volts, y una corriente de 5 amperes, o bien, con una tensión de 1,000 volts y una corriente de un ampere. Si se duplicara la resistencia, las pérdidas de potencia serían el doble, pero si se duplica la corriente, las pérdidas de potencia se cuadruplican. Así que la mejor manera de reducir Por lo tanto, hay muchas maneras de obtener una potencia de un millón de watts en una línea de transmisión; por ejemplo, puede obtenerse con una tensión de 1,000 volts y, en este caso, la corriente sería de 1,000 amperes y muy grandes las pérdidas de potencia en la línea. También 20

21 puede obtenerse esa misma potencia con una tensión de 100,000 volts y una corriente de sólo 10 amperes y las pérdidas de potencia serían mucho menores. Al final de la línea de transmisión, la combinación de tensión y corriente se puede convertir a cualquier otra combinación de tensión y corriente que produzca un total de un millón de watts. Los dispositivos que se utilizan para convertir potencia de c-a de una combinación de valores de tensión y corriente a otra se llaman transformadores y se estudiarán más adelante en este mismo volumen. Colegio Nacional de Educación Profesional Técnica Longitud de onda (metros) = ,000/frecuencia La longitud de onda para un ciclo de una tensión 60 cps será pues de 5,000,000 de metros. Así, pues, longitud de onda es sólo otra forma de expresar la frecuencia. La longitud de onda no es muy importante en aplicaciones de potencia eléctrica pero suele tener aplicación en el campo de las comunicaciones Características de la corriente alterna Longitud de onda Se recordará, de lo estudiado en el volumen 1, que aunque cada uno de los electrones que integran la corriente eléctrica recorren un conductor en forma relativamente lenta, el campo eléctrico o impulso que produce el flujo de corriente, avanza en un conductor aproximadamente a 300,000 kilómetros por segundo. Puesto que la corriente avanza a una velocidad definida, sólo puede recorrer cierta distancia durante determinado tiempo. Y puesto que la frecuencia en realidad es una medida del número de ciclos por determinado tiempo, es posible calcular hasta dónde puede llegar la corriente durante un ciclo de tensión alterna. Esta distancia recibe el nombre de longitud de onda y es la distancia que puede recorrer la corriente en el tiempo que requiere la terminación de un ciclo completo de tensión alterna. En una tensión de 60 cps, por ejemplo, un ciclo tarda un sesentavo de segundo. Y, puesto que la corriente recorre 300,000 kilómetros en un segundo, sólo puede avanzar 5,000 kilómetros. Puesto que la longitud de onda de una tensión alterna depende de su frecuencia y de la velocidad con la que el impulso eléctrico recorre el conductor, se puede calcular según la siguiente ecuación: Longitud de onda = velocidad de la corriente/frecuencia Por lo que respecta a la electricidad básica, la velocidad de la corriente es igual a la velocidad de la luz: 300,000 kilómetros por segundo. Entonces, la ecuación para la longitud de onda será: Frecuencia En una onda de c-a, la variación de tensión o corriente, por ejemplo, de cero a un máximo y nuevamente a cero, en la dirección positiva; y de cero a máximo y nuevamente a cero, en la dirección negativa, constituye un ciclo completo. Al número de ciclos generados en un segundo se le conoce como la frecuencia de la tensión o de la corriente y se expresa en ciclos por segundo, o cps. Cuanto mayor sea el número de ciclos producidos en un segundo, más alta es la frecuencia. Esto significa que cuanto más rápidamente gire la armadura del generador, mayor número de ciclos genera en cada segundo y en consecuencia, la frecuencia de la tensión de salida será más alta. Si el generador simple girara a una velocidad de 10 revoluciones por segundo, la frecuencia sería de 10 cps; a 100 revoluciones por segundo, la frecuencia sería de 100 cps. La mayor parte de la potencia eléctrica que se genera en los Estados Unidos tiene una frecuencia de 60 cps. En la mayor parte de los aparatos eléctricos hay una anotación de que el aparato debe usarse sólo en 60 cps. Estos aparatos están diseñados para esta frecuencia estándar de alimentación y si se conectan a una fuente que tenga una frecuencia diferente, pueden averiarse o bien no trabajar correctamente. 21

22 cualquier punto de una onda sinusoidal tiene cierto ángulo de fase. Las frecuencias eléctricas vigentes en otros países varían desde 25 a 125 cps. Por ejemplo, muchos de los países de Europa y Sudamérica emplean energía eléctrica con una frecuencia estándar de 50 cps. En algunos casos especiales - por ejemplo en sistema eléctrico aeronáutico - la frecuencia de la energía eléctrica empleada puede ser de 400 a 1,000 cps. Fase La salida de un generador simple de c-a varía en forma de onda sinusoidal. Por lo tanto, si dos de estos generadores se ponen a funcionar, cada uno generará una salida sinusoidal completa después de una revolución. Si los generadores se hacen funcionar en el mismo instante y giran exactamente a la misma velocidad, las dos formas de onda comenzarán y terminarán simultáneamente. También alcanzarán sus valores máximos y pasarán por cero al mismo tiempo. Entonces se dice que las dos formas de onda "coinciden" entre si y que las tensiones que representan están en fase. De aquí se concluye que el término jase se usa para indicar la relación de tiempo entre tensiones y corrientes alternas. El que dos corrientes o tensiones estén en fase no significa que sus magnitudes sean iguales. Las magnitudes máximas se alcanzan al mismo tiempo, pero sus valores pueden ser diferentes. Aunque generalmente se usa el término fase para comparar la relación de tiempo de dos ondas, también se puede usar para indicar un punto de una onda en determinado instante. Como se mostró anteriormente un ciclo completo se puede representar por grados. Con frecuencia, los grados reciben el nombre de ángulos de fase. La fase del máximo positivo es de 90 grados y del máximo negativo es de 270 grados. La onda sinusoidal es nula cuando los ángulos de fase son 0, 180 y 360 grados. Así, se puede considerar que Relaciones de fase Puesto que los valores instantáneos de corriente y tensión en un circuito de c-a que contiene sólo resistencia siguen la ley de Ohm, esto significa que en cualquier instante en que la tensión sea cero, la corriente será también cero cuando la tensión es máxima, la corriente también debe ser máxima, puesto que la resistencia es constante. Cuando la tensión se invierte, haciéndose negativa, la corriente también se invierte, debido a que siempre fluye de negativo a positivo. Así, en todo instante la corriente está exactamente en fase con la tensión aplicada. Por lo tanto, en un circuito resistivo de c-a, la corriente y la tensión están en fase. Esto ocurre no solamente por lo que se refiere a la corriente total del circuito y a la tensión de la fuente, sino que también ocurre en lo que respecta a la tensión y corriente en todas las partes del circuito. 22

23 Diferencia de fase Si dos generadores idénticos arrancan al mismo tiempo y giran a la misma velocidad, sus valores máximo y mínimo ocurrirán simultáneamente, de manera que ambas salidas estarán en fase. Pero si un generador se arranca después del otro, sus valores máximo y mínimo de salida ocurrirán después de los valores correspondientes al otro generador. En el caso que se considera, ambas salidas están defasados, o, dicho de otra mantera, existe una diferencia de fase entre ambas salidas. La magnitud de la diferencia de fase depende de cuánto atraso tenga una salida con respecto a la otra. La diferencia de.fase se puede expresar en fracciones de ciclo. Luego si una salida comienza cuando la otra acaba de completar la mitad de un ciclo, la diferencia de fase es de medio ciclo, sin embargo, la diferencia de fase se mide generalmente en grados para mayor precisión. Y puesto que una onda sinusoidal completa corresponde a 360 grados, una diferencia de fase de medio ciclo será una diferencia de fase de 180 grados; una diferencia de fase de un cuarto de ciclo será una diferencia de 90 grados, etcétera. Los términos adelantado y atrasado se usan para definir las posiciones relativas en el tiempo, de dos tensiones o corrientes que estén fuera de fase. La que está adelante en el tiempo, se dice que está adelantada, en tanto que la otra estará atrasada. Colegio Nacional de Educación Profesional Técnica frecuencia, longitud de onda y fase, existen otros términos relativos a la c-a que se usan muy a menudo y que el lector debe conocer. Por ejemplo, a veces a la mitad de un ciclo se le llama alternación. Otro término de aplitud. La amplitud de una corriente o tensión alterna es el valor máximo que esa corriente o tensión alcanza. Es igual en la dirección positiva que en la negativa. En una onda, la amplitud es la distancia del eje horizontal al punto más alto de la onda sobre el eje, o bien, al punto más bajo, abajo del eje. La amplitud con frecuencia Se conoce también como valor pico. Otro término que debe conocerse es período. El período de una magnitud alterna - por ejemplo una tensión o una corriente alterna - es el tiempo que tarda dicha magnitud en efectuar un ciclo completo. Si se conoce la frecuencia, el período se puede calcular con facilidad. Por ejemplo, para una tensión de 60 cps, se generan 60 ciclos en un segundo. Por lo tanto, se requiere 1 /60 de segundo para generar un ciclo. Así pues, el período se obtiene dividiendo la unidad entreoía frecuencia: Periodo = 1 frecuencia Otros términos relativos a la c-a El lector ya conoce la mayor parte de los términos que se usan normalmente para describir tensiones y corrientes alternas y sus formas de onda. Sin embargo, además de los términos de ciclo, El período se indica en segundos y la frecuencia en ciclos por segundo o cps. Ciclo La frecuencia de un voltaje o corriente es el número de ciclos generados en un tiempo determinado (cada segundo), por lo tanto según 23

24 la figura especifica que la frecuencia de tal voltaje es de 3 cps Terminología de la corriente alterna Valores de tensión de c-a Especificar el valor de tensión o corriente continua no es problema, ya que los valores de c-c no cambian. Por otra parte, los valores de c-a, tanto de tensión como de corriente, varían constantemente, de manera que no es fácil especificarlos. Antes de que se pueda dar el valor de una tensión o corriente alterna, generalmente hay que determinar qué tipo de valor se necesita. Y esto, a su vez, depende de la forma en que se desee emplear el valor. El más obvio probablemente sería el valor pico que, según se ha dicho, es la amplitud o valor máximo de la tensión o la corriente. Otro valor que se usa algunas veces es el valor pico-pico, al cual es el doble del valor pico. En una onda, el valor pico es la distancia vertical del valor máximo positivo al valor máximo negativo. Colegio Nacional de Educación Profesional Técnica Ocasionalmente, el valor instantáneo de una tensión o corriente puede ser importante. Este es el valor de un instante determinado según el instante seleccionado, este valor puede ser cualquiera entre cero y el valor pico. En la mayor parte de los casos, ninguno de estos valores (pico, pico-pico o instantáneo) son suficientes para dar los valores reales de tensiones y corrientes alternas. En su lugar, generalmente se usan otros dos valores, llamados valor medio y valor efectivo. Valores medios El valor medio de una tensión o una corriente alternas es el promedio de todos los valores instantáneos d rante medio ciclo, o sea, una alternación. Puesto que durante medio ciclo la tensión o la corriente aumentan de cero al valor pico y luego disminuyen a cero, el valor promedio debe encontrarse en algún punto entre cero y el valor pico. Para una onda sinusoidal pura, que es la forma de onda más común en los circuitos de c- a, el valor promedio es veces el valor pico. Para tensión esto se expresa mediante la ecuación: EMED = pico Por ejemplo, si la tensión pico de un circuito es de 100 volts, la tensión media será: EMED = EPICO = X 100 = 63.7 volts La ecuación para calcular la corriente media en función de corriente pico es idéntica a la que se dio para e1 caso de la tensión. Debe tenerse cuidado de no confundir el valor medio, que es el promedio de medio ciclo, con el promedio de un ciclo completo. Puesto que ambos medios ciclos son idénticos, excepto porque uno es positivo y el otro negativo, el promedio sobre un ciclo completo, sería cero. 24

25 Valores efectivos Aunque los valores medios de una tensión o una corriente alternas son útiles, no tienen relación con valores correspondientes en c-c. Puede saberse que en un circuito fluye una corriente alterna cuyo valor medio es 10 amperes, pero esto no proporciona información sobre cómo se compararía con 10 amperes de c-c en el mismo circuito. Puesto que muchos equipos eléctricos tienen circuitos tanto de c-a como de c-c, es muy útil si se pueden expresar corrientes y tensiones alternas en valores que se relacionen con c-c. Es posible hacer esto gracias al uso de valores efectivos. El valor efectivo de una tensión o corriente alterna es el que, en un circuito que sólo contenga resistencia, produce la misma cantidad de calor que la producida por una- tensión o corriente continua del mismo valor. Por lo tanto, una corriente alterna cuyo valor eficaz sea de 1 ampere, genera el mismo calor en una resistencia de 10 ohms que una corriente directa de 1 ampere. El valor efectivo también se llama raíz cuadrática media, o rom, debido a la forma en que se obtiene: es igual a la raíz cuadrada del valor medio de los cuadrados de todos los valores instantáneos de corriente o tensión, durante medio ciclo. En una onda sinusoidal pura, el valor efectivo es veces el valor pico. Por lo tanto, las ecuaciones para calcular los valores efectivos de corriente y tensión son las siguientes: EEF = pico EEF = pico Por lo tanto, para una tensión pico de 100 volts el valor rcm de una tensión alterna sería 70.7 volts. Esto significa que un resistor conectado a una fuente de c-a de 100 volts, producirá el mismo calor que si se colocara en una fuente de c-c de 70.7 volts. El valor efectivo se usa para clasificar tensiones y corrientes alternas. La tensión de 110 volts que llega a los hogares es el valor rcm. También lo es la tensión de potencia de 220 volts para usos industriales. Colegio Nacional de Educación Profesional Técnica Valores de conversión Al trabajar con circuitos de c-a, a menudo será necesario convertir a otros valores los dados o medidos de tensión o de corriente alterna. Por ejemplo, puede ser necesario convertir un valor medio a un valor pico, o quizá un valor eficaz a valor medio. Para todas las conversiones entre valores pico, medio y efectivo, existen seis ecuaciones básicas que pueden aplicarse. Mediante la ecuación apropiada, es fácil convertir cualquiera de estos valores, a otro. En seguida aparecen las seis ecuaciones que se emplean para convertir valores de tensión y corriente. En algunos casos, puede ser necesario convertir a 0 de valores pico-pico. Para esto es preferible usar las ecuaciones para valor pico y tener presente que el valor pico-pico es lo doble del valor pico y, recíprocamente, que el valor pico es la mitad del valor pico-pico. 25

26 2 APLICACIONES DE LA CORRIENTE ALTERNA Al finalizar la unidad, el alumno identificara los circuitos con corriente alterna, la inductancia en la corriente alterna y los diferentes tipos de transformadores. Mapa curricular del módulo ocupacional Aplicación de Corriente Alterna 26 Módul 108 Hrs.

27 1.1. Identificar los Componentes de la corriente alterna. 5 hrs. 1.2 Identificar las Características de la corriente alterna 5 hrs Identificar la terminología de la corriente alterna. 5 hrs Identificar Los circuitos con corriente alterna. 9 hrs. Resultados de Aprendizaje 2.2. Identificar la inductancia en la corriente alterna. 7 hrs Identificar los diferentes tipos de transformadores. 9 hrs Identificar los Generadores de Corriente Alterna. 14 hrs Identificar los Motores de Corriente Alterna. 11 hrs Identificar los Equipos Medidores. 12 hrs Identificar los Equipos Convertidores de Energía 13 hrs. 27

28 2. Aplicaciones de la Corriente Alterna Sumario Circuitos con Corriente Alterna Impedancia. Tipos de Transformadores: RESULTADO DE APRENDIZAJE 2.1. Identificar Los circuitos con corriente alterna 2.2. Identificar la inductancia en la corriente alterna Identificar los diferentes tipos de transformadores. Por qué se utiliza la corriente alterna? función deseada, especialmente en el interior de equipo eléctrico. Las primeras fuentes de energía eléctrica que usaron ampliamente proporcionaban corriente directa. Pero, mientras mejor se conocían las características de la corriente alterna, ésta fue sustituyendo a la corriente directa como la forma de energía más usada en el mundo. Actualmente, de toda la energía que se consume en el mundo, cerca del 90% es de corriente alterna. En Estados Unidos este porcentaje es aún mayor. Es cierto que aun allí hay colonias en las ciudades más antiguas en donde todavía se usa energía eléctrica de c-c; sin embargo, también en estas colonias se está cambiando gradualmente a c-a. Cuáles son las razones de este cambio? Por qué es nueve veces mayor el consumo de energía de c- a que de c-c? Básicamente, hay dos razones para esto. Una de ellas es que, por lo general, la c-a sirve para las mismas aplicaciones que la c-c y, además, es más fácil y barato transmitir c-a desde el punto donde se produce hasta el punto donde se consumirá. La segunda razón para el amplio uso de la c-a es que con ella se pueden hacer ciertas cosas y sirve para ciertas aplicaciones en las cuales la c-c no es adecuada. No debe pensarse que se dejará de usar la c-c y que toda la electricidad utilizada será de c-a. Hay muchas aplicaciones en donde sólo la c-c puede efectuar la 2.1 Circuitos Circuitos resistivos de c-a En un circuito la resistencia es la única propiedad que se opone al flujo de la corriente, a que lo reduce. La resistencia también se opone al flujo de la corriente de un circuito de c-a, aunque en este caso no siempre es la única propiedad que lo hace. Posteriormente se verá que los circuitos de c- a tienen otras propiedades que, igual que la resistencia, afectan la relación de corriente y tensión en un circuito. Sin embargo, el tipo más simple de circuito de c-a contiene sale resistencia. Además, en la misma forma que un circuito de c- c, esta resistencia incluye la resistencia particular de las cargas, la fuente de energía y los conductores. 28

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

Actividades para mejoras. Actividades donde se evalúa constantemente todo el proceso del proyecto para evitar errores y eficientar los procesos.

Actividades para mejoras. Actividades donde se evalúa constantemente todo el proceso del proyecto para evitar errores y eficientar los procesos. Apéndice C. Glosario A Actividades de coordinación entre grupos. Son dinámicas y canales de comunicación cuyo objetivo es facilitar el trabajo entre los distintos equipos del proyecto. Actividades integradas

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Corriente continua y corriente alterna

Corriente continua y corriente alterna Electricidad ENTREGA 1 Corriente continua y corriente alterna Elaborado por Jonathan Caballero La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se

Más detalles

Manual Teórico Práctico del Módulo Autocontenido: Administración de Almacenes e Inventarios. Profesional Técnico Bachiller en Administración

Manual Teórico Práctico del Módulo Autocontenido: Administración de Almacenes e Inventarios. Profesional Técnico Bachiller en Administración Manual Teórico Práctico del Módulo Autocontenido: Profesional Técnico Bachiller en Administración MANUAL TEÓRICO-PRÁCTICO DEL MÓDULO ADMINISTRACIÓN DE ALMACENES E INVENTARIOS Carrera: Administración Derechos

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

4. METODOLOGÍA. 4.1 Materiales. 4.1.1 Equipo

4. METODOLOGÍA. 4.1 Materiales. 4.1.1 Equipo 4. METODOLOGÍA 4.1 Materiales 4.1.1 Equipo Equipo de cómputo. Para el empleo del la metodología HAZOP se requiere de un equipo de cómputo con interfase Windows 98 o más reciente con procesador Pentium

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

1.1 La Bobina Ideal. Preguntas conceptuales

1.1 La Bobina Ideal. Preguntas conceptuales 1. RESPUESTA DEL CIRCUITO EN ESTADO TRANSITORIO (DOMINIO DEL TIEMPO) 1.1 La Bobina Ideal Preguntas conceptuales 1. La inductancia de cierta bobina está determinada por la ecuación 1.2. Si se desea construir

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

2. Electrónica. 2.1. Conductores y Aislantes. Conductores.

2. Electrónica. 2.1. Conductores y Aislantes. Conductores. 2. Electrónica. 2.1. Conductores y Aislantes. Conductores. Se produce una corriente eléctrica cuando los electrones libres se mueven a partir de un átomo al siguiente. Los materiales que permiten que muchos

Más detalles

TEMA 9 Cicloconvertidores

TEMA 9 Cicloconvertidores TEMA 9 Cicloconvertidores 9.1.- Introducción.... 1 9.2.- Principio de Funcionamiento... 1 9.3.- Montajes utilizados.... 4 9.4.- Estudio de la tensión de salida.... 6 9.5.- Modos de funcionamiento... 7

Más detalles

6. Gestión de proyectos

6. Gestión de proyectos 6. Gestión de proyectos Versión estudiante Introducción 1. El proceso de gestión de proyectos 2. Gestión del riesgo "La gestión de proyectos se basa en establecer objetivos claros, gestionar el tiempo,

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

5. Solución de Problemas

5. Solución de Problemas FLUID COMPONENTS INTL 5. Solución de Problemas Cuidado: Solo personal calificado debe intentar probar este instrumento. El operador asume toda la responsabilidad de emplear las practicas seguras mientras

Más detalles

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Por Ing. José Luís Ola García ( 1 ) RESUMEN El elevado consumo de la Potencia Reactiva (aumento de la necesidad de magnetizar

Más detalles

Preguntas y respuestas técnicas sobre motores eléctricos traccionarios.

Preguntas y respuestas técnicas sobre motores eléctricos traccionarios. Preguntas y respuestas técnicas sobre motores eléctricos traccionarios. Organización Autolibre. Cómo funciona un motor Eléctrico? Un motor eléctrico es un dispositivo que puede producir una fuerza cuando

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

CAPITULO V PLANIFICACIÓN Y GESTIÓN DEL PROYECTO

CAPITULO V PLANIFICACIÓN Y GESTIÓN DEL PROYECTO CAPITULO V PLANIFICACIÓN Y GESTIÓN DEL PROYECTO La adquisición de un acuerdo de outsourcing fuerte y activo es una tarea particularmente compleja, con ramas de actividad muy dispares y potencialmente difíciles.

Más detalles

Por qué es importante la planificación?

Por qué es importante la planificación? Por qué es importante la planificación? La planificación ayuda a los empresarios a mejorar las probabilidades de que la empresa logre sus objetivos. Así como también a identificar problemas claves, oportunidades

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS El control automático de procesos es parte del progreso industrial desarrollado durante lo que ahora se conoce como la segunda revolución industrial. El uso

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

Manual de Procedimientos

Manual de Procedimientos UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO DIRECCIÓN GENERAL DE PLANEACIÓN DIRECCIÓN DE GESTIÓN DE LA CALIDAD Manual de Procedimientos Contenido: 1. Procedimiento; 2. Objetivo de los procedimientos; 3.

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Motores Eléctricos Eficiencia, Factor de Potencia y Carga.

Motores Eléctricos Eficiencia, Factor de Potencia y Carga. Motores Eléctricos Eficiencia, Factor de Potencia y Carga. Un programa de ahorro y conservación energética, pasa primero por conocer a profundidad los conceptos de eficiencia y características de operación

Más detalles

Energías no convencionales

Energías no convencionales Energías no convencionales Asignatura: CIENCIAS NATURALES Curso: 3 y 6º básico Duración: 6 minutos DESCRIPCIÓN: Amigo Salvaje es una entretenida serie documental que presenta a niños y al público en general

Más detalles

1. Liderar equipos. Liderazgo

1. Liderar equipos. Liderazgo Liderazgo Índice Para empezar... 3 Los objetivos... 4 Entramos en materia... 5 1.1 Aprender a ser líder... 5 1.2 Tipos de líder... 6 1.3 Estilos de dirección... 7 1.4 Características del líder... 8 1.5

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

Polo positivo: mayor potencial. Polo negativo: menor potencial

Polo positivo: mayor potencial. Polo negativo: menor potencial CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica

Más detalles

Biografía lingüística

Biografía lingüística EAQUALS-ALTE Biografía lingüística (Parte del Portfolio europeo de las lenguas de EAQUALS-ALTE) Portfolio europeo de las lenguas: modelo acreditado nº 06.2000 Concedido a Este modelo de Portfolio europeo

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD

CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD Las tablas con los indicadores de calidad recogen los siguientes campos: 1. Denominación de la actividad. Nombre que aparece en el Programa Estadístico

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

Guía para la Capacitación en el Servicio y Educación de Preservicio Relativa al DIU

Guía para la Capacitación en el Servicio y Educación de Preservicio Relativa al DIU Guía para la Capacitación en el Servicio y Educación de Preservicio Relativa al DIU Directrices para la capacitación en el servicio La capacitación en el servicio puede usarse para transferir conocimientos

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED Ahorradores inteligentes 100 AÑOS Descripción de la lección Conceptos Objetivos Los estudiantes calculan el interés compuesto para identificar las ventajas de

Más detalles

Osciloscopio Funciones

Osciloscopio Funciones Uso del osciloscopio para determinar las formas de onda Uno de los procedimientos para realizar diagnósticos acertados, en las reparaciones automotrices, es el buen uso del osciloscopio. Este instrumento

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Figure 16-1: Phase H: Architecture Change Management

Figure 16-1: Phase H: Architecture Change Management Fase H Administración del cambio en la Arquitectura Figure 16-1: Phase H: Architecture Change Management Objetivos Los objetivos de la Fase H son: Asegurarse de que el ciclo de vida de arquitectura se

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

GERENCIA DE INTEGRACIÓN

GERENCIA DE INTEGRACIÓN GERENCIA DE INTEGRACIÓN CONTENIDO Desarrollo del plan Ejecución del plan Control de cambios INTRODUCCIÓN La gerencia de integración del proyecto incluye los procesos requeridos para asegurar que los diversos

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

Acciones Correctivas y Preventivas. Universidad Autónoma del Estado de México

Acciones Correctivas y Preventivas. Universidad Autónoma del Estado de México Acciones Correctivas y Preventivas Universidad Autónoma del Estado de México Mejora Continua La mejora continua del desempeño global de la organización debería ser un objetivo permanente de ésta. Mejora

Más detalles

Auditoría administrativa

Auditoría administrativa Auditoría administrativa 1 Lectura No. 1 Nombre: Auditoría administrativa Contextualización Cuál crees que sea la herramienta más útil para la administración? La auditoría administrativa es y será siempre

Más detalles

Generación de Corriente Alterna

Generación de Corriente Alterna Electricidad Generación de Corriente Alterna Elaborado Por: Germán Fredes / Escuela de Educación Técnica Nº1 Juan XXIII de Marcos Paz Introducción En la actualidad la mayoría de los artefactos que tenemos

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.

Más detalles

ECONOMÍA SOCIAL SOLIDARIA

ECONOMÍA SOCIAL SOLIDARIA ECONOMÍA SOCIAL SOLIDARIA Módulo básico de capacitación para las organizaciones afiliadas a StreetNet Internacional Objetivos de este módulo de capacitación StreetNet Internacional fue fundada en el 2002

Más detalles

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES En esta unidad te invitamos a que: Adviertas la importancia de los apuntes como un recurso para iniciar el estudio de un tema. Te apropies de algunas estrategias

Más detalles

2.1 Planificación del Alcance

2.1 Planificación del Alcance 2. Gestión del Alcance del Proyecto La Gestión del Alcance del Proyecto incluye los procesos necesarios para asegurarse que el incluya todo el trabajo requerido, y sólo el trabajo requerido, para completar

Más detalles

Módulo 2: Liderar el proyecto educativo de la escuela

Módulo 2: Liderar el proyecto educativo de la escuela Guía de aprendizaje Como lo hicimos en el primer módulo, te ofrecemos la siguiente guía de aprendizaje que te va a ayudar a seguir una metodología para el estudio y análisis de los temas propuestos en

Más detalles

Iniciativas para el Desarrollo del Jugador Normas para partidos en cancha pequeña & Registro por año de nacimiento Preguntas Frecuentes

Iniciativas para el Desarrollo del Jugador Normas para partidos en cancha pequeña & Registro por año de nacimiento Preguntas Frecuentes Iniciativas para el Desarrollo del Jugador Normas para partidos en cancha pequeña & Registro por año de nacimiento Preguntas Frecuentes General Por favor revise la Iniciativas para el Desarrollo del Jugador

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

CAPITULO VI EVALUACION DEL DESEMPEÑO

CAPITULO VI EVALUACION DEL DESEMPEÑO CAPITULO VI EVALUACION DEL DESEMPEÑO La evaluación del desempeño es el proceso mediante el cual se estima el rendimiento global del empleado. Se pretende conocer las fortalezas y debilidades del personal

Más detalles

TÉCNICAS DE ESTUDIO EN EL TERCER CICLO DE EDUCACIÓN PRIMARIA

TÉCNICAS DE ESTUDIO EN EL TERCER CICLO DE EDUCACIÓN PRIMARIA TÉCNICAS DE ESTUDIO EN EL TERCER CICLO DE EDUCACIÓN PRIMARIA Judith Domínguez Martín Diplomada en Educ. Infantil y Audición y Lenguaje. Maestra de Educ. Primaria. A lo largo de la etapa de educación primaria

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

BANCOS. Manejo de Bancos. Como crear una ficha de Banco? Como modificar los datos de una ficha de Banco? Como borrar una ficha de Banco?

BANCOS. Manejo de Bancos. Como crear una ficha de Banco? Como modificar los datos de una ficha de Banco? Como borrar una ficha de Banco? BANCOS El Sistema de Gestión Administrativa permite el manejo de los movimientos bancarios. Seleccionada la opción de Bancos, el sistema presentara las siguientes opciones. Manejo de Bancos Manejo de movimientos

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

PRINCIPAL NOTA CARACTERÍSTICA. Regla 1 - EL TERRENO DE JUEGO DIFERENCIAS ENTRE EL FÚTBOL Y EL FÚTBOL 8 TEMPORADA 2015/2016

PRINCIPAL NOTA CARACTERÍSTICA. Regla 1 - EL TERRENO DE JUEGO DIFERENCIAS ENTRE EL FÚTBOL Y EL FÚTBOL 8 TEMPORADA 2015/2016 PRINCIPAL NOTA CARACTERÍSTICA El Fútbol 8 es una particular modalidad de fútbol derivada del Fútbol 7, auténtica modalidad de fútbol creada e implantada por la Real Federación Española de Fútbol a nivel

Más detalles

CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN. El ámbito de los negocios en la actualidad es un área donde que cada vez más

CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN. El ámbito de los negocios en la actualidad es un área donde que cada vez más CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN El ámbito de los negocios en la actualidad es un área donde que cada vez más se requieren estudios y análisis con criterios de carácter científico a fin de poder

Más detalles

Descripción y tabla de especificaciones para prueba formativa Área Matemática Año 2014

Descripción y tabla de especificaciones para prueba formativa Área Matemática Año 2014 Descripción y tabla de especificaciones para prueba formativa Área Matemática Año 2014 Contenidos 1. El referente conceptual de la evaluación... 1 CUADRO 1. TABLA DE ESPECIFICACIONES EN EL ÁREA DE MATEMÁTICA...

Más detalles

Para obtener una cuenta de padre

Para obtener una cuenta de padre Orientación de Calificaciones Portal Padres Temas Principales Características Para obtener una Cuenta de Padres Lineamientos sobre el uso Manejo de la Cuenta Información de apoyo Calificaciones en Portal

Más detalles

FORMACIÓN PROFESIONAL

FORMACIÓN PROFESIONAL GUÍA INFORMATIVA I.E.S. González Allende (Toro). Departamento de Orientación. Curso 2014-2015 PARA LA ELECCIÓN ACADÉMICA Y PROFESIONAL AL FINALIZAR LA EDUCACIÓN SECUNDARIA OBLIGATORIA FORMACIÓN PROFESIONAL

Más detalles

Sesión 3 - Movimiento Diferencial

Sesión 3 - Movimiento Diferencial Sesión 3 - Movimiento Diferencial Qué aprenderemos en esta sesión? Para entender como nuestro robot se va a desplazar por cualquier superficie, debemos aprender la manera en que lo hace, por eso, en esta

Más detalles

Caso práctico de Cuadro de Mando con Tablas Dinámicas

Caso práctico de Cuadro de Mando con Tablas Dinámicas 1 Caso práctico de Cuadro de Mando con Tablas Dinámicas Luis Muñiz Socio Director de SisConGes & Estrategia Introducción Hay una frase célebre que nos permite decir que: Lo que no se mide no se puede controlar

Más detalles

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez Valderrebollo 20, 1 A 28031 MADRID 1ª Edición Ninguna parte de esta publicación, incluido

Más detalles

OncoBarómetro, Imagen social de las personas con cáncer. Resumen ejecutivo - 2013

OncoBarómetro, Imagen social de las personas con cáncer. Resumen ejecutivo - 2013 OncoBarómetro, Imagen social de las personas con cáncer Resumen ejecutivo - 2013 1 El cáncer no es solo una enfermedad médica, sino también una realidad social. Sin duda, conocer dicha vertiente social

Más detalles