TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que"

Transcripción

1 INTRODUCCIÓN TERMODINÁMICA MICA DORY CANO DÍAZD MSc.. Ingeniero Civil Mecánico Junio de 2007 OBJETIVOS Comprender y aplicar los principios y conceptos básicos de la Termodinámica Realizar balances simples máquinas térmicas. de masa y energía en Conocer y aplicar las ecuaciones fundamentales que rigen el comportamiento térmico de la materia, en la resolución de los problemas de Ingeniería 1

2 CONCEPTOS: 1. ENERGÍA 2. PROPIEDADES TERMODINÁMICAS : P Y T 3. SISTEMAS TERMODINÁMICOS: ABIERTOS, CERRADOS Y AISLADOS 4. DEFINICIÓN DE LAS LEYES DE LA TERMODINÁMICA Y EXPRESIÓN DE LA PRIMERA LEY 5. ANALISIS DE PROCESOS CON VAPOR DE AGUA. 6. DEFINICIÓN DE PROCESOS POLITRÓPICOS 7. DEFINICIÓN DE CICLOS TERMODINÁMICOS 8. EJERCICIOS DE APLICACIÓN Termodinámica mica Y Energía De donde proviene? Griego: Thermè Calor Dynamis Fuerza o potencia Describe los esfuerzos por convertir el Calor en potencia 2

3 Qué es? Es la ciencia del calor o de la energía (capacidad de producir cambios). Involucra conceptos de: Calor Trabajo Temperatura El Calor comienza a ser objeto de estudio (S XVIII-XIX) a raíz del invento de la MAQUINA DE VAPOR Nacimiento de la Termodinámica mica posibilidad de obtener Trabajo a partir del Calor 3

4 Unidad 1: Introducción a la Termodinámica vapore/new.gif 4

5 Unidad 1: Introducción a la Termodinámica Primer ppo de la Termodinámica Equivalencia entre Calor y trabajo Segundo ppo de la Termodinámica Concepto de Entropía Para conseguir que pase calor de un cuerpo a otro a T más alta siempre es necesario realizar trabajo Principio de la Conservación de la energía Ley Fundamental de la Naturaleza: Durante una interacción la energía puede cambiar de una forma a otra, pero la cantidad total de energía permanece constante La 1 LT: Expresión sencilla del ppo conservación de la energía Energía es una Propiedad Termodinámica La 2 LT: Establece que la energía tiene tanto Cantidad como Calidad. Procesos reales Degradación de energía 5

6 Sistemas Termodinámicos Frontera: Superficie real o imaginaria que separa el sistema de sus alrededores. Sin espesor, masa o Volumen. Esta puede ser: Fija o móvil Tipos de límites ó fronteras de los sistemas Adiabáticos, cuando no pueden ser atravesados por el calor. Diatérmicos, si permiten la transferencia del calor. Rígidos, si no permiten el cambio de volumen. Sistemas Termodinámicos Sistema Adiabático Q = 0 Aislación perfecta 6

7 Sistemas Termodinámicos 1.- Sistemas Cerrado ó Masa de Control Materia fija (constante) No hay intercambio de masa a través del límite. Sí hay intercambio de energía Límite puede variar Ejemplo Ampolleta Mechero El agua en planta de fuerza Sistemas Termodinámicos 2.- Volumen de control o Sistema abierto Flujo A Intercambio de masas y energías a través del límite. Ejemplo Flujo B límite Turbinas (vapor o gas) Motor de combustión. Bomba 7

8 Motores y bombas térmicas Se definen los motores térmicos como los dispositivos que producen trabajo mediante un proceso de intercambio de calor entre dos fuentes de energía, no obstante el cual permanece sin cambios. Los Ciclos Termodinámicos micos Ciclos de Potencia C. Potencia C. Refrigeración (BBs Acond. Aire) C. Gas C. Vapor C. Gas C. Vapor MCI: Ciclo OTTO y DIESEL MCE: Ciclo de BRAYTON: Simple, C/ regeneración C/ interenfriamiento, recalentamiento y regeneración MCE: Ciclo de RANKINE: Simple, C/ recalentamiento, C/ regeneración. Ciclos de vapor BINARIOS Ciclos combinados GAS-Vapor Ciclo de BRAYTON INVERTIDO Ciclo ideal de refrigeración por compresión de vapor Ciclo en cascada Ciclo por compresión múltiples etapas Ciclo por absorción 8

9 APLICACIONES Planta de vapor o de fuerza Energía eléctrica Turbina G Generador Caldera Bomba Condensador Algunos dispositivos de Ingeniería de Flujo Permanente INTERCAMBIADORES DE CALOR 9

10 10

11 APLICACIONES Refrigeración QH Condensador W Válvula de Expansión Compresor Evaporador QL 11

12 12

13 El secado de la madera depende de varios factores: La velocidad del aire, la humedad dentro de las cámaras secadoras y hornos secadores de madera, la temperatura de la misma, el espesor de la madera, el tipo de madera, etc. Controlando éstos parámetros, controlamos la velocidad del secado, la calidad del misma y la humedad final de la madera. 13

14 LAS RELACIONES TERMODINÁMICAS MICAS APLICABLES A SIST. ABIERTOS Y SIST. CERRADOS SON DIFERENTES!!!!!!! RECONOCER TIPO ANALIZAR 14

15 FORMAS DE ENERGÍA La energía puede existir de distintas formas y su suma constituye la energía total de un sistema. La Termodinámica trata con variaciones de energía En Termodinámica es útil considerar la energía en 2 grupos que forman la E total : MACROSCOPICA: Son las que posee un sist. como un todo (dep. de puntos de referencia: veloc, altura) MICROSCOPICA: Relacionados con estructura molecular del sistema, independiente se marcos de Ref. externos Σ E_Micro = E_interna (U) Los sistemas cerrados cuya velocidad y elevación permanecen constantes durante un proceso se conocen como Sistemas permanentes (SP) La mayoría de los sistemas cerrados son permanentes no presentan variación de E_cinetica ó E_potencial El cambio en la E total de un SP es identico al cambio en la E_interna 15

16 Asociada : ENERGÍA INTERNA (1) Grado de Actividad Molecular: Suma de la Ec Ec_rot + Ec_trasl +Ec_vibración = Ec_molecula Porción de Einterna asociada a la Energía cinetica de las moléculas se llama ENERGÍA SENSIBLE (2) Fuerzas Moleculares: Fzas que unen a las moléculas entre sí. Mayores en sólidos liquido gas (cambios de Fase cuando las moléculas se van separando) La Einterna asociada a la fase de un sistema se llama ENERGÍA LATENTE Otras: La Einterna asociada a la fuerza que unen los átomos-moleculas se llama ENERGÍA QUÍMICA (o de enlace) (Generalmente los procesos termodinámicos ocurren sin modificar la composición química de un sistema excepción procesos de Combustión) La Einterna asociada a los enlaces dentro del núcleo se llama ENERGÍA NUCLEAR 16

17 ENERGÍA MACRO= E Cinética +E Potencial ENERGÍA MICRO= E SENSIBLE +E LATENTE +E QUÍMICA +E NUCLEAR Propiedades (o magnitudes de estado) y Estado de una Sustancia Propiedad es cualquier característica evaluable de un sistema, cuyo valor depende de las condiciones de éste (de su estado) 17

18 PROPIEDADES DE UN SISTEMA Propiedades Extensivas: propiedades que dependen del tamaño o extensión del sistema Propiedades Intensivas: Independientes del tamaño, masa o magnitud del sistema Las propiedades intensivas se representan con letras minúsculas, (excepción de la temperatura y presión) Las propiedades extensivas se convierten en intensivas si se expresan por unidad de masa (propiedad específica), de moles (propiedad molar) o de volumen (densidad de propiedad). EXTENSIVAS INTENSIVAS V, U, H, T, P, ρ ESPECÍFICAS MOLARES v, u, h, s v, u, h (kg) (Mol) 18

19 Densidad de algunas sustancias En la tabla se muestra la densidad de algunas sustancias, expresada en kg/m 3. SUSTANCIA DENSIDAD (kg/m 3 ) Aire 1,28 Petróleo 800 Benceno 880 Agua Aluminio Hierro Cobre Plomo Mercurio Oro Osmio ESTADO Y EQUILIBRIO Estado es un punto donde el sistema no tiene ningún cambio De esta forma se pueden calcular sus propiedades. Obs: Un conjunto de propiedades describen el estado En un estado todas las propiedades tienen valores fijos. Si el valor de una propiedad cambia EXISTE OTRO ESTADO 19

20 Estado de Equilibrio: un sistema está en equilibrio cuando no tiene tendencia por sí mismo para cambiar su estado, y por tanto sus propiedades. Equilibrio Termodinámico: Un sistema está en equilibrio termodinámico cuando satisface las condiciones de todos los equilibrios parciales. (Ej: Equilibrio Térmico, mecánico, químico, etc) Procesos Cíclico: C Un sistema se somete a un CICLO si al terminar el proceso regresa a su estado inicial (e ini =e fin ) Proceso Reversible: S/efectos disipativos (S/roce, S/TdeC, S/degrad. Energía) Es un proceso idealizado. Proceso Irreversible: Proceso Real 20

21 Trayectoria : es la serie de estados por la cual pasa un sistema durante un proceso Descripción Completa de un proceso especificar: Estado inicial Estado Final Trayectoria Interacción con su alrededor Politrópicas: Constituyen una gran familia de evoluciones ó procesos que permiten estudiar gran cantidad de fenómenos reales (motores, compresores, ciclos de vapor, ciclos gas-vapor, etc) Isóbaras (presión constante). Del tipo P= Cte. Isócoras (volumen constante). Del tipo V = Cte. Isotermas (temperatura constante). Del tipo P V = Cte. Adiabáticas sin roce (DQ = 0, que después llamaremos isentrópicas) Del tipo p V g = Cte. Prefijo ISO: Denota cuando una propiedad permanece fija o constante durante un proceso 21

22 Diagramas de procesos más comunes: P-V, T-V Las politrópicas tienen la forma genérica del tipo: PV n = Cte. En que n es el coeficiente politrópico. El valor de n puede variar de 0 a infinito. 22

23 Presión La presión es la fuerza que ejerce un fluido por unidad de área Presión GASES y LIQUIDOS (P. Hidrostática y P. Dinámica) Recordar... SÓLIDOS (Esfuerzo) Presión en un fluido aumenta con la profundidad (mayor peso) Si existe gravedad la presión varía en sentido vertical Unidades: (SI) 1Pa=1N/m 2 (Sist. Inglés) lb/pulg 2 1bar=10 5 Pa= 0.1MPa=100kPa 1atm=101325Pa=101,325kPa=1,01325bar =psi 1atm=14,696 psi En ECUACIONES y TABLAS TERMODINÁMICAS MICAS la mayoría de las veces se emplea la presión absoluta: En general P=Pabs Ejemplo: Si se le agrega a absoluta Psia g manométrica Psig 23

24 Presión absoluta: Presión real de un sistema Presión manométrica: Presión medida abierta a la atmósfera Presión de vacío: Presiones bajo la Presión atmosférica P abs =P manométrica + P atm P vacío =P atm - P abs Temperatura y Ley Cero de la Termodinámica mica Temperatura, propiedad de los sistemas que determina si están en equilibrio térmico y determina la capacidad de un sistema para intercambiar calor. Su unidad es el Kelvin (K) Por tanto, los términos de temperatura y calor, aunque relacionados entre sí, se refieren a conceptos diferentes: la Temperatura es una propiedad de un cuerpo y el Calor es un flujo de energía entre dos cuerpos a diferentes temperaturas. 24

25 Ley cero de la Termodinámica mica Dos cuerpos están n en equilibrio térmico t si indican la misma Temperatura, incluso si no se encuentran en contacto t [ ºC ] = t [ K ] t [ ºF ] = t [ R] 1K 1 C 1.8R 1.8 F Las escalas de temperatura se basan en los puntos de congelamiento y ebullición del agua. SI: Escala Celcius ( C) Sistema Inglés: Escala Fahrenheit ( F) Existe también la escala de T termodinámica. Esta escala en : (indep. De prop de 1 o varias sustancias) Sistema Internacional: Escala Kelvin (K) Sistema Inglés: Escala Rankine (R) 25

26 Comparación de escalas de temperatura ºK. ºC ºR ºF Punto de ebullición 373,15 100,00 671,67 212,00 del agua. Punto triple 273,16 0,01 491,69 32,02 del agua, 273,15 0,00 491,67 32,00 punto de congelación Cero absoluto 0,00-273,15 0,00-459,67 ºK ºC ºR ºF Punto de ebullición a presión atmosférica Wark Punto de congelamiento Cero absoluto Las sustancias existen en fases distintas dependiendo de la Temperatura y la Presión Fases principales GASEOSOS - SÓLIDOS LÍQUIDOS Enfriar o comprimir Enfriar Calentar o reducir presión Calentar GASES -Desorden total -Partículas tienen completa libertad de movimiento. -Partículas tienden a estar alejadas entre si - Forma y volumen indeterminado. LÍQUIDOS -Menor desorden -Partículas tienen movimiento relativo entre si -Partículas tienen mayor cohesión (juntas) - Forma determinada al recipiente que los contiene SÓLIDOS -Orden -Partículas fijas en una posición determinada. -Partículas unidas entre si - Forma y volumen determinado Comparación molecular entre sólidos y líquidos 26

27 Gas Vaporización Condensación E N E R G I A Sublimación Fusión líquido Solidificación Deposición Sólido Fases de una Sustancias puras 1. LIQUIDO COMPRIMIDO: QUE NO ESTÁ A PUNTO DE EVAPORARSE 2. LIQUIDO SATURADO: LIQUIDO A PUNTO DE EVAPORARSE 3. VAPOR SATURADO: VAPOR A PUNTO DE CONDENSARSE 4. MEZCLA SATURADA DE LIQUIDO-VAPOR 5. VAPOR SOBRECALENTADO: VAPOR QUE NO ESTÁ A PUNTO DE CONDENSARCE ESTADO 1 ESTADO 5 Mezcla saturada liq-vapor 27

28 28

29 a) Estados de líquido saturado y de vapor saturado Subíndice f : Se emplea para denotar prop. De LIQUIDO SATURADO Subíndice g : Se emplea para las propiedades de VAPOR SATURADO Subíndice fg : Denota la diferencia entre los valores de vapor saturado y liquido saturado de la misma propiedad 29

30 2.1.- Propiedades de las sustancias puras Procesos de cambio de fase de Sustancias puras CURVAS CARACTERÍSTICAS DEL AGUA P R E S I Ó N S Ó L I D O LÍQUIDO Punto Triple Punto Crítico VAPOR TEMPERATURA 30

31 Diagramas de fases Un diagrama de fases es un gráfico que muestra las presiones y temperaturas a las que están en equilibrio diferentes fases. (Se representa la T vs P) Presión Punto Crítico Punto de : -Ebullición/condensación -Sublimación -Fusión/Congelación Punto Triple Temperatura Diagramas de fases Punto Triple: Punto (Tª y presión) donde las tres fases están en equilibrio. Punto crítico: Punto (Tª y presión crítica) sobre el cual la fase líquida y gaseosa una sustancia son indistinguibles. Presión Fluido Supercrítico Ej.: Para el CO 2 Tc= 31ºC y Pc= 72.9atm A B A- Hay condensación B- No hay condensación Temperatura 31

32 Diagrama P-v P Punto crítico Líquido comprimido Líquido saturado Vapor saturado Saturada líquido-vapor T 2 > T 1 Vapor sobrecalentado T 1 v = v + x f ( v v ) g f v T Líquido comprimido Diagrama T-v Punto crítico Líquido saturado Saturada líquido-vapor P 2 > P 1 Vapor saturado P 1 Vapor sobrecalentado m x = m vapor total v 32

33 Entropía Medida del desorden molecular Calidad de la energía disminuye Entropía del Universo aumenta T Punto crítico P 2 > P 1 s 2 P 1 Líquido comprimido s 1s s 1 Vapor sobrecalentado s 1 = s 1s < s 2 s Aire y/o gases Prop. Termod.. Fluidos interés s técnicot Agua Refrigerantes Tablas Gráficos Algebraica Diagramas Ecuaciones de estado 33

34 TIPOS DE TABLAS DE PROPIEDADES Tablas de Saturación Propiedades de bifásica liquido-vapor Tablas de líquidos l y vapores Propiedades de las regiones monofásicas Liquido y vapor Liquido saturado Vapores saturados Mezclas liq-vap Liquidos subenfriados Vapores sobrecalentados b) Mezcla saturada de líquido y vapor Durante proceso de EVAPORACIÓN una sustancia existe como: Parte líquida Parte vapor Para analizar se necesita conocer las proporciones de líquido y vapor Nueva propiedad: Calidad (X) : Razón n entre la masa de vapor y la masa total de la mezcla 34

35 a) Estados de líquido saturado y de vapor saturado Diagr. : t -v T[ºC] Pto.Crítico (22,09 Mpa / 374,14ºC / 0,003155[m 3 /kg]) Zona de saturación (2 fases) Zona de vapor sobrecalentado 70 Línea vapor saturado 50[bar] Líquido saturado Pto. Crítico 0,01 0,02 0,03 0,04 t [ºC] p [MPa] v [m 3 /kg] v [m 3 /kg] Tablas de Propiedades H 2 O 374,14 22,09 0, CO 2 34,05 7,39 0, O 2-118,05 5,08 0, H 2-239,85 1,30 0,

36 c) Vapor Sobrecalentado Ubicada en la región derecha de la línea de vapor saturado. Región de una sola fase P y T ya no son prop dependientes Ver tablas Libro Tablas de Propiedades d) Líquido Comprimido No existen muchas tablas para el líquido comprimido ya que sufren pequeñas variaciones con la presión: Esto es... Si aumento 100 veces la presión ocasiona que las propiedades varíen menos del 1% S/E propiedad más afectada es la entalpía. Ante falta de datos se aproxima al liquido comprimido como un liquido saturado a la temperatura dada 36

37 37

38 38

39 Cambios de fase Durante un cambio de fase, la presión y la temperatura son propiedades dependientes P sat A una Presión n dada, la T a la cual una sustancia empieza a hervir se llama Temperatura de Saturación, Tsat T sat A una Temperatura dada, la presión a la cual una sust pura empieza a hervir se llama Presión n de saturación, Psat 39

40 Vapor sobrecalentado NÍVEL DE ENERGÍA Vapor saturado Líquido saturado Mezcla saturada de líquido-vapor Líquido comprimido o subenfriado Entalpía Generación de potencia Refrigeración H = U + PV h = u + Pv u 2 p 2 v 2 u 1 p 1 v 1 Turbinas, compresores y toberas Flujo permanente Q& W& = m& ( h + ec + ep) q w = h 40

41 1.- DIBUJAR DIAGRAMA T v DEL VAPOR DE AGUA 2.- BUSCAR Psat Ó Tsat SEGÚN INFORMACIÓN DADA 3.- ENCONTRAR ZONA: SUBENFRIADA MEZCLA SOBRECALENTADA 4.- BUSCAR EN TABLA Ó CALCULAR SEGÚN CORRESPONDA 41

42 42

43 43

44 44

45 45

46 46

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

TERMODINÁMICA GENERAL Y LABORATORIO. Rodrigo Balderrama

TERMODINÁMICA GENERAL Y LABORATORIO. Rodrigo Balderrama TERMODINÁMICA GENERAL Y LABORATORIO Rodrigo Balderrama PLANIFICACIÓN Objetivos Generales: Al aprobar la asignatura, el alumno será capaz de: Comprender y aplicar los principios y conceptos básicos de la

Más detalles

TERMODINAMICA 1 Conceptos Basicos

TERMODINAMICA 1 Conceptos Basicos TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,

Más detalles

Sustancia Pura. Cap. 6 INTRODUCCIÓN. Sustancia Pura 6 - Pág. 1. Termodinámica para ingenieros PUCP

Sustancia Pura. Cap. 6 INTRODUCCIÓN. Sustancia Pura 6 - Pág. 1. Termodinámica para ingenieros PUCP Cap. 6 Sustancia Pura INTRODUCCIÓN Estamos entrando al mundo virtual de la información, es una etapa de transición para nuestra Termodinámica clásica, pues dentro de poco dejaremos nuestras antiguas Tablas

Más detalles

CAMBIO DE FASE : VAPORIZACIÓN

CAMBIO DE FASE : VAPORIZACIÓN CAMBIO DE FASE : VAPORIZACIÓN Un líquido no tiene que ser calentado a su punto de ebullición antes de que pueda convertirse en un gas. El agua, por ejemplo, se evapora de un envase abierto en la temperatura

Más detalles

Unidad Propiedades de las sustancias puras

Unidad Propiedades de las sustancias puras Unidad 2 2.1.- Propiedades de las sustancias puras 2.1.1.- Sustancias puras PLANIFICACIÓN Certámenes: Certamen 1 15 de mayo Certamen 2 12 de junio. Certamen 3 6 de julio 2.1.- Propiedades de las sustancias

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA VICERRECTORADO ACADEMICO COMISION CENTRAL DE CURRICULUM PROGRAMA ANALITICO Asignatura: Termodinámica II Código: Unidad I: Mezclas de Gases 0112T Objetivo General:

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA U.N.R. PROGRAMA ANALITICO DE LA ASIGNATURA: Termodinámica y Máquinas Térmicas Código: I-3.18.1 PLAN DE ESTUDIOS: 1999 CARRERA: INGENIERÍA INDUSTRIAL

Más detalles

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA:

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: 1.1.. Introducción: El concepto de temperatura está muy relacionado con el diario vivir. Tenemos un concepto intuitivo de algo

Más detalles

Termodinámica. Carrera: EMM - 0535. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Termodinámica. Carrera: EMM - 0535. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Electromecánica EMM - 0535 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Bases Físicas del Medio Ambiente. Propiedades y Procesos Térmicos

Bases Físicas del Medio Ambiente. Propiedades y Procesos Térmicos Bases Físicas del Medio Ambiente Propiedades y Procesos Térmicos Programa IX. PROPIEDADES Y PROCESOS TÉRMICOS. (1h) Introducción. Dilatación térmica. Fases. Cambios de fase. Calores latentes. Superficies

Más detalles

FASES Y ESTADOS DE LA MATERIA. Estados de la materia CAMBIOS DE FASE Y DIAGRAMAS DE FASE. Fase: CAMBIOS DE FASE FASE Y ESTADOS DE LA MATERIA

FASES Y ESTADOS DE LA MATERIA. Estados de la materia CAMBIOS DE FASE Y DIAGRAMAS DE FASE. Fase: CAMBIOS DE FASE FASE Y ESTADOS DE LA MATERIA FASES Y ESTADOS DE LA MATERIA CAMBIOS DE FASE Y DIAGRAMAS DE FASE Estados de la materia Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Quimica General - R. Petruci, W.S. Harwood

Más detalles

Ciclos de Potencia Curso 2007. Ejercicios

Ciclos de Potencia Curso 2007. Ejercicios Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle

Más detalles

Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla

Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla Líquida Binaria. Fundamentos teóricos. 1.- Equilibrios líquido-vapor en sistemas binarios: Disoluciones ideales. 2.- Diagramas de fase

Más detalles

atmosférico es mayor; más aún, si las posibilidades de reciclado natural de mismo se reducen al disminuir los bosques y la vegetación en general.

atmosférico es mayor; más aún, si las posibilidades de reciclado natural de mismo se reducen al disminuir los bosques y la vegetación en general. TODAS LAS PREGUNTAS SON DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA. RESPONDA LAS PREGUNTAS 45 A 51 DE ACUERDO CON Ciclo del Carbono El ciclo del carbono es la sucesión de transformaciones que presenta el

Más detalles

Examen de TERMODINÁMICA II Curso 1996-97

Examen de TERMODINÁMICA II Curso 1996-97 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 996-97 Obligatoria centro - créditos 8 de septiembre de 997 Instrucciones para el examen de TEST: Cada

Más detalles

Tema 7 : Trabajo, Energía y Calor

Tema 7 : Trabajo, Energía y Calor Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

FISICA II 2011 TEMA II JUAN J CORACE

FISICA II 2011 TEMA II JUAN J CORACE UNIDAD II: EQUILIBRIO ERMODINÁMICO El equilibrio termodinámico. Diagramas y para una sustancia pura. Superficie. Gases ideales. Leyes de los Gases Ecuaciones de estado. Coeficientes térmicos: de dilatación

Más detalles

TERMOMETRÌA Y CALORIMETRÌA

TERMOMETRÌA Y CALORIMETRÌA TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

ENERGÍA INTERNA DE UN SISTEMA

ENERGÍA INTERNA DE UN SISTEMA ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problemas propuestos Pág. 1 BALANCES DE ENERGÍA Problema nº 31) [04-03] Considérese una turbina de vapor que funciona con vapor de agua que incide sobre la misma con una velocidad de 60 m/s, a una presión

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI)

ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI) ANEXO B (Informativo) IMPACTO TOTAL EQUIVALENTE DE CALENTAMIENTO (TEWI) El TEWI (impacto total equivalente de calentamiento) es una forma de evaluar el calentamiento global combinando la contribución directa

Más detalles

Estas operaciones se designan genéricamente como Humidificación y Deshumidificación.

Estas operaciones se designan genéricamente como Humidificación y Deshumidificación. 1 / 16. OPERACIONES DE HUMIFICACION: Son operaciones de contacto directo entre dos fases inmiscibles (gas/líquido), a diferente temperatura, e involucran transferencia de calor y de masa simultáneas a

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS

PRODUCTO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELTOS UNIVERSIDAD NACIONAL EXPERIMENAL FRANCISCO DE MIRANDA ÁREA DE ECNOLOGÍA COMPLEJO ACADÉMICO EL SABINO DEPARAMENO DE ENERGÉICA PRODUCO DE NOVIEMBRE DE 2012 GUIA DE EJERCICIOS RESUELOS Periodo: III-2012 Por:

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

PRÁCTICA 4: EVOLUCIONES PSICROMÉTRICAS

PRÁCTICA 4: EVOLUCIONES PSICROMÉTRICAS TERMODINÁMIA TÉNIA Y TRANSMISION DE ALOR E.I.I. Valladolid Departamento de Ingeniería Energética y luidomecánica urso 2012-2013 PRÁTIA 4: EVOLUIONES PSIROMÉTRIAS OBJETIVOS: Los objetivos de la práctica

Más detalles

EVAPORADORES Y CONDENSADORES

EVAPORADORES Y CONDENSADORES AMBOS SON LOS ELEMENTOS DONDE SE PRODUCE EL INTERCAMBIO DE CALOR: EVAPORADOR: SE GANA CALOR A BAJA TEMPERATURA, GENERANDO EFECTO DE REFRIGERACIÓN MEDIANTE LA EVAPORACIÓN DEL REFRIGERANTE A BAJA PRESIÓN

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 2. La energía 1 ÍNDICE 1. Introducción 2. Tipos de Interacciones 3. Fuerzas 4. Tipos de Energía 5. Formas

Más detalles

REFRIGERACIÓN Y CALEFACCIÓN

REFRIGERACIÓN Y CALEFACCIÓN REFRIGERACIÓN Y CALEFACCIÓN Pedro Fernández Díez Equipos de refrigeración y bomba de calor.i.-0 REFRIGERACIÓN Equipos de refrigeración y bomba de calor.i.-1 I.- INTRODUCCIÓN A LOS EQUIPOS DE REFRIGERACIÓN

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

UNIDAD III. ESTADO LIQUIDO.

UNIDAD III. ESTADO LIQUIDO. REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERÌA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD III. ESTADO LIQUIDO. Prof. David

Más detalles

SISTEMA SOLAR TERMODINÁMICO

SISTEMA SOLAR TERMODINÁMICO ES SISTEMA SOLAR TERMODINÁMICO M A D E I N I T A L Y EL NUEVO SISTEMA SOLAR TERMODINÁMICO PARA OBTENER AGUA CALIENTE AHORRANDO HASTA EL 85% Agua caliente Ahorro de hasta el 60 C 85% Refrigerante ecológico

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I SÍLABO ASIGNATURA: MÁQUINAS TÉRMICAS I CÓDIGO: 8C0047 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Mecatrónica 1.3. CICLO DE ESTUDIOS

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

CAPITULO MONTERREY AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.

CAPITULO MONTERREY AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC. Curso: Fundamentos de sistemas de refrigeración Duración: 25 horas. Los cursos de refrigeración de ASHRAE Capítulo Monterrey están estructurados de manera seriada cada uno de 5 horas por sesión, centrado

Más detalles

Examen de TERMODINÁMICA II Curso 1997-98

Examen de TERMODINÁMICA II Curso 1997-98 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 997-98 Obligatoria centro - créditos de agosto de 998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

Fig. 11.1: Caldera humotubular de un paso (Shield).

Fig. 11.1: Caldera humotubular de un paso (Shield). UNIDAD 11 Generadores de Vapor 1. General La generación de vapor para el accionamiento de las turbinas se realiza en instalaciones generadoras comúnmente denominadas calderas. La instalación comprende

Más detalles

Joaquín Bernal Méndez Dpto. Física Aplicada III 1

Joaquín Bernal Méndez Dpto. Física Aplicada III 1 TERMODINÁMICA Tm Tema 7: 7Cn Conceptos ptsfndmntls Fundamentales Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Sistema y entorno

Más detalles

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas

MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS. Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado gas MAQUINAS TÉRMICAS CICLOS TERMODINÁMICOS CICLOS DE POTENCIA CICLOS DE REGRIGERACIÓN Máquina Térmica Refrigerador, Bomba de calor Ciclo de gas: La sustancia que lo realiza queda durante el ciclo en estado

Más detalles

TEMA 11 LA MATERIA EN EL UNIVERSO

TEMA 11 LA MATERIA EN EL UNIVERSO TEMA 11 LA MATERIA EN EL UNIVERSO TEMA 11 LA MATERIA EN EL UNIVERSO QUÉ ES LA MATERIA? Materia es todo aquello que tiene volumen (ocupa un espacio) y que tiene una determinada masa (por tanto, pesa). QUÉ

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................

Más detalles

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO 50 CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO En este capítulo se desarrolla la metodología de análisis, cuya aplicación a una central termoeléctrica particular y el análisis de los resultados se llevan

Más detalles

Materia Todo lo que ocupa un lugar en el espacio. Sustancia pura Materia de composición química definida

Materia Todo lo que ocupa un lugar en el espacio. Sustancia pura Materia de composición química definida II. MATERIA Y ENERGÍA OBJETIVO.-. Analizará la relación entre materia y energía a partir de sus propiedades para identificar su vinculación con los fenómenos físicos y químicos de su entorno 1 Materia

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial

Más detalles

λ fus + λ vap = λ sub

λ fus + λ vap = λ sub Cambios De Fase Ecuacion De Clasius V : diferencia de volumen entre ambas fases. λ = T(s f s i ) se denomina calor latente o entalpia de transición. Se considera normalmente como constante. Además se cumple

Más detalles

Transferencia de energía: calor

Transferencia de energía: calor Transferencia de energía: calor Objetivos Transferencia de energía: calor: Conocer y saber diferenciar los conceptos de calor, temperatura y energía interna. Manejar las diferentes unidades que se usan

Más detalles

Práctico de Física Térmica 2 da Parte

Práctico de Física Térmica 2 da Parte Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en

Más detalles

II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/

II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/ II.- TRANSFORMACIONES TERMODINÁMICAS http://libros.redsauce.net/ II.1- INTRODUCCIÓN La Termodinámica describe y define las transformaciones de una forma energética a otra: química a térmica, térmica a

Más detalles

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA

UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INDUSTRIAL PROGRAMA DE LA ASIGNATURA INGENIERÍA TÉRMICA Ingeniero Técnico Industrial en Química CURSO 08/09 DEPARTAMENTO DE INGENIERÍA

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

Neumática e Hidráulica

Neumática e Hidráulica Neumática e Hidráulica N. T0.- Introducción a la Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. l alumno le pueden servir como

Más detalles

TEMA 11. REFRIGERACIÓN

TEMA 11. REFRIGERACIÓN Termodinámica Aplicada Ingeniería Química TEMA. REFRIGERACIÓN TEMA : REFRIGERACIÓN BLOQUE II. Análisis termodinámico de procesos industriales PROCESOS INDUSTRIALES ANÁLISIS PROCESOS CALOR TRABAJO Y POTENCIA

Más detalles

Calor: energía transferida debida únicamente a diferencias de temperatura

Calor: energía transferida debida únicamente a diferencias de temperatura TERMODINÁMICA La termodinámica estudia la energía y sus transformaciones. Energía: capacidad para realizar trabajo. Formas de energía Energía radiante Energía térmica Energía química Energía potencial

Más detalles

Lenguaje del Ingeniero de Procesos. Normas para las representaciones de los procesos.

Lenguaje del Ingeniero de Procesos. Normas para las representaciones de los procesos. Lenguaje del Ingeniero de Procesos. Diagramas de Procesos: Diagramas de bloque (BFD)» De conjunto de procesos (entradas salidas)» De proceso Diagramas de flujo de proceso (PFD)» Simplificado o detallado

Más detalles

TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS

TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS PROYECTO DE INNOVACIÓN EDUCATIVA TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS UNIDAD DE TRABAJO Nº 2 Profesor: Pascual Santos López Curso 2004-2005 ÍNDICE Objetivos:...5 Contenidos:...5 Actividades

Más detalles

17. THERMODYNAMICS OF POWER GENERATION

17. THERMODYNAMICS OF POWER GENERATION 17. THERMODYNAMICS OF POWER GENERATION 17.0. Deducir expresiones analíticas ideales para los rendimientos energéticos de los siguientes motores: a) Ciclo de Carnot. b) Ciclo Otto. c) Ciclo Diesel. d) Ciclo

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

D I P L O M A D O. Eficiencia energética y energías limpias

D I P L O M A D O. Eficiencia energética y energías limpias D I P L O M A D O Eficiencia energética y energías limpias Introducción Análisis exegético y termoeconómico Por qué es necesario el análisis exergético? Explicación popular El análisis exergético se aplica

Más detalles

FACULTAD DE CIENCIAS QUIMICAS

FACULTAD DE CIENCIAS QUIMICAS UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS II Dr. Iván Salmerón Ochoa REPORTE DE LABORATORIO: DESTILACIÓN FRACCIONADA AGUIRRE OLVERA OSCAR OSWALDO 232619 ARZATE

Más detalles

CAPÍTULO 5º. Resumen de teoría: Regla de las fases: ϕ Número de fases. r Número de reacciones químicas. Ejercicios y problemas de Termodinámica I

CAPÍTULO 5º. Resumen de teoría: Regla de las fases: ϕ Número de fases. r Número de reacciones químicas. Ejercicios y problemas de Termodinámica I CAPÍULO 5º Ejercicios y problemas de ermodinámica I ransiciones de fase. Regla de las fases. Resumen de teoría: Regla de las fases: ϕ + l = c r ρ + ϕ Número de fases. r Número de reacciones químicas. l

Más detalles

Electricidad y calor. Temario. Temario. Webpage: http://paginas.fisica.uson.mx/qb

Electricidad y calor. Temario. Temario. Webpage: http://paginas.fisica.uson.mx/qb Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

GASES barómetro Unidades

GASES barómetro Unidades GASES Estado de la material: Alta Ec y bajas interacciones intermoleculares Son altamente compresibles y ocupan el volumen del recipiente que lo contiene. Cuando un gas se somete a presión, su volumen

Más detalles

HISTORIA DEL AIRE ACONDICIONADO

HISTORIA DEL AIRE ACONDICIONADO HISTORIA DEL AIRE ACONDICIONADO FUE EN EL AÑO 1842 CUANDO LORD KELVIN INVENTÓ EL PRINCIPIO DEL AIRE ACONDICIONADO. CON EL OBJETIVO DE CONSEGUIR UN AMBIENTE AGRADABLE Y SANO, EL CIENTÍFICO CREÓ UN CIRCUITO

Más detalles

INTRODUCCION AL MANEJO DE FLUIDOS

INTRODUCCION AL MANEJO DE FLUIDOS INTRODUCCION AL MANEJO DE FLUIDOS Como podemos insertar a los fluidos como parte de los materiales en general para estudiar el manejo de los mismos? Entendiendo por material a todo aquello formado por

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 2 1.1. Representación de sistemas termodinámicos................. 2 1.2. Representación de sistemas termodinámicos.................

Más detalles

Capacidad Nominal de las Válvulas de Expansión Termostáticas

Capacidad Nominal de las Válvulas de Expansión Termostáticas Capacidad Nominal de las Válvulas de Expansión Termostáticas 1 Propósito. 1 2 Campo de aplicación. 1 3 Definiciones 2 3.1 Capacidad 2 3.2 Sobrecalentamiento... 3 4 Condiciones nominales para refrigerantes

Más detalles

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA MEZCLA DE GAS VAPOR UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA AIRE SECO Y ATMOSFÉRICO: El aire es una mezcla de Nitrógeno, Oxígeno y pequeñas cantidades de otros gases. Aire Atmosférico:

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

PSICROMETRIA aire seco y vapor de agua

PSICROMETRIA aire seco y vapor de agua PSICROMETRIA La Psicrometría trata la sustancia aire como una mezcla de dos gases que no reaccionan entre sí y se comportan casi como dos gases ideales: aire seco y vapor de agua COMPOSICION DEL AIRE PROPIEDADES

Más detalles

El Sistema Climático 2

El Sistema Climático 2 Prólogo 1 El Sistema Climático 2 Prólogo El Sistema Climático Fundamentos físicos del clima 3 El Sistema Climático Universidad de Valparaíso-Editorial, 2002. Errázuriz 1108 - Valparaíso, Chile. Fono: 507648

Más detalles

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC

Salida fluido frío. Salida fluido caliente. Flujo paralelo 97,75 ºC Flujo contracorriente 101,99 ºC EJERCICIOS RESUELTOS a) Cálculos calor 1. Calcular el diferencial logarítmico de temperatura en un intercambiador a flujo paralelo y flujo contracorriente, sabiendo que las temperaturas son las siguientes:

Más detalles

4. METODOLOGÍA. 4.1 Selección de la mezcla

4. METODOLOGÍA. 4.1 Selección de la mezcla 4. METODOLOGÍA 4.1 Selección de la mezcla Para iniciar con las simulaciones, primero se tuvo que seleccionar la mezcla binaria a utilizar. Se hicieron pruebas con los siete primeros hidrocarburos (metano-heptano)

Más detalles

Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES.

Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES. 2014 Colegio La Salle TH Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES. Tabla de contenidos Introducción... 2 I.- Variación en el volumen de un gas al modificar la presión,

Más detalles

LOS GASES Y SUS LEYES DE

LOS GASES Y SUS LEYES DE EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar

Más detalles

LICENCIATURA EN CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS INGENIERÍA DEL FRÍO

LICENCIATURA EN CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS INGENIERÍA DEL FRÍO 1 LICENCIATURA EN CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS INGENIERÍA DEL FRÍO Créditos teóricos: 3 Créditos prácticos: 1,5 Objetivos: Esta asignatura se plantea, como objetivo principal, completar la formación

Más detalles

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Como se mide y transporta el calor La cantidad de calor (Q) se expresa en las mismas unidades que la energía y el trabajo, es decir, en Joule. Otra unidad es

Más detalles

1. La magnitud 0,0000024mm expresada en notación científica es: a) 2,4 10 6 mm b) 2,4 10 5 mm c) 24 10 5 mm d) 24 10 6 mm

1. La magnitud 0,0000024mm expresada en notación científica es: a) 2,4 10 6 mm b) 2,4 10 5 mm c) 24 10 5 mm d) 24 10 6 mm Se responderá escribiendo un aspa en el recuadro correspondiente a la respuesta correcta o a la que con carácter más general suponga la contestación cierta más completa en la HOJA DE RESPUESTAS. Se facilitan

Más detalles

PRÁCTICA 6 Diagrama de fases: Temperatura de ebullición Composición de una mezcla líquida binaria

PRÁCTICA 6 Diagrama de fases: Temperatura de ebullición Composición de una mezcla líquida binaria aboratorio de Química Física 1 Curso 2011-2012 Grado en Química PRÁCTICA 6 Diagrama de fases: Temperatura de ebullición Composición de una mezcla líquida binaria Material Productos 2 viales Metanol 2 matraces

Más detalles

Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba-

Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba- Segundo Encuentro Jurisdiccional Fortalecimiento de la Enseñanza de las Ciencias Naturales en la Educación Secundaria. -Córdoba- 10 y 11 de junio 2014 1 En general se presta poca atención al conocimiento

Más detalles

Introducción a la Química. Sistemas Materiales y Conceptos Fundamentales. Seminario de Problemas N 1

Introducción a la Química. Sistemas Materiales y Conceptos Fundamentales. Seminario de Problemas N 1 Sistemas Materiales Introducción a la Química Seminario de Problemas N 1 1. Dibuja un esquema con los tres estados de la materia (sólido, líquido y gas) indicando el nombre de los cambios de estado. 2.

Más detalles

Tema : MOTORES TÉRMICOS:

Tema : MOTORES TÉRMICOS: Tema : MOTORES TÉRMICOS: 1.1CARACTERÍSTICAS DE LOS MOTORES Se llama motor a toda máquina que transforma cualquier tipo de energía en energía mecánica. Según sea el elemento que suministra la energía tenemos

Más detalles

IES Menéndez Tolosa 3º ESO (Física y Química)

IES Menéndez Tolosa 3º ESO (Física y Química) IES Menéndez Tolosa 3º ESO (Física y Química) 1 De las siguientes mezclas, cuál no es heterogénea? a) azúcar y serrín. b) agua y aceite. c) agua y vino d) arena y grava. La c) es una mezcla homogénea.

Más detalles

Determinación del diagrama de fase líquido-vapor

Determinación del diagrama de fase líquido-vapor Determinación del diagrama de fase líquido-vapor para el sistema acetona cloroformo. Mezcla azeotrópica. Objetivo Determinar el diagrama temperatura vs composición (líquido y vapor) para un sistema de

Más detalles

CONSERVACION DE LA ENERGIA

CONSERVACION DE LA ENERGIA CONSERVACION DE LA ENERGIA 15% Gases de Chimenea 80% Vapor a Alta Presión 100% Combustible Planta de Cogeneración Reducción P&T 3% Pérdidas 2% Pérdidas 55% al proceso 5% Purga 20% Condensado Circuito Típico

Más detalles

)H 0 f (KJ/mol ) -277,3 0-393,5-285,8 TERMOQUÍMICA II. Problemas y cuestiones PAU (RESUELTOS)

)H 0 f (KJ/mol ) -277,3 0-393,5-285,8 TERMOQUÍMICA II. Problemas y cuestiones PAU (RESUELTOS) TERMOQUÍMICA II Problemas y cuestiones PAU (RESUELTOS) La entalpía de combustión del butano es )Hc = - 2642 KJ /mol, si todo el proceso tiene lugar en fase gaseosa. a) Calcule la energía media del enlace

Más detalles

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P). CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS N 3 TEMA: GASES IDEALES OBJETIVO: Interpretación de las propiedades de los gases; efectos de la presión y la temperatura sobre los volúmenes de los gases. PRERREQUISITOS:

Más detalles

ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS

ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS ANALYSIS OF SOLAR RETROFIT IN COMBINED CYCLE POWER PLANTS El objetivo del estudio termodinámico realizado en este proyecto es determinar y maximizar la eficiencia de una central de ciclo combinado. Con

Más detalles

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie..

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. Ricardo Muñoz C. Ingeniero Agrónomo M.S. Sicrometría, en términos

Más detalles

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR M. EN C. MARÍA GUADALUPE ORDORICA MORALES 2006 M. en C. María Guadalupe Ordorica Morales

Más detalles

Escala cuantitativa de magnitudes en nuestro universo 1.1.1 Indique y compare cantidades hasta el orden de magnitud más cercano.

Escala cuantitativa de magnitudes en nuestro universo 1.1.1 Indique y compare cantidades hasta el orden de magnitud más cercano. Tema 1: La física y las mediciones físicas Subtema 1.1: El ámbito de la física Escala cuantitativa de magnitudes en nuestro universo 1.1.1 Indique y compare cantidades hasta el orden de magnitud más cercano.

Más detalles

Problemas de Termotecnia

Problemas de Termotecnia Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503 GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN I. EL PROBLEMA Dos líquidos completamente miscibles se pueden separar por métodos físicos llamados

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

Tema 8. Termodinámica

Tema 8. Termodinámica Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 8. Termodinámica Índice 1. Conceptos básicos

Más detalles

Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES

Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES 2.1. Calcula la presión que ejerce 1 mol de Cl 2 (g), de CO 2 (g) y de CO (g) cuando se encuentra ocupando un volumen

Más detalles