Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):"

Transcripción

1 Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso, Cil Atulizión: 13 myo 2005 Frno Guii Polno 2 Árol: iniión (ont.) Árol: Gro onxo, no orinto y ílio. C A E B D H Árol: iniión (ont.) Árol: Un strutur tos s s un noo ríz. C noo s y s un oj o un noo intrno. Un noo intrno tin uno o más noos ijos, y s l llm pr sus noos ijos. Un árol s, y s: un onjunto vío, o un ríz on ro o más árols Frno Guii Polno 3 Frno Guii Polno 4

2 Hojs y noos intrnos Rprsntión un árol Un oj s ulquir noo qu tin sus ijos víos. Un noo intrno s ulquir noo on l mnos un ijo no vío. Noos intrnos suárol i j ríz suárol k Hojs suárol l m suárol Frno Guii Polno 5 Frno Guii Polno 6 Rprsntión un árol (ont.) Noos prs ijos Ls rís los suárols un árol son ijos l ríz l árol. Exist un ro s noo uno sus ijos, y s i qu st noo s pr sus ijos. i j k suárols noo suárols noo l m suárol noo Frno Guii Polno Frno Guii Polno 8

3 Rut y lro un rut Anstros y snints Si n 1, n 2,... n k s un suni noos n un árol, moo qu n i s pr n i + 1, pr 1<=i<=k, ntons st suni s llm rut s n 1 n k. El lro st rut s k. n 1 n 2 n 3 Si xist un rut s un noo A un noo B, ntons A s nstro B y B s snint A. Luo, toos los noos un árol son snints l ríz l árol, mintrs qu l ríz s l nstro toos los noos. Frno Guii Polno 9 Frno Guii Polno Altur L ltur un noo M un árol orrspon l númro noos n l rut s l ríz st M. L ltur un árol orrspon l ltur l noo más prouno. Altur l árol=4 Altur l noo=2 Frno Guii Polno 11 Nivls Toos los noos ltur stán n l nivl n l árol. L ríz stá n l nivl 1, y su ltur s 1. Nivl 1 Nivl 2 Nivl 3 Nivl 4 Frno Guii Polno

4 Árols inrios Rprsntión un árol inrio (I) Un A.B. stá onstituio por un onjunto inito lmntos llmos noos. ríz Un árol inrio: no tin noos (stá vío); o tin un noo llmo ríz, junto on otros os árols inrios llmos suárols ro izquiro l ríz. suárol izquiro suárol ro Not: Un prt importnt l mtril prsnto n st sión u loro por Mrlo Silv F. Frno Guii Polno 13 Frno Guii Polno Rprsntión un árol inrio (II) Iul árols inrios ríz suárol ro Pr sr iuls, os árols n tnr tnto l mism strutur, omo l mismo ontnio. suárol izquiro Frno Guii Polno 15 Frno Guii Polno 16

5 Árols inrios llnos Un árol inrio llno s qul n qu noo s un noo intrno on os ijos no víos, o un oj. Árols inrios ompltos Un árol inrio omplto tin un orm rstrini, qu s otin l sr llno izquir r. En un A.B. Complto ltur, toos los nivls, xpto posilmnt l nivl stán ompltmnt llnos. No s A.B. llno Es A.B. llno Es un A.B. omplto pro no s un A.B. llno Frno Guii Polno 1 Frno Guii Polno Númro noos n un árol inrio El máximo númro noos n l nivl i un árol inrio s 2 (i-1). El máximo númro noos n un árol inrio ltur K s 2 (K) -1. Rprsntión árols inrios mint noos y rrnis Frno Guii Polno 19 Frno Guii Polno 20

6 Dirm lss un árol inrio Dirm lss árol inrio ntros: Dirm ojtos un árol inrio :ABB ABB insrt(i:int) in(:dt):ooln lt(i:int) 1..1 root lt t:int ABBNo stdt(i:int) tdt():int stlt(n:abbno) tlt():abbno strit(n:abbno) trit():abbno isl():ooln rit :ABBNo t: root:abbno t:20 :ABBNo t:32 :ABBNo t:2 :ABBNo t:15 :ABBNo t:40 Frno Guii Polno 21 Frno Guii Polno 22 Rprsntión árols inrios mint rrlos Si l ríz un suárol s lmn n A[i], su ijo izquiro s lmn n A[2*i], y su ijo ro n A[2*i+1]. Rorrio árols inrios Un rorrio s ulquir proso stino visitr los noos un árol inrio n un trmino orn. Culquir rorrio qu visit noo xtmnt un vz, s nomin un numrión los noos l árol. Rorrios numrión nlizr: Prorn Inorn Postorn Frno Guii Polno 23 Frno Guii Polno 24

7 Rorrio n Prorn Cóio pr rorrio Prorn Do un árol inrio: 1) Visitr su ríz. 2) Rorrr n prorn su suárol izquiro. 3) Rorrr n prorn su suárol ro. voi prorr(binno rt) // rt s l ríz l surol { i (rt==null) rturn; // surol vío visit(rt) // lo on l noo prorr(rt.lt()); prorr(rt.rit()); } Frno Guii Polno 25 Frno Guii Polno 26 Ejmplo rorrio n Prorn Rorrio n Inorn Do un árol inrio: 1) Rorrr n inorn su suárol izquiro. 2) Visitr su ríz. 3) Rorrr n inorn su suárol ro. i j k i j k Frno Guii Polno 2 Frno Guii Polno 28

8 Cóio pr rorrio Inorn Ejmplo rorrio n Inorn voi inorr(binno rt) // rt s l ríz l surol { i (rt==null) rturn; // surol vío inorr(rt.lt()); visit(rt) // lo on l noo inorr(rt.rit()); } i j k j i k Frno Guii Polno 29 Frno Guii Polno 30 Rorrio n Postorn Cóio pr rorrio Postorn Do un árol inrio: 1) Rorrr n postorn su suárol izquiro. 2) Rorrr n postorn su suárol ro. 3) Visitr su ríz. voi postorr(binno rt) // rt s l ríz l surol { i (rt==null) rturn; // surol vío postorr(rt.lt()); postorr(rt.rit()); visit(rt) // lo on l noo } Frno Guii Polno 31 Frno Guii Polno 32

9 Ejmplo rorrio n Postorn Árol inrio úsqu j i k Suponmos qu tnmos un onjunto n lmntos qu pun sr ornos por lun lv. En un árol inrio úsqu (ABB), toos los noos lmnos n l suárol izquiro un noo uyo vlor lv s C tinn lvs mnors qu C, mintrs qu toos los noos uios n l suárol ro tinn lvs myors qu C. j k i Frno Guii Polno 33 Frno Guii Polno 34 Ejmplos árols inrios úsqu Inrso lmntos un ABB < > Diniión ABB No s ABB {, 5,, 15,,, } { 15,,, 5,,, } 15 5 Es ABB Frno Guii Polno 35 Frno Guii Polno 36

10 ABB rrni Inrso lmntos un ABB (ont.) ABB insrt(:elmnt) in(ky:int):elmnt lt(i:int):elmnt 1 root lt ABBNo stdt(:elmnt) tdt():elmnt stlt(n:abbno) tlt():abbno strit(n:abbno) trit():abbno isl():ooln rit t 1 Elmnt {intr} tky():int privt BinNo insrt (BinNo rt, Elmnt vl) { i (rt == null) rturn nw BinNo(vl); Elmnt it = (Elmnt)rt.lmnt(); i (it.ky() > vl.ky()) rt.stlt(insrt(rt.lt(), vl)); ls rt.strit(insrt(rt.rit(), vl)); rturn rt; } Frno Guii Polno 3 Frno Guii Polno 38 Crtrístis l inrso lmntos un ABB Rorrio Inorn n ABB Los lmntos ros un ABB simpr son inorporos iniilmnt omo ojs. 15 Un onjunto lmntos o pu nrr ivrsos ABB, pnino l orn n qu son inrsos Frno Guii Polno 39 Frno Guii Polno 40

11 Crtrístis l rorrio Inorn un ABB Búsqu n ABB Si in xistn muos ABBs posils pr un mismo onjunto lmntos, l rorrio Inorn toos stos árols simpr ntr l onjunto orno mnor myor. Pr llr un lmnto on lv C, n un árol A: Si l ríz l árol A lmn C, l úsqu trmin xitosmnt. Si C s mnor qu l vlor l ríz A, usr n l suárol izquiro. Si C s myor qu l vlor l ríz, usr n l suárol ro. L úsqu trmin l llr l vlor C, o l prtnr usr n un suárol vío. Frno Guii Polno 41 Frno Guii Polno 42 Búsqu n ABB (ont.) Ejmplo úsqu n ABB Elm in(binno rt, int ky) { i (rt == null) rturn null; Elmnt it = (Elmnt)rt.lmnt(); i ((int)it.ky() > ky) rturn in(rt.lt(), ky); ls i (it.ky() == ky) rturn it; ls rturn in(rt.rit(), ky); } Busr Búsqu xitos Busr 16 Búsqu inrutuos Frno Guii Polno 43 Frno Guii Polno 44

12 Eliminión lmntos un ABB Eliminr noo qu s un oj o tin lo más un ijo S pun prsntr trs sos: El lmnto no xist. El lmnto s un oj o tin lo más un ijo. El lmnto tin os ijos. 15 Frno Guii Polno 45 Frno Guii Polno 46 Ejmplo liminión noo on os ijos Eliminr noo on os ijos 16 1 El mnor los lmntos myors (Noo más l izquir l suárol ro) Hllr l noo qu ontin l mnor los lmntos myors l noo liminr (l lmnto más l izquir su suárol ro) 2. Rmplzr los tos l noo liminr on los l noo llo. 3. Eliminr l noo llo, qu tin lo más un ijo, on l proiminto srito prvimnt. Frno Guii Polno 4 Frno Guii Polno 48

13 Utili los árols inrios úsqu Al usr, l ABB prmit srtr priori un suonjunto lmntos, n orm nálo l úsqu inri n rrlos ornos. El ABB prsnt más l vntj por sr implmnto on puntros (strutur inámi). L inorporión y liminión lmntos l ABB s ms rápi qu n rrlos ornos. Importni un strutur ln n los ABB L strutur un ABB s importnt l momnto rlizr úsqus n él En l por los sos s n 3 itrions pr un úsqu. 3 5 En l por los sos s n itrions pr un úsqu. Frno Guii Polno 49 Frno Guii Polno 50

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador Prsntión Curso 0-07, grupo Iván Cntor Dspho: B.8 E-mil: ivn.ntor@um.s Págin w: http://www.ps.um.s/~ntor - trnsprnis ls Mool: https://mool.um.s/ours/viw.php?i=8 - guí ont, punts, jriios y prolms, prátis

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

Matemáticas Discretas Grafos

Matemáticas Discretas Grafos Coorinión Cinis Computionls - INAOE Mtmátis Disrts Grfos Cursos Propéutios 200 Cinis Computionls INAOE Grfos Dfiniions básis Cminos y ilos Grfos ulrinos y hmiltoninos Isomorfismo Árbols Dr. Luis Villsñor

Más detalles

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas:

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas: Estruturs Dtos m 1. 1. Dfiniions ásis 2. Implmntions 3. Funions mnipulión 4. Rorrios Dfiniións ásis: L torí grfos: rm l mtmáti omintori muy útil n l soluión prolms prátios qu s formuln mnr nturl por mio

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Árboles binarios. Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile

Árboles binarios. Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile Árboles binarios Franco Guidi Polanco Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile fguidi@ucv.cl Árbol: definición v Árbol (del latín arbor oris): Planta perenne,

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS Vagón d rrnia Ltras índi a on bogis part suprior ( a ) part inrior ( a ) on 3 unidads on 4 ó más unidads (xlusivamnt a través dl túnl) (xlusivamnt

Más detalles

Algunos Algoritmos Sobre Gráficas

Algunos Algoritmos Sobre Gráficas Arturo Díz Pérz Algunos Algoritmos Sor Gráis Arturo Díz Pérz Sión Computión Dprtmnto Ingnirí Elétri CINVESTAV-IPN A. Instituto Politénio Nionl No. 08 Col. Sn Pro Ztno Méxio, D. F. CP 0700 Tl. ()747 800

Más detalles

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils,

Más detalles

9) LAS MUTACIONES MUTACIONES

9) LAS MUTACIONES MUTACIONES III) L normón lulr 9) Mutons 9) LAS MUTACIONES MUTACIONES Son mos n l normón rtr. Pun prours n éluls somáts o n éluls rmnls (ls más trsnntls). L mutón s un mo n l mtrl néto. Por lo tnto, sólo son rls uno

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

ENFOQUE MEDIA VARIANZA 1

ENFOQUE MEDIA VARIANZA 1 ENFOQE MEDIA VARIANZA Sndro A. Humn Antono El nfoqu Md-Vrnz nos d qu, bjo runstns spls, un utldd sprd pud sr dsrt n funón l md y l vrnz d los pgos y/o lotrís. Dh rduón s dud sólo n l so n qu l funón d

Más detalles

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos.

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos. Funntos Inorát II Prosor Cuo Loos oos@n.uts. Unvrs Tén Fro Snt Mrí Funntos Inorát II ILI 153 Un prutón un onunto nto X, s un yón X X. S pu vr qu y n! prutons n un onunto n ntos Un prton α pu sr sunt: 1

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

ESTRUCTURAS DE DATOS GRAFOS 173

ESTRUCTURAS DE DATOS GRAFOS 173 ESTRUCTURAS DE DATOS GRAFOS 173 TEMA 5 5.1. DEFINICIÓN DE GRAFO Grfos. A mnuo, uno s osrv l r ruts érs un pís intrs osrvr ómo ir un iu otr por ls ruts posils. En onsuni, s tin os onjuntos ojtos istintos:

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

ESQUEMA DE OPERACIÓN. *MEDICO* Proporciona formulario (receta) a Derechohabiente

ESQUEMA DE OPERACIÓN. *MEDICO* Proporciona formulario (receta) a Derechohabiente MNUL PROIMINTO PR L ORRTO SURTIO RTS L LINT NO MRNTIL L NORT S L PORTL «NORT» Y PUNTO VNT ISOT 2 SQUM OPRIÓN *MIO* Proporciona formulario (receta) a erechohabiente *ROINT* Presenta formulario y credencial

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1 Ejriios rlizos y prouios por Alro Aguilr Gutiérrz. Sions plns.. Diujr ls prts vists y oults ls sións qu proun los plnos P sor ls supriis s. P P g g P P Ejriios rlizos y prouios por Alro Aguilr Gutiérrz.

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Una nueva visión en la seguridad de las máquinas: pren ISO 13 849-1 Partes de los sistemas de mando relativas a la seguridad

Una nueva visión en la seguridad de las máquinas: pren ISO 13 849-1 Partes de los sistemas de mando relativas a la seguridad Un nuv visión n l sguri ls máquins: pren ISO 13 849-1 Prts los sistms mno rltivs l sguri Punto iniil pr vlorr l ruión l risgo S 1 jo Nivl fiili rqurio PL r P P2 F2 P1 S2 F1 P1 P2 S1 Ctgory B 1 2 3 4 Un

Más detalles

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN INVSTIAION OPRAIONS II LAORATORIO RS RSULVA LOS SIUINTS PROLMAS POR L MTOO FLUJO MAXIMO 1.- SUNO OIL QUIR NVIAR (POR HORA) LA MAXIMA ANTIA PTROLO POR UN OLOUTO S L NOO SO AL NOO SI. L PTROLO TIN QU PASAR

Más detalles

Para uso con los modelos CF de 3 toneladas y con los modelos CB de Suspensor C (sm)

Para uso con los modelos CF de 3 toneladas y con los modelos CB de Suspensor C (sm) Suspnsors polipsto/tl n on trol Suspnsor C (l) Pr uso on los molos CF 3 tonls y on los molos CB Suspnsor C (sm) 3 y 5 tonls. Pr uso on los molos CF y CB on pis ½,, ½, 2 y 2 ½ tonls. Suspnsor H Pr montj

Más detalles

CATALOGO REPUESTOSPARACAMIONES W W W.ITALFRENOS.CL

CATALOGO REPUESTOSPARACAMIONES W W W.ITALFRENOS.CL TLOGO RPUSTOSPRMIONS W W W.ITLFRNOS.L PGIN VLVULS PL Y RTNS 6 VLVULS FRNO MNO 9 VLVULS RLY 12 VLVULS SRG RPI 18 VLVULS NIVLORS 20 VLVULS PROTTORS 23 GORNORS IR 24 IRRS 26 OPLS IR LTRIOS 29 MNOS OPL 30

Más detalles

Capítulo 5: Teoría de Gráficas

Capítulo 5: Teoría de Gráficas Mtmátis Disrts Cpítulo : Conptos Básios Algunos grfos s pun onsirr grfos irts rlions, pro hy otros qu no. Tom n unt qu toos los igrms (grfos) onstn : Vértis (Noos): Un onjunto puntos qu s mustrn mint írulos,

Más detalles

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS ECUACIÓN LINEAL CON VARIAS INCÓGNITAS.- Un ución linel con os o más incónits un ución en l que ls incónits tán sometis solmente ls opercion sum (o rt) proucto

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

4.3 Cuál es el número máximo de arcos que puede tener un grafo no dirigido sin ciclos? Y cuál será para un grafo dirigido acíclico (GDA)?

4.3 Cuál es el número máximo de arcos que puede tener un grafo no dirigido sin ciclos? Y cuál será para un grafo dirigido acíclico (GDA)? Tm. Grfos. Do un árol xpnsión, rsultnt un rorrio sor un grfo no irigio, qué tipo ros (prt los l árol) pun prr si l rorrio s un úsqu n profuni o un úsqu n nhur? Qué ros prrán si l rorrio (n profuni o n

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

zeus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES

zeus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES zus TECNOLOGÍA DE MOLETEADO --> MOLETAS --> MOLETEADORES POR DEFORMACIÓN --> MOLETEADORES POR CORTE --> HERRAMIENTAS ESPECIALES TECNOLOGÍA. AsisTENCiA TéCNiCA. PAsióN. BiENVENiDOs A HOMMEL + KELLEr PräzisiONswErKzEuGE!

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 Edad mínima. doble mando en avión se puede reducir a no menos de 20 horas.

SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 Edad mínima. doble mando en avión se puede reducir a no menos de 20 horas. SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 E mínim El spirnt un PPL(A) tnrá, omo mínimo, 17 ños. JAR-FCL 1.105 Aptitu ísi El spirnt un PPL(A) rá sr titulr un rtiio méio ls 1

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

Emailing an Application and supporting documents into CCMS

Emailing an Application and supporting documents into CCMS How to Emil n Applition into CCMS Emiling n Applition n upporting oumnt into CCMS With th nw Chil Cr Mngmnt Sytm (CCMS) our lint n provir now hv th ility to mil oumnt. Complting th oumnt urtly will nur

Más detalles

Pertinencia Social y Participación Popular

Pertinencia Social y Participación Popular MOULO I-INTROUTORIO 10 HORS I FH HOR TIVI LUGR GRUPO VIOONFRNI/ 8:00-11:30 a.m. ONVRSTORIO/TRNSFORMIÓN TOOS UNIVRSITRI SL POSTGRO 2:00-3:30 p.m. INÁMI SOILIZ SL RUNIONS ONLUSIONS INIVIULS Y 4:00-5:20 p.m.

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS. conjuntos y relaciones LENGUAJES FORMALES Y AUTÓMATAS. conjuntos y relaciones LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS. conjuntos y relaciones LENGUAJES FORMALES Y AUTÓMATAS. conjuntos y relaciones LENGUAJES FORMALES Y AUTÓMATAS torí onjuntos CONTENIDO Notión Conjuntos [G3.1]. Rlions ntr onjuntos [G3.1]. Oprions sor onjuntos [G3.1]. Rlions inris [G4.1]. Composiión [H4.1]. Clusurs [H4.1]. Prolms minos [H4.1]. Rlions quivlni [H4.1].

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

P R O G R A M A D E G O B I E R N O 2012-2015. C o n g e s t i n, s e g u r i d a d y t r a b a j o

P R O G R A M A D E G O B I E R N O 2012-2015. C o n g e s t i n, s e g u r i d a d y t r a b a j o P R O G R A M A D E G O B I E R N O 2012-2015 C o n g e s t i n, s e g u r id a d y t r a b a jo 1 W I L M A N H A R R Y M A R ح N C A S T A ر O H O J A D E V I D A N a c ي e l 1 7 de S e p t ie m b r

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

CONFIGURACIÓN ELECTRÓNICA

CONFIGURACIÓN ELECTRÓNICA Cpítulo CONFIGURACIÓN ELECTRÓNICA CONFIGURACIÓN ELECTRÓNICA L form omo los ltrons s istriuyn n los ifrnts oritls un átomo s su onfigurión ltróni. L onfigurión ltróni más stl, o sl, un átomo s qull n l

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

Características educativas

Características educativas Crctrístics uctivs Municipios con myor y mnor porcntj poblción 6 14 ños qu sist l scul, sgún sxo, 2000 En l nti sólo n sis municipios, más l 950/0 l poblción fmnin 6 14 ños sist l scul, llos son: L Cruz,

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14.

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. UNIDAD TEMÁTICA: Intrscción suprficis. HOJA DE EJERCICIOS: 4. Los puntos A B C D I J K L son los vértics ls ss ispusts orizontlmnt

Más detalles