TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO"

Transcripción

1 TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis rmónics l fundmentl. En el dominio del tiempo, esto signific que l form de ond se degener de un ond senoidl pur un deformd, y en el dominio de l frecuenci, l expresión mtemátic se trnsform de un expresión senoidl en un ond de Fourier de vris componentes. Cunto myor es l distorsión myor, será l cntidd de componentes de l ond de Fourier. Hy dos forms de determinr si el mplificdor bjo estudio tiene un comportmiento linel, o se, produce distorsión de l señl que lo trvies. Un mplificdor de buen clidd, debe tener entre otrs coss, un buen sensibilidd, un grn ncho de bnd, lt gnnci y ser LINEL. Pr determinr ls crcterístics de linelidd o linelidd del mplificdor, se puede ensyr con un solo tono (Ensyo Monotonl) o con dos tonos (Ensyo Bitonl). El primero nos drá l distorsión que puede introducir el mplificdor l entregr señl de múltiples frecuencis prtir de recibir un señl senoidl pur, pero este metodo es incompleto pr nlizr l distorsión y que un mplificdor trbj con señl complejs de entrd (múltiples frecuencis), ls cules no tienen que interferirse entre ells en el interior del mplificdor. Un estudio ms completo de l distorsión se hce con el ensyo Bitonl. Ensyo Monotonl Un form simple, pero no precis, de determinr si hy distorsión de un señl l psr trvés de un circuito, es usndo un osciloscopio de doble trzo. Se compr l señl de entrd l circuito con l señl de slid. Colocndo los dos cnles igul deflexión y superponiendo ls dos señles, se debe observr un señl de trzo fino. Si el trzo se hce grueso, hy distorsión entre ls dos señles, siendo myor cunto myor se el trzo o l diferenci entre ls dos señles. Otr form de verificr l distorsión es colocndo el cnl #B invertido y colocr el modo de ls entrds en DD. Esto restrí ls dos señles, debiendo dr un líne rect si no existe distorsión. Si hy distorsión presente, l líne será curv siguiendo l diferencis entre ls dos señles. Este método es culittivo y no permite conocer ls componentes rmónics ni el grdo de distorsión que introduce el circuito en estudio. El grdo de distorsión se mide por l expresión: Vef rmónicos Distorsión rmónic totl (DT %) = x 100 Vef Señl totl M.E. II - TPVII PFPerez 00 pg. 1 de 7

2 Un form más precis de determinr el grdo de distorsión es medinte el uso de nlizdores de Espectro siendo l expresión usd pr es determinción: Donde f, f3,.fn son los vlores eficces de ls componentes rmónics, siendo est expresión un relción de vlores; por lo cul, no necesrimente tenemos que leer el vlor eficz sino un vlor representtivo de ese vlor eficz. En consecuenci, leyendo medinte un nlizdor de Espectro los vlores en divisiones representtivos de ls componentes rmónics, se puede determinr l distorsión. Si los vlores rmónicos son muy pequeños, el modo LOG del nlizdor debe ser usdo pr mejorr l resolución de los vlores pequeños. En este cso, se tiene que los vlores de fn/f1 se clculrá como: f ( f n f1) db n = nti log f1 0 Hciendo uso de l posibilidd que ofrece el nlizdor de Espectro, se tienen dos métodos de ensyr un mplificdor de udio pr determinr l distorsión introducid por él. En un mplificdor, un ensyo monotonl (un únic frecuenci) no es representtivo de l distorsión introducid por él debido que en un mplificdor, en condiciones normles de trbjo, intervienen muchs frecuencis simultánes durnte el procesmiento de l señl. L voz o l músic no es un frecuenci pur, sino un serie de componentes rmónics. Ensyo Bitonl DT ( f ) + ( f3) ( f f % = 1 Por lo tnto un ensyo rel implicrí usr múltiples frecuencis simultánemente, pero esto es complicdo de normlizr. Por eso, est normlizdo el uso de dos frecuencis simultánes (ensyo bitonl) pr el estudio de l distorsión en mplificdores. Los mplificdores tienen componentes lineles que genern btido de ls frecuencis inyectds, con lo cul se genern tonos moduldos por ests lineliddes produciendo distorsión en l señl de slid. Est modulción de los tonos de entrd se denomin distorsión por intermodulción. Dentro de los ensyos bitonles están normlizdos los métodos SMPTE y CCIF. El ensyo bitonl requiere l inyección simultáne de dos o más señles l entrd del mplificdor. Esto se hce medinte un sumdor linel que puede ser un trnsformdor con punto medio o un mplificdor sumdor linel en l bnd en estudio. El uso de trnsformdor requiere un trnsformdor de slid de udio con primrio con punto medio y secundrio norml. L slid de los dos generdores se conectrn cd un de ls rms primris. L slid del trnsformdor tcrá l entrd del mplificdor en estudio, inyectándole l señl sum de ls dos señles purs generds por los generdores. O se, se tendrá un señl compuest por el tono bjo (grve) sobre el que v montdo el tono lto (gudo). M.E. II - TPVII PFPerez 00 pg. de 7 n ).100

3 Método SMPTE: Este método ensy l mplificdor por medio de l inyección simultáne de dos tonos. Uno de ellos, f, un poco myor l frecuenci cudrntl inferior y el otro, f 1, un poco menor l frecuenci cudrntl superior del mplificdor. L mplitud del tono gudo debe ser 4 veces menor l mplitud del tono grve, pero suficientemente grnde pr ser distinguido del ruido. demás l mplitud del grve, no debe sturr l mplificdor. Los dos tonos se sumn medinte un mezcldor linel. L slid del mplificdor tc un filtro ps lto pr bloquer ls componentes de bj frecuenci fin de tener limpio el espectro lrededor de f1 pr poder identificr ls componentes de l modulción. Si el mplificdor es linel, l señl grve polrizrá instntánemente (ubicción del punto de trbjo) l dispositivo ctivo en distints regiones de l curv de trnsferenci, o se, de distint pendiente, lo cul se trducirá en vrición de l gnnci, y por lo tnto, el más fectdo será el tono gudo, hciendo que l mplitud de él se diferente en función del vlor instntáneo del tono grve. Esto drá un señl de slid cuy envolvente est moduld en mplitud. El grdo de modulción v depender del cmbio de gnnci en el punto de trbjo instntáneo. L slid se observ con un nlizdor de Espectro sintonizdo en l bnd de udio. Si el mplificdor es linel dentro de l bnd de udio especificd, l slid será igul l de entrd (con l mplificción correspondiente), o se sin distorsión. L distorsión se clculrá según l siguiente expresión: Distorsión rmónic por Intermodulción SMPTE% = ( f 1 f ) + f 1 ( f 1+ f ) ( f 1 f ) + + f 1 ( f 1+ f ) +... x100 El circuito usdo pr este ensyo es le indicdo en l sección opertiv. M.E. II - TPVII PFPerez 00 pg. 3 de 7

4 Método CCIF: Este método ensy l mplificdor por medio de l inyección simultáne de dos tonos de igul mplitud, pero mbos deben ser próximos entre sí y levemente menor l frecuenci cudrntl superior, de modo que el tono diferenci de mbos se myor l frecuenci cudrntl inferior, o se cig dentro de l bnd útil, pero que se distinto de l frecuenci de líne y de sus rmónics (50 Hz, 100 Hz, 150 Hz, etc.). En un mplificdor que distorsion, l plicrle un doble tono en ess condiciones, se obtienen l slid ls frecuencis originles f1 y f, ls componentes rmónics de ells nf1 y nf (dónde n =1,,3,..) si el mplificdor es cpz de reproducirlos, y demás los productos de intermodulción f1-f, f1+f, nf1+ nf, l frecuenci de líne y ls frecuencis de intermodulción entre l frecuenci de líne y ls frecuencis de entrd. Cunto myor se l mplitud de l señl diferenci diferenci f1-f, esto indic que el mplificdor es de ml clidd y será peor cunto myor nivel teng es señl diferenci. El resto de ls rmónics serán de bj mplitud porque estrán fuer del ncho de bnd del mplificdor. L expresión pr clculr l distorsión por efecto del btido de mbs frecuencis est dd por: CCIF% = f1 (f1 f) + f x 100 El circuito utilizdo pr relizr este ensyo es el circuito indicdo en l sección opertiv en el cul se retir el filtro ps lto por no ser usdo en este ensyo. PRCTIC DE LBORTORIO Objetivo: Determinr l distorsión rmónic de un mplificdor hciendo uso de un nlizdor de Espectro de udio y observr l respuest de un mplificdor nte l excitción de un señl monotonl y de un bitonl. M.E. II - TPVII PFPerez 00 pg. 4 de 7

5 Elementos utilizr: - nlizdor de Espectro de udio: Mrc: N de Serie Rngo Dinámico: Rngo de Frecuencis Especificciones: - Generdor de udio Mrc: N de Serie Nivel de slid: Rngo de Frecuencis Distorsión de l señl de slid: - Generdor de udio: Mrc: N de Serie Nivel de slid: Rngo de Frecuencis Distorsión de l señl de slid: - mplificdor Mrc: N de Serie ncho de Bnd: Potenci de slid: Crcterístics: - Dispositivo sumdor: - Osciloscopio: Mrc: N de Serie Rngo de Frecuenci: - Filtro ps lto: Gnnci/tenución Frecuenci de corte: - Procedimiento: 1- Seleccionr ls frecuencis F1 y F usr durnte ls pruebs de cuerdo ls frecuencis cudrntles inferior y superior del mplificdor. Ejemplo: pr CCIF (10 Khz y 10,4 KHz) y pr el SMPTE (Bj frecuenci entre 40 Hz y 50 Hz y myor l frecuenci cudrntl inferior y de mplitud 4 veces myor l del tono de lt frecuenci, y el tono de lt frecuenci entre 6 y 0 KHz y menor l frecuenci cudrntl superior). M.E. II - TPVII PFPerez 00 pg. 5 de 7

6 - Verificr l linelidd de l señles elegids y entregds por cd uno de los dos generdores conectándolos l nlizdor de Espectro y verificndo l usenci de rmónics de l señl inyectd. 3- Inyectr un señl monotonl l mplificdor y observr ls componentes de frecuenci de slid del mplificdor con el nlizdor de Espectro. Conectr un osciloscopio con un cnl observndo l entrd l mplificdor, el otro cnl conectrlo l slid. Comprr l form de ond de slid respecto l entrd en configurción DD y segundo cnl invertido, pr observr diferencis si hy distorsión. 4- Repetir pr distintos tonos dentro del ncho de bnd del psnte del mplificdor. Tomr los vlores de frecuenci y mplitud de entrd y los vlores de ls frecuencis y mplitudes correspondientes de slid. Clculr l distorsión por este método y hcer el digrm en dominio de l frecuenci. Vlores de entrd Frecuenci mplitud Vlores de Slid Frecuenci mplitud F1 f1 3f1 4f1 5f1 5- Relizr l interconexión de instrumentos y mplificdor siguiendo el siguiente circuito. M.E. II - TPVII PFPerez 00 pg. 6 de 7

7 6- Inyectr ls señles F1 y F de los generdores l mplificdor trvés del sumdor linel (mlificdor linel o trnsformdor con punto medio en el primrio) y leer ls componentes principles y sus rmónics de cuerdo l método usdo. Pr el método CCIF, retirr el FP del sistem. 7- Tomr los vlores de frecuencis y mplitudes de entrd y los vlores de frecuencis y mplitudes de slid correspondiente. SMPTE CCIF Vlores de entrd F1 Frecuenci mplitud F Vlores de entrd F1 Frecuenci mplitud F Vlores de Slid Frecuenci mplitud f1 F f1 - f f1 + f f1 - f f1 + f f1 f Fd Vlores de Slid Frecuenci mplitud D % Hcer los cálculos pr determinr l distorsión según l ecución plicble en cd método y hcer los digrms en dominio de l frecuenci. 8- Hcer el informe con ls conclusiones correspondientes, circuitos y vlores usdos. M.E. II - TPVII PFPerez 00 pg. 7 de 7

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Tema 3 Respuesta en Frecuencia

Tema 3 Respuesta en Frecuencia CIRCUITOS ANALÓGICOS SEGUNDO CURSO Tem 3 Repuet en Frecuenci Sebtián López y Joé Fco. López Intituto Univeritrio de Microelectrónic Aplicd IUMA Univeridd de L Plm de Grn Cnri 357 - L Plm de Grn Cnri Tfno.

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

CONVERTIDORES ELECTRÓNICOS DE POTENCIA DC-AC O INVERSORES: PRIMER PROBLEMA

CONVERTIDORES ELECTRÓNICOS DE POTENCIA DC-AC O INVERSORES: PRIMER PROBLEMA CONERTIDORES ELECTRÓNICOS DE POTENCIA DC-AC O INERSORES: PRIMER PROBLEMA F. Jvier Msed DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA SISTEMEN INGENIARITZA ETA AUTOMATIKA SAILA PRIMER PROBLEMA A.-

Más detalles

Usando este sistema ideal de comunicación podemos investigar un poco más profundamente acerca de lo que significa información.

Usando este sistema ideal de comunicación podemos investigar un poco más profundamente acerca de lo que significa información. Dt Mining bsdo en l Teorí de l Informción Mrcelo R. Ferreyr mferreyr@pti.com L plbr informción prece ir de l mno con ls últims tecnologís. Sociedd de Informción, Tecnologí de l Informción, Redes de Informción.

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Los números reales. 1.4 Orden de los números reales CAPÍTULO

Los números reales. 1.4 Orden de los números reales CAPÍTULO 1 CAPÍTULO 1 Los números reles 1 1.4 Orden de los números reles Un número que pertenezc los reles. 2 R / es positivo si está l derech del cero; esto se denot sí: > 0 o bien 0 < : 0 Un número que pertenezc

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es :

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es : E Régimen Senoidl Permnente ) Sistems monofásicos E En el circuito de l figur l tensión sore el resistor de 0 es : ) ) ( 00 j 00) c) ( 50 j 50 ) d) + j 75 L potenci disipd en el resistor y l potenci medi

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Integración Numérica. Las reglas de Simpson.

Integración Numérica. Las reglas de Simpson. Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No REVISTA COLOMBIANA DE FISICA, VOL. 33, No.. 00 DISEÑO, CONSTRUCCION DE UNA CUBETA ELECTROLITICA Y DESARROLLO DE SOFTWARE PARA EL TRAZADO DE LINEAS EQUUIPOTENCIALES EN UNA CONFIGURACION RECTANGULAR Y EN

Más detalles

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega:

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega: PEDES IN TERRA AD SIDERAS VISUS TRABAJO PRÁCTICO N 6 Fech de entreg: PROBLEMA 1: En el circuito mgnético de l figur, l bobin tiene N = 276 espirs y ls dimensiones son = 13 cm, b = 21 cm y S = 16 cm 2.

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

INTEGRADORA I. El profesor solicita a Federico que realice las siguientes actividades:

INTEGRADORA I. El profesor solicita a Federico que realice las siguientes actividades: Olimpid Ncionl de Construcciones 2014 Instnci escolr Fech: 18 de setiembre de 2014 INTEGRADORA I Estimdos prticipntes Como futuros Mestros Myores de Obrs están conformndo un equipo de trbjo. Entre todos

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

CAPÍTULO 2. , para 0 p 1. [] x

CAPÍTULO 2. , para 0 p 1. [] x CAPÍTULO LAS CURVAS DE LORENZ Y EL SISTEMA DE PEARSON RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES Deprtmento de Métodos Cuntittivos pr l Economí y l Empres Fcultd de

Más detalles

RESPUESTA EN FRECUENCIA DE ALTAVOCES SIN UTILIZAR CÁMARA ANECOICA

RESPUESTA EN FRECUENCIA DE ALTAVOCES SIN UTILIZAR CÁMARA ANECOICA Simposio de Metrologí 2 l 27 de Octubre de 26 RESPUESTA EN FRECUENCIA DE ALTAVOCES SIN UTILIZAR CÁMARA ANECOICA Odín Moreno Amezcu, Sntigo. J. Pérez Ruiz, Antonio Pérez López Lbortorio de cústic y Vibrciones

Más detalles

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad?

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad? 3 3.5. Identiddes notles Un identidd es un iguldd lgeric que es ciert pr vlores culesquier de ls letrs que intervienen. 37. Es l iguldd 3x 7x x 9x un identidd? 40. Determin si lgun de ls siguientes igulddes

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA PRÁCTICA Nº : DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA º Cálculo teórico y experimentl de l celerción del sistem 2º Cálculo del coeficiente de rozmiento del sistem DATOS: Sensor: Pole linel inteligente

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Laboratorio 1. Propagación de errores y análisis de datos

Laboratorio 1. Propagación de errores y análisis de datos Lbortorio 1. Propgción de errores nálisis de dtos Objetivo Aprender el concepto de propgción de errores plicrlo conceptos fisicoquímicos. Introducción Cundo un eperimento se llev cbo; un vriedd de medids

Más detalles

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar)

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar) IMPUESTO SOBRE SOCIEAES (Cierre fiscl ejercicio 2013) (Ajustes y conceptos considerr) (13) LIMITACIÓN A LAS AMORTIZACIONES FISCALMENTE EUCIBLES EN EL IMPUESTO SOBRE SOCIEAES Novedd introducid por l Ley

Más detalles

a b y se lee a es a b ; a se denomina antecedente y b consecuente.

a b y se lee a es a b ; a se denomina antecedente y b consecuente. 1 Centro Educcionl Sn Crlos de Argón. Dpto. de Mtemátic. Prof.: Ximen Gllegos H. Guí Nº 5 PSU NM 4: Proporcionlidd Nombre: Curso: Fech: Aprendizje Esperdo: Plnte y resuelve problems que requieren plicr

Más detalles

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general.

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general. Mtemátics.7 Operciones con epresiones lgebrics UNIDAD II. ALGEBRA.7. Operciones con epresiones lgebrics Polinomiles. Ls epresiones lgebrics pueden clsificrse en monomios, binomios, trinomios y polinomios.

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias.

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias. UNIDADES DE GUIADO TIPOLOGIA L gm de uniddes de guí es muy mpli. Ls guís se pueden grupr en diverss fmilis. Uniddes de guí pr l conexión con cilindros estándres. Ests son uniddes pr su conexión con un

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles