INTERPOLACIÓN DE LA SUPERFICIE DE VOLATILIDADES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERPOLACIÓN DE LA SUPERFICIE DE VOLATILIDADES"

Transcripción

1 ITERPOLACIÓ DE LA SUPERFICIE DE VOLATILIDADES Hemos menono en nuesros oumenos que l voll mplí es un me ulz pr omprr opones on erenes srkes y venmenos. De heho en vros meros ls opones se ozn en voll mplí y luego se euen sus preos usno l órmul e Blk Sholes (BS). Se puee sumr que l voll mplí es un unón el plzo l venmeno y el srke e un opón. A es relón se le onoe omo supere e volles. Reoremos que el moelo e BS supone que el vo suyene sgue un movmeno rownno geoméro el po S( ) S( ) S( ) W( ) Aá poemos oservr que l voll es un onsne. Es er, que nepenenemene el srke o el plzo l venmeno, un opón eerí ener l msm voll. Es suón er omún nes el rsh e 987. S uno oserv ls superes e volles e erenes vos se uen que ern relvmene plns. Sn emrgo, espués e l í e e ls olss e proxmmene el 0% el í lunes 9 e Oure e 987, l supere e volles omenzó mosrr un ompormeno erene. Ls PUTs on srkes jos y e venmenos oros omenzron ener volles mplís muho más ls que ls e ls emás opones. Ess suones se lusrn en l Fgur. Fgur Fuene: Dermn, E. Lugher n he rk: The prolem o he volly smle. 003 L supere e volles es un orm e orregr lgunos prolems relonos on el moelo e BS. Pr esrrlo en érmnos smples: Es l orm e ngresr unos vlores en un órmul que es norre, pr oener preos e opones orreos. S semos que el mero puee er un í el 0%, neesrmene ls PUTs on srkes jos een vler más e lo que el moelo e BS sugere.

2 Ahor en, uno een vler? Un orm e esmrlo es suponer que el vo suyene sgue un proeso esoáso más preo l rel que el smple movmeno rownno geoméro. S por ejemplo se ene un moelo on slos o voll esoás se porí oener un proxmón eór e ho preo. Un orm e oener el preo provenene e un moelo más soso, onservno el moelo e BS, es mno l voll mplí. Eso es lo que en l prá he el mero y por eso surge l supere e volles. Pr onoer on myor elle los esánres el mero e opones y ls superes e volles le reomenmos omr nuesro urso OPCIOES ITERMEDIO. En ese oumeno nos onenrremos en explr ómo se puee nerpolr l supere e volles. En los meros e opones se negon nsrumenos on erenes srkes y venmenos. Ess opones enen volles mplís oservles. Sn emrgo ess volles sólo represenn un onjuno sreo e punos. Como oener enones el vlor e un opón que no esá en ese onjuno e punos? Ese es un prolem omún en los meros e opones. Por ejemplo s lguen esá mnsrno un lro e opones OTC v ener muhs on erenes srkes y venmenos. Ess opones no se ozn onsnemene en el mero y por onsguene no poemos oservr sus preos explímene. Vemos un ejemplo e es suón en l Fgur. Allí vemos ls ozones en voll mplí e erenes opones sore el EURUSD. En ls olumns ATM vemos el BID y el ASK e los Srles ATM pr erenes plzos. Allí vemos que hy plzos ese í hs 5 ños. Como hrímos pr vlorr un opón que ene un plzo l venmeno e.5 meses? Como poemos oservr, exsen ozones pr el plzo e mes y el plzo e meses. Sn emrgo no exse nngun pr el plzo e.5 meses. Un lernv que enemos es usr lgun én e nerpolón y oener ese vlor prr e ls volles mplís e opones ATM e y meses. Fgur Fuene: Bloomerg

3 o sempre enonrmos explímene ls volles mplís. Por ejemplo en los meros e opones sore ones el esánr es operr en prms y luego prr e ess prms se oenen ls volles mplís. En l Fgur 3 se muesrn prms pr erenes srkes e opones sore Apple (APPL). Pr onoer omo lulr l voll mplí puee onsulr nuesros oumenos en l seón e HERRAMIETAS. Fgur 3 Fuene: MonserTrng Allí por ejemplo enemos que ls Clls e venmeno 8 e Mrzo e 03 y srke 460 ozn US$ 0.05/0.0. Como y hemos menono, es posle oener l voll mplí prr e un e ls erenes prms y luego generr un proemeno e nerpolón e ess volles mplís. Aá sn emrgo hy que ener uo uno se r e opones merns y que el proemeno pr oener l voll mplí es un poo erene.

4 Vemos hor un ejemplo e ómo nerpolr. Trjemos on los os e l Fgur, es er ls volles mplís pr ls opones EURUSD. Allí vemos que pr un plzo espeío exsen 5 ozones e voll pr erenes opones. Se enen ozones pr CALLs y PUTs e 5% y 0% el, es er opones OTM, y ozones pr Srles ATM. El el e opones on ese srke es muy erno l 50%. Por eeos e smpl vmos sumr que es exmene gul l 50%. Por l pr PUT/CALL os opones europes on el msmo srke een ozr on l msm voll y por ello un opón CALL e 5% el es equvlene un opón PUT e 75% e el. De es orm pr plzo enemos enones 5 els erenes on 5 volles sos. Vemos por ejemplo el plzo e 6 meses. Allí enemos ozones BID/ASK pr los erenes els. S ommos ls volles en MID mrke oenemos los resulos e l Fgur 4. Fgur 4 Volles T = 6 meses Del_ Vol_ D. 0 v. 0.7% D. 5 v. 9.54% 3 D.3 50 v % 4 D.4 75 v.4 8.5% 5 D.5 90 v % Fuene: Bloomerg y álulos propos

5 Voll Voll Con esos os poemos usr lgún méoo e nerpolón pr oener l voll e un el que no onozmos. L nerpolón lnel es un méoo senllo que ulz l euón e un re pr hllr un vlor que no onoemos. S enemos os punos (x 0,y 0 ) y (x,y ) poemos oener el vlor el puno (x,y) usno l euón y = y 0 + m(x-x 0 ) one m es l penene e l re m = (y -y 0 )/(x - x 0 ). L nerpolón usno splnes úos nurles he uso e polnomos e gro 3. Es nerpolón se expl on elle en el Anexo. Igulmene se jun un rhvo en Exel on ejemplos e esos méoos e nerpolón pr que usees los puen replr. Aonlmene se muesr un ejemplo on un nerpolón ú enomn Brole. Ese es un méoo reomeno, sore oo uno se vn her nálss e resgos perurno los noos e l urv. L rzón es que es nerpolón onserv prlmene l lol y onserv el rngo, menrs que los splnes úos nurles no lo hen. Eso lo explmos on un myor nvel e elle en nuesro urso TASAS DE ITERÉS ITERMEDIO. En l Fgur 5 poemos oservr l nerpolón e ls volles 6 meses usno nerpolón lnel e nerpolón ú. Vemos que l nerpolón ú gener un urv muho más suvz que l nerpolón lnel. Fgur 5.00%.50%.00% Volly Smle - Inerpolón Lnel 0.50% 0.00% 9.50% 9.00% 8.50% 8.00% 7.50% 7.00% Del.00%.50%.00% Volly Smle - Splnes Cúos urles 0.50% 0.00% 9.50% 9.00% 8.50% 8.00% 7.50% 7.00% Del

6 Esos os méoos son los más ulzos pr l nerpolón en l mensón e los srkes o els. Pr nerpolr en l mensón el empo se reomen ulzr un nerpolón en l vrnz ol. S enemos l voll nsnáne el proeso esoáso η l vrnz umul hs T vene por l negrl: En ese so ς represen l voll mplí. De llí que llmemos V(T) l vrnz ol l ul poemos nerpolr pr luego oener l voll mplí. El proemeno es el sguene: En l Fgur 6 poemos oservr ls volles mplís pr opones ATM oos los plzos. Fgur 6 Fuene: Bloomerg

7 Voll En l Fgur 7 vemos ls volles usno l nerpolón lnel e l vrnz ol. En el rhvo e EXCEL juno se muesrn los álulos. Fgur 7.00%.50% Volly Term Sruure- Lnel en l Vrnz Tol.00% 0.50% 0.00% 9.50% 9.00% 8.50% 8.00% 7.50% 7.00% Dís Por úlmo lusrmos el proemeno pr nerpolr un opón uyo srke y plzo l venmeno no esén enro e lguno e los plres. En ese so enemos que relzr un nerpolón en mensones. Supongmos que queremos usr l voll mplí pr un opón sore el EURUSD on plzo l venmeno 9 meses (T= 0.75) y srke.38. Vemos que los plzos más ernos pr los que exsen ozones sore opones son 6 meses y meses. Lo prmero que eemos her es nerpolr en l mensón el empo. De es orm vmos oener pr el plzo e 9 meses, volles pr los plres e 0, 5, 50, 75 y 90 el. Eso lo poemos oservr en l Fgur 8. Por ejemplo enemos que pr los 6 meses ATM l voll es el 8.58% menrs pr los meses es el 9.08%. Un nerpolón lnel en l vrnz ol nos un voll ATM l plzo e 9 meses e 8.9%. De l msm orm oenemos ls volles pr los oros plres e el. El sguene pso es her un nerpolón en el smle. En el rhvo e EXCEL vemos omo plmos es nerpolón. En ese so usmos los splnes Broley. En ese ejemplo neesmos hllr l voll pr el srke Vemos que ese plzo l voll esrí enre un 50 y un 5 el CALL (o 75 el PUT). Lo que hemos es lulr el el e l opón usno l órmul e BS y l voll so l el el 50%. Luego usno l nerpolón en l mensón el el usmos l voll que esrí so ese el. Es serí nuesr prmer esmón e l voll e ese srke. El proemeno lo repemos hs que l vrón en l voll espués e err se menor un nvel e olern eermno. Eso se puee oservr en l Fgur 9.

8 Fgur 8 Volles T = 6 meses SPOT.3300 Ts In 0.5% Del srke_ p_ v_ 0. K..8 p v. 0.7% 0.5 K..76 p v. 9.54% 3 ATM K p v % K p v.4 8.5% 5 0. K v % Volles T = ño SPOT.3300 Ts In 0.40% Del srke_ p_ v_ 0. K..578 p v..60% 0.5 K..56 p v. 0.4% 3 ATM K p v % K p v % 5 0. K v.5 8.8% EXAMPLE T=0.75, K =.3800 SPOT.3300 Ts In 0.30% Volles T = 9 meses Del CALL Del OTM srke_ p_ v_ 0 0. K..85 p.0 5 v.0.3% K..66 p.5 5 v % 50 ATM K p.50 5 v % K p.75 5 v % K v % Fgur 9 Inerpolón Pso T= 0.75 K=.3800 Del % Inerpolón Pso T= 0.75 K=.3800 Del % D Vol 0.009%

9 Es mporne nor que ese proemeno e nerpolón no segur que l supere e volles esé lre e rrje. En el ejemplo on el que rjmos, l ener sólo 5 noos en l mensón el el y l esr esos ozos remene omo volles mplís, es poo prole que exsn hs posles e rrje. Sn emrgo uno se rjn on opones sore ones, en los ules pr un plzo espeío exsen muhs ozones pr erenes srkes, es muho más prole que ourr es suón. Pr evr que l supere eng posles e rrje se een mponer ers resrones. Exsen versos oumenos que rn ese em. Un uen resumen e l lerur sore nerpolón e l supere e volles se enuenr en el oumeno e Chrsn Homesu llmo Imple Volly Sure: Consruon, Mehoologes n Chrerss. En generl ee segurrse que no se volen ls sguenes relones áss e rrje enre opones:. Un CALL on srke K no puee vler más que un CALL on srke K s K>K. Eso mpl que C/CK<0, o lo que es lo msmo, que ls opones enre más OTM esén een vler menos en prm.. El preo e un CALL ee ser un unón onvex el empo. Eso mpone l onón que el preo e un Buerly ee ser posvo. Memámene mpl que C/K > 0 3. Pr os opones e erenes plzos y on el msmo gro e moneyness (meo rvés el orwr el) el preo e l e myor plzo ee ser myor. Eso mpl que C/T>0 (pr el msmo onorno e el). 4. Conones e roner: S K ene ero el preo e l CALL ene l vlor el spo. S K ene nno el preo e l CALL ene ero. Her l nerpolón on ess resrones es un poo más omplejo. Sn emrgo lo lusro en ese oumeno expl ls ses pr generr méoos e nerpolón. Espermos que se e yu.

10 AEXO Meoologí e Inerpolón Splnes úos nurles Supongmos que enemos un sere e punos... y que emás onoemos los vlores e un unón en hos punos..., Lo que queremos her es proxmr l unón mene un polnomo e gro 3. Eso lo hemos por rmos en nervlo [, + ] 3 one є [, + ] En es euón poemos nor que pr nervlo enemos uro nógns que son, y. Como en ol enemos - nervlos enemos un ol e 4(-) nógns. Vemos uns euones enemos pr resolver el ssem. ) Tenemos el vlor e l unón en uno e los punos. Eso nos un ol e euones. Eso lo poemos eur heno = on lo que oenemos 3 Aá enemos - euones,, Y l or euón es 3 ) S mponemos un onón e onnu en los noos poemos oener - euones. Eso lo poemos eur heno el vlor e l unón por l ereh gul que el vlor e l unón por l zquer. Vemos: 3 Por ejemplo pr el nervlo [, ] enemos por l zquer ) ( 3 Y por l ereh s = ) (. Reemplzmos en l euón neror on lo que oenemos 3

11 En ol llí oenemos - euones, y que l úlm euón que oenrímos en ese proemeno esrí repe on l úlm euón el lerl. ) S exgmos que l prmer erv e l unón se onnu oenemos ors - euones. Eso lo poemos eur heno el vlor e l prmer erv e l unón por l ereh gul que el vlor por l zquer. Vemos: 3 Por ejemplo pr el nervlo [, ] enemos por l zquer ' 3 ( ) ' 3 ( ) Y por l ereh s = Con lo que oenemos 3 En ol oenemos - euones on es onón. ) S exgmos que l segun erv e l unón se onnu oenemos ors - euones. Eso lo hemos e mner smlr l lerl. 6 Con ls onones e los lerles ), ) ) y ) oenemos un ol e +3(-) = 4 6 euones. Semos que enemos un ol e 4(-) = 4 4 nógns, por lo que neesmos oener ors os euones. Hy erenes orms e herlo. Un muy populr es mponer onones sore los vlores e l segun erv e l unón en los exremos, es er en y. Los splnes úos nurles hen que l segun erv vlg ero en esos punos pr oener ls ors os euones. Eso es: Con ess euones el ssem esá ompleo y lo poemos soluonr.

10. ANÁLISIS SENOIDAL POR FASORES

10. ANÁLISIS SENOIDAL POR FASORES . ANÁ ENODA PO FAOE.. NTODUÓN El nálss de uos ompleos on essens, nduns y pns p ends de po senodl esul muy dspendoso. El nálss senodl po soes es un mne smple de nlz les uos sn esole ls euones deenles, que

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

Introducción al Cálculo Integral

Introducción al Cálculo Integral Inroduccón l Cálculo Inegrl José Lus Alejndre Mrco An Isel Alluev Pnll José Mguel González Sános Deprmeno de Memác Aplcd Unversdd de Zrgoz versón dgl sd en el lro "Inroduccón l Cálculo Inegrl" ISBN 8-77-5-6,

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio.

Equilibrio Químico. b) La reacción directa y la reacción inversa conducen al mismo estado de equilibrio. . Introuón Equlro Químo ermonám. em 4 El esto e equlro e ls reones químs reversles en sstems y onstntes tene ls sguentes rterísts: ) L omposón e los omponentes e l reón no vrí en el tempo. or eso, es posle

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Jime rvo Feres Nelink TRICES Y DETERINNTES s mries preen por primer vez hi el ño 8, inroduids por J.J. Sylveser. El desrrollo iniil de l eorí se dee l memáio W.R. Hmilon en 8. En 88,. Cyley inrodue l noión

Más detalles

PLANIFICACIÓN DE TRAYECTORIAS

PLANIFICACIÓN DE TRAYECTORIAS PLANIFICACIÓN DE TRAYECTORIAS Índce Qué es un ryecor? Tpos de ryecors Puno puno Coordnds Connus Tryecors en el espco rculr: Lnel Cúbc Prbólc A rmos -- 4--4 Plnfccón de ryecors Objevo: ddo el puno ncl del

Más detalles

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua

Φ i. Φ i. di dt. Φ i = Φ. El Transformador Monofásico. Inductancia Propia e Inductancia Mutua. Inductancia Propia e Inductancia Mutua nuctnc Prop e nuctnc Mutu El Trnsformor Monofásco Trnsformores y Máquns Eléctrcs u ( t) e( t) t Flujos socos los onos nuctnc Prop e nuctnc Mutu m spersón M En el ono Cuso por l corrente spersón egún l

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues: nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

FÍSICA APLICADA. EXAMEN A2 9 mayo 2016

FÍSICA APLICADA. EXAMEN A2 9 mayo 2016 FÍSIC PLICD. EMEN 9 myo 6 Teorí (.5 p). Teorem de Guss. () Enuncdo y explccón breve. (b) Explcr rzondmene s se puede usr o no el eorem de Guss pr clculr el flujo elécrco y el vecor cmpo elécrco rvés de

Más detalles

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:.

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:. Seleividd ndluí. emáis plids ls ienis Soiles. loque ries. www.useleividd.om Págin EJEROS E EÁENES E SELETV NLUÍ.LOQUE TRES.. JUNO. OPÓN. Sen ls mries siendo un número rel ulquier.. ( puno) Oeng l mriz..

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

Ejercicios de Práctica 1

Ejercicios de Práctica 1 Insttuto Tenológo e Cost Esuel e Eletrón Crutos Elétros en Corrente Contnu Profesor: Ing. Aníl Coto Cortés I Semestre 009 ) Segur elétr Ejeros e Prát El ño más omún que us l eletr l uerpo humno es l sstem

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. Competeni Monopolísti EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Cuál e ls siguientes lterntivs no es rterísti e l ompeteni monopolísti?

Más detalles

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER Ejeriios Resuelos P Nº 4: SERIE DE FOURIER Ejeriio L señl dd es x( Se pide lulr los oefiiees de l Serie rigooméri de Fourier, es deir,, b y Como l señl o iee igú ipo de simerí, ls iegrles pr hllr los oefiiees

Más detalles

DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R.

DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R. Memáis II Deerminnes DETERMINNTES Oservión: L morí e esos ejeriios se hn propueso en ls prues e Seleivi, en los isinos isrios universirios espñoles.. Uiliz ls propiees e los eerminnes pr lulr el vlor e,,,

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estudios Sociales VERSIÓN: 1 Grado o Curso: Sexto Periodo lectivo: 2013-2014

UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estudios Sociales VERSIÓN: 1 Grado o Curso: Sexto Periodo lectivo: 2013-2014 UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estuios Soiles VERSIÓN: 1 Gro o Curso: Sexto Perioo letivo: 2013-2014 REG. 3.2.3 3 Nomre el Profesor:.. Nomre:.Feh:.. Ls pregunts e est prue

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b):

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b): DETERINNTES Ejeiio nº.- Clul el vlo e los siguienes eeminnes: Ejeiio nº.- Resuelve l euión oues en ) lul el vlo el eeminne oueso en ): Ejeiio nº.- ) Resuelve l euión: ) Clul el vlo el eeminne: Ejeiio nº.-

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Capítulo 3: Integral definida. Módulos 12 al 17. I. Notación sigma. En los ejercicios 1 a 5 escriba en forma de sumatoria la suma dada.

Capítulo 3: Integral definida. Módulos 12 al 17. I. Notación sigma. En los ejercicios 1 a 5 escriba en forma de sumatoria la suma dada. Módulos l 7 I Nocó sgm E los ejerccos escr e form de sumor l sum dd + + + + + + + + 9 + + 7 6 7 8 l + l 6 + l 8 + l 6 6 Supog que f ( ) 8, g( ) y h( ) Clcule el vlor de l epresó dcd e los ejerccos -e c

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

ECEV Evaluación Censal a Estudiantes de Ventanilla

ECEV Evaluación Censal a Estudiantes de Ventanilla CUARTO GRADO DE PRIMARIA ECEV Evluión Censl Estudintes de Ventnill MATEMÁTICA 2014 INDICACIONES Lee d texto y d pregunt on muh tenión. Si lo neesits puedes volver leer. Luego, resuelve l pregunt y mr on

Más detalles

DIAGNOSTICO DE SILLAS INTERLOCUTORAS - SECRETARIALES - OPERATIVAS - IMPORTADAS - SILLONES

DIAGNOSTICO DE SILLAS INTERLOCUTORAS - SECRETARIALES - OPERATIVAS - IMPORTADAS - SILLONES DIAGNOSTICO DE SILLAS INTERLOCUTORAS - SECRETARIALES - OPERATIVAS - IMPORTADAS - SILLONES 1. INTERLOCUTORAS. ACABADOS DE TELA: se ee mirr si requiere tpizo ostur, tpizo mios e espum o tpizos ostur y espum.

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales. COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden:

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden: Demostrndo lo que prendimos Terer Trimestre LECTURA 2. grdo de primri Mi nomre: Mi numero de orden: Seión: LECTURA 3 Cómo responder ls pregunts? Primero, lee el texto on muh tenión. Luego, lee ls pregunts

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

Introducción a la dinámica Segunda Ley de Newton

Introducción a la dinámica Segunda Ley de Newton noduión l dinái Seund e de Newon Objeio Deeinión de l eleión de un óil io usndo diess énis eeienles on el disosiio indido esqueáiene en l Fiu, que inlue un ooineuo edi el deslzieno en unión del ieo. Esudio

Más detalles

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ

ANALISIS MATRICIAL DE ESTRUCTURAS POR EL METODO DE LA RIGIDEZ ANAII MATRICIA DE ETRUCTURA POR E METODO DE A RIGIDEZ ETABIIDAD III CAPITUO IV: ANAII MATRICIA DE ETRUCTURA Pág Introduón os métodos lásos de nálss estruturl desrrolldos fnes del sglo XIX, tenen ls ulddes

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD Físic BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Exmen Crierios e Corrección y Clificción UNIBERSIAERA SARZEKO PROBAK ko UZAILA FISIKA PRUEBAS

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

EJERCICIOS DE DINÁMICA

EJERCICIOS DE DINÁMICA EJERCICIOS DE DIÁMICA 1. Dd un cuerd cpz de oporr un fuerz áx de 00, cuál erá l celercón áx que e podrá councr con ell un de 10 kg cundo e encuenr obre un plno horzonl n rozeno? Sol: ) 0. En un plno horzonl

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

MODULACIO MULTISIMBOLO

MODULACIO MULTISIMBOLO MODULACIO MULTISIMBOLO Inrodón L modlone nr eron n olón ndo e qerí rnmr ore n ordor l normón dgl. Eo ermí enre or o r omo nl el re; ero el nho de nd reló er grnde. Srgó l de de r ímolo en vez de r mr mld,

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

EPÍLOGO Accidente y mentira Aquí no nos ocupamos de la maldad, a la que la religión y la literatura han intentado pasar cuentas, sino del mal; no del pecado y los grandes v illanos, que se conv irtieron

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

ccna sco certifiednetworkassociate

ccna sco certifiednetworkassociate u sodee f ónonl ne n so efednewokssoe F ECHA- Del28deFebeol29deAb lde2011 unesv e nesde09: 0012: 00yde16: 0019: 00h. TUTORÍ AS - Del28deFebeol31deMzodel Del01 l29deab ll oslunesym é ol esde16: 0019: 00h.

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

CURSOS DE INGLÉS. A la comunidad estudiantil, docente, administrativa y externa. Básico 3 45 Básico 4. Intermedio 2 45

CURSOS DE INGLÉS. A la comunidad estudiantil, docente, administrativa y externa. Básico 3 45 Básico 4. Intermedio 2 45 CURSOS DE INGLÉS A la comunidad estudiantil, docente, administrativa y externa. Se l es i nvi t a a i nscr i bi r se a l os cur sos de I ngl és que of r ece l a Coor di naci ón de Lenguas Ext r anj er

Más detalles