NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS."

Transcripción

1 NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS. INTRODUCCIÓN. El riego es un práctic culturl consistente en proporcionr gu l suelo pr que desde éste ls ríces de ls plnts succionen l mism, supliendo ls deficiencis o su flt suministrd por l lluvi y scenso cpilr. En el sistem suelo-plnt-gu, en el blnce de gu debe verificrse que l cntidd de gu que entr menos l cntidd de gu que sle de un volumen de suelo determindo, h de ser igul l cmbio de contenido de gu (ds) del volumen del suelo considerdo. Ls entrds de gu pueden ser debids l lluvi (LL), riego (R) o el scenso cpilr (AC) de un cp subycente; mientrs que ls slids se deberán l escorrentí (Es), drenje (D) o l evporción (E) de gu desde el suelo l tmósfer más l trnspirción (T) de ls plnts (ET = evpotrnspirción). R T Deberá de cumplirse que: LL+R+AC-(ET+D+Es) = ds LL E Ahor bien, en nuestrs condiciones de cultivo de terrzs Es sorribds es muy difícil que exist scensión de gu cpilr y que un riego produzc escorrentí. Por otr prte, un buen riego debe suministrr el gu necesri AC D pr que el cmbio de contenido de gu (ds) se mínimo y poder mntener l mejor humedd en el suelo. Aplicndo ls nteriores considerciones l ecución nterior, se obtiene: R = ET + D LL En l nterior ecución, el drenje (D) se suele expresr como un porcentje de ET (en cso de que fuer necesrio) y el problem es estimr l ET del sistem. Por otr prte, existen métodos bsdos en determinr el contenido de gu en el suelo pr regr cundo se got un determindo porcentje del mismo pr mntener un ds csi constnte. Generlmente se suelen plicr dos o tres riegos dirios pr lcnzr este fin. En generl, l diversidd de suelos, sistems de riego, mnejos del cultivo, etc., hcen que se imposible estblecer vlores óptimos de implementción de este instrumento, siendo necesrio su clibrción en cd instlción. Además, debido ls enormes diferencis entre fincs (incluso dentro de un mism finc), los dtos son difícilmente extrpolbles pr el resto de l zon. Tmbién existen sistems pr medir el contenido de gu en l plnt, pero esto sólo indicrá cuándo regr y será l experimentción en el riego l que nos irá indicndo el volumen de gu utilizr.

2 CALCULO DE LA ETo y ETc. El término de evpotrnspirción se utiliz pr englobr tnto el proceso físico de pérdid de gu por evporción como el proceso de evporción del gu bsorbid por ls plnts (trnspirción). El modelo de Penmn-Monteith define l evpotrnspirción de referenci como l correspondiente un cultivo hipotético que tiene un ltur de 0,1 m, un resistenci de cubiert de 70 s/m, un resistenci erodinámic de 08/U s/m, donde U es l velocidd del viento dos metros de ltur; y un lbedo de 0,3. El método de Penmn-Monteith es el método que mejor resultdo h ddo en el estudio de ASCE, 1989, demás es el método doptdo en FAO 56 Evpotrnspirción del cultivo. Guís pr l determinción de los requerimientos de gu de los cultivos, disponible en (ftp://ftp.fo.org/gl/glw/docs/idp56s.pdf). En l págin web de grocbildo, ( se encuentrn los dtos dirios de tods ls estciones ctivs que posee el Cbildo Insulr de Tenerife, por lo que su obtención no reviste dificultd. El método FAO 56 requiere conocer los dtos dirios de tempertur, humedd reltiv (mbs como máxims, medis y mínims), l rdición net diri y l velocidd del viento. Hy que indicr que en el 015, el Cbildo Insulr de Tenerife dispone de 54 estciones grometeorológics, de ls cules 50 están en terreno grícol. En tods ls estciones existe l instrumentción necesri pr poder clculr l evpotrnspirción de referenci (ETo) por diversos métodos. Tres veces por semn (lunes, miércoles y viernes, generlmente) se ctulizn los dtos de ls estciones, chequeándose y ctulizndo l págin web tods ells, indicndo l ETo diri pr cd estción. Por lo tnto, con los dtos climáticos podrímos definir un evpotrnspirción de referenci, ETo, pero no sbemos que es lo que consume un determindo cultivo. Prece lógico pensr que distintos cultivos tendrán uns necesiddes de riego diferentes. Por ello, se introduce un coeficiente que relcione l ETo con ls especies. Este coeficiente se conoce como coeficiente de cultivo, Kc. Los fctores principles que determinn los vlores del coeficiente de cultivo son: ls crcterístics del cultivo, l fech de plntción o siembr, l durción y el ritmo de su periodo de desrrollo sí como lguns condiciones climátics, especilmente l frecuenci de lluvis o del riego en l primer fse de crecimiento. Además, culquier cos que se dispong % E T c d u l t o s Porcentje de suelo sombredo en el terreno y que modifique sustncilmente que los dtos que esté tomndo l estción no indiquen lo que esté sucediendo en nuestro cultivo, fectrá l ETo, entre ellos se podrí indicr: l construcción de invernderos, cortvientos, utilizción de cp de mulching de pinoch, etc. Como nteriormente se h dicho, el coeficiente de cultivo represent l influenci en l evpotrnspirción de l propi plnt.

3 El porcentje de evpotrnspirción lo podemos referir l porcentje de suelo sombredo por el árbol (Snyder et l, 1989). Pr sombreo de más del 65% de un árbol joven se consider que se le deberí de plicr el 100% del gu, como si fuese un árbol dulto. Pr árboles de menor tmño (o sombredo inferior l 65%) se deberá de plicr l ecución: PER = 3,050 +,558 % AS 0,016 % AS Siendo PER el porcentje de ETc plicr en relción con el áre sombred por un árbol dulto. Pr clculr el %AS se hrí según el mrco de siembr: Cudrdo Rectngulr Tresbolillo b % AS D 100 π D 100 = π % AS = 4 4 b D 100 % AS = π 3 Los círculos representrín los distintos árboles, siendo l proyección verticl de cd árbol es proximdmente un círculo de diámetro D. Por tnto, cundo %AS se menor del 65% hbrá que modificr el Kc que multiplic l evpotrnspirción de referenci (ETo). Pr ello, se clcul el Kc medio (Kc medio ) nul del que se considere norml y modificrlo pr obtener un Kc medio (Kc medio%as ) que depend del áre sombred del árbol. El principl problem estrib, entonces, en disponer de un buen Kc. Pr el cso de los gucteros, según l bibliogrfí consultd se podrín disponer de los siguientes: Lugr Ene Feb Mr Abr My Jun Jul Ago Sep Oct Nov Dec Anul Chile 0,7 0,7 0,7 0,7 0,75 0,75 0,75 0,75 0,7 0,7 0,7 0,7 0,730 Florid 0,70 0,70 0,86 0,86 0,98 0,98 0,98 0,98 0,86 0,86 0,70 0,70 0,847 Cliforni 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,86 0,860 New Cliforni 0,40 0,50 0,55 0,60 0,65 0,65 0,65 0,65 0,60 0,55 0,55 0,50 0,571 old Tenerife 0,30 0,40 0,45 0,50 0,55 0,55 0,55 0,55 0,50 0,45 0,45 0,40 0,471 propu. L elección del Kc pr l Isl de Tenerife se h relizdo sbiendo el consumo medio de l vertiente norte (unos.600 m 3 /h) y sur-sureste (unos m 3 /h) de l Isl (Rodríguez y Cáceres, 014) y justndo el que mejor se dptb nuestrs condiciones. Por lo tnto, pr árboles que no lcncen el nterior diámetro de cop, bien porque sen jóvenes o se hn sembrdo un mrco de siembr inferior 6 x 6 m., podemos clcul el Kc medio%as medinte l expresión: Si %AS 65% se tomrá que Kc medio%as = 0,471 Si %AS < 65%, se hrá Kc medio%as = PER x 0,471/100

4 Trs plicr l ecución nterior del Kc medio pero justándolo cd mes medinte l ecución: Kc = Kc medio % AS Kci PER Kci = 0, Siendo Kci el coeficiente de cultivo de uno de los meses (i) pr árboles dultos. Por ejemplo, supongmos que queremos conocer cul serí el Kci de bril pr un plntción 5x6 m de mrco y con un cop de 4 m. π D 100 π % AS = = = 41,89% 4 b PER = 3,050 +,558 41,89 0,016 41,89 Kci 0,50 Kc = PER = 8,13 = 0, = 8,13 Luego prtir de quí y conocido ETo se puede proceder continur con los cálculos de necesiddes hídrics del guctero. PRECIPITACIÓN EFECTIVA. Cundo se produce un precipitción en form de lluvi, no tod el gu cíd es provechble por l plnt. No es fácil determinr que prte de l precipitción provech el cultivo, y mucho menos en riegos loclizdos, puesto que el sistem rdiculr no explor todo el terreno. Por otro ldo, lluvis pequeñs (menor 1 mm) no deberín ser tenids en cuent y que no penetrn en el suelo. En cso de que l lluvi se superior 40 mm en un dí o 60 mm en tres dís consecutivos, tmpoco se deberí de tener en cuent l lluvi que supere l nterior cntidd y que prte se perderá por escorrentí y otr cps profunds de l tierr (percolción). A l precipitción que cumpl con los requisitos nteriores, l denominremos precipitción útil (Pu). L zon de influenci del sistem rdiculr se podrí considerr que lcnz l correspondiente proyección en el suelo de l cop de l plnt y proximdmente un 5% más. De est form, pr clculr l precipitción efectiv plicremos un fctor de corrección ddo por: 1,5 % AS Fpef = 100 Con un vlor máximo de 0,80 Conocid l precipitción útil, Pu, se considerrá l precipitción efectiv (Pef) : Pef = Pu Fpef NECESIDADES DE RIEGO REALES, Nriego. Ls necesiddes de riego bruts se pueden clculr como: ( ETo Kci Pef ) Nrb = ) Ls nteriores necesiddes pueden verse incrementds por tres fctores principlmente. ) En suelos de textur grues o renos, ls pérdids por percolción pueden suponer un 10 un 15%. En suelos de textur fin o rcillosos, ls pérdids se reducen un 3-5%.

5 b) En riego loclizdo, cundo l CE (conductividd eléctric) del gu se superior 0,8-0,9 ds/m, deberí utilizrse un frcción extr de gu pr poder lvr ls sles. Est frcción se conoce como frcción de lvdo (RL). Podrí clculrse por l ecución: CEw RL = En el cso de riego loclizdo y CEe mx CEw RL = 5 CEe CEw, en el cso de riego por spersión o microspersión. El vlor de CEemx pr los gucteros es de 6 S/m, mientrs que el de CEe se debe tomr 1,5 S/m si l CE es menor 1,5 y de 1,3 S/m si es myor(ms Hoffmn). c) En todo sistem de riego existe un prte del gu que no puede ser utilizd por l plnt, por lo que se podrí hblr de eficienci de l plicción. En generl, se deberá de tener en cuent que este vlor lo podemos cifrr en un 15%. De los tres csos nteriores, se debe de tener en cuent el myor de ellos. Generlmente, pr gus con CE menores 0,9 ds/m será l eficienci de riego y pr myores CE que el vlor ddo debemos tomr el RL. Ls ecuciones siguientes: Nrb Nriego = 100, siendo E l eficienci de plicción en %. E Nrb Nriego = 100, donde CU es el coeficiente de uniformidd del sistem de (1 RL) CU riego (0,9-0,95 en goteo, 0,9-0,85 en microspersión y 0,75 en spersión) TABLAS DE LOS DISTINTOS FRUTALES Cítrcios. En el cso de los cítricos, ls ecuciones utilizds hn sido: PER = 4,7983 +,7477 % AS 0,0198 % AS Si %AS 65% se tomrá que Kc medio%as = 0,647 Si %AS < 65%, se hrá Kc medio%as = PER x 0,647/100 Trs plicr l ecución nterior del Kc medio pero justándolo cd mes medinte l ecución: PER Kci Kc = pr (%AS<65) 100 Donde los Kci de cd mes (pr %AS 65; i = mes) se tendrín en l siguiente tbl: Ene Feb Mr Abr My Jun Jul Ago Sep Oct Nov Dec Anul 0,63 0,6 0,63 0,59 0,5 0,59 0,65 0,75 0,70 0,80 0,69 0,60 0,647 Los vlores obtenidos l plicrlos l vertiente norte (3.800 m 3 /h) y sur-sureste (9.500 m 3 /h) en l Isl de Tenerife son coincidentes con los obtenidos en el Estudio sobre consumos hídricos grícols, evlución de sistems de riego y estimción de l eficienci de los regdíos de l isl de Tenerife 005 del Cbildo Insulr de Tenerife. En el cso de los cítricos se deberá tomr CEemx 8 S/m y CEe de,3 S/m (Ms Hoffmn). Olivos. En el cso de los olivos, ls ecuciones utilizds hn sido:

6 PER =,659 % AS 0,01737 % AS 0,06543 Si %AS 65% se tomrá que Kc medio%as = 0,89 Si %AS < 65%, se hrá Kc medio%as = PER x 0,89/100 Trs plicr l ecución nterior del Kc medio pero justándolo cd mes medinte l ecución: PER Kci Kc = pr (%AS<65) 100 Donde los Kci de cd mes (pr %AS 65; i = mes) se tendrín en l siguiente tbl: Ene Feb Mr Abr My Jun Jul Ago Sep Oct Nov Dec Anul 0,1 0,8 0,8 0,8 0,4 0,455 0,455 0,455 0,1 0,105 0,105 0,1 0,89 En el cso de los olivos se deberá tomr CEemx 14 S/m y CEe de 3,8 S/m (Ms Hoffmn). Bibliogrfí: Allen R.G., Pereir L.S., Res D., Smith M. (006), Evpotrnspirción del cultivo. Guís pr l determinción de los requerimiento de gu de los cultivos. Estudio FAO Riego y Drenje 56, 99 p. Cstel J.R, (005). Evpotrnspirción, Blnce de energí y coeficiente de cultivo de plntciones de cítrico en Vlenci. Ministerio de Educción y Cienci, INIA, Mdrid, ESP, 9 p. Ferrer P.J, (000). Considerciones en torno l mnejo de instlciones de riego loclizdo en cítricos. Revist Comunidd Vlencin Agrri nº 15: 1-1p Hernández Abreu J.M y Perez Regldo A., Considerciones sobre ls necesiddes del riego en gucte en ls Isls Cnris. Revist Agropecuri nº 51: Hofsi R y Hofsi S, Irrigtion Scheduling Clcultor. Ms EV., Hoffmn GJ. (1977). Crop slt tolernce: Current ssessment. J Irrig Drin E-ASCE 103: Mteos L. (199). VI Curso Interncionl de Riego Loclizdo. Progrmción del Riego por Goteo. Ed. Consejerí de Agricultur y Pesc del gobierno de Cnris, 0p. Rodríguez Sos L. y Cáceres Hernández J.J. (014), Rentbilidd del cultivo del gucte en Cnris. Ed. Cbildo insulr de Tenerife, 87 p. Snyder R.L., Lnini B.J., Shw D.A., Pruitt W.O. (1989), Using reference evpotrnspirtion (ETo) nd crop evpotrnspirtion (ETc) for trees nd vines. Coopertive Extension University of Cliforni, Berkely, C.A., leflet Nº 148, 8p.

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Laboratorio 1. Propagación de errores y análisis de datos

Laboratorio 1. Propagación de errores y análisis de datos Lbortorio 1. Propgción de errores nálisis de dtos Objetivo Aprender el concepto de propgción de errores plicrlo conceptos fisicoquímicos. Introducción Cundo un eperimento se llev cbo; un vriedd de medids

Más detalles

Lección 4 Evaporación y transpiración EVAPORACIÓN Estimación de la evaporación Determinación experimental TRANSPIRACIÓN

Lección 4 Evaporación y transpiración EVAPORACIÓN Estimación de la evaporación Determinación experimental TRANSPIRACIÓN Lección 4. Evporción y trnspirción. Concepto. Evporción: fctores que l condicionn. Evporción prtir de cuerpos de gu. Medid y cálculo de l evporción: tnques, blnce. L evporción en el suelo. Trnspirción:

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Año ene ene

Año ene ene Año 2014 2014 L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M 2014 ene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ene feb 1 2 3 4 5 6

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS

ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

2017, año del Centenario de la Constitución Mexicana Índice Nacional de Precios al Consumidor 2017

2017, año del Centenario de la Constitución Mexicana Índice Nacional de Precios al Consumidor 2017 FEB.2008 DIC.2016 122.5150 1.4042 FEB.2008 87.2480 MAR.2008 DIC.2016 122.5150 1.3941 MAR.2008 87.8803 ABR.2008 DIC.2016 122.5150 1.3909 ABR.2008 88.0803 MAY.2008 DIC.2016 122.5150 1.3925 MAY.2008 87.9852

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Soluciones Hoja 4: Relatividad (IV)

Soluciones Hoja 4: Relatividad (IV) Soluciones Hoj 4: Reltividd (IV) 1) Un estdo excitdo X de un átomo en reposo ce su estdo fundmentl X emitiendo un fotón En físic tómic es hitul suponer que l energí E γ del fotón es igul l diferenci de

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Lenguajes de consulta

Lenguajes de consulta Lengujes de consult Mrt Zorrill Universidd de Cntbri Silberschtz, A., Korth, H.F., Sudrshn, S., Fundmentos de Bses de Dtos, 5ª edición, Mdrid, 006 Lecturs recomendds Básics Cp. y 5. Silberschtz, A., Korth,

Más detalles

Funciones trigonométricas

Funciones trigonométricas Funciones trigonométrics Por Sndr Elvi Pérez Márquez Ls funciones trigonométrics son funciones de l medid de un ángulo, es decir, si el vlor del ángulo cmi, el vlor de ésts tmién. L tl 1 muestrs ls seis

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

MINISTERIO DE EDUCACIÓN - ARGENTINA ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1

MINISTERIO DE EDUCACIÓN - ARGENTINA ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1 ACCEDE - INGENIERÍA AGRONÓMICA PROBLEMA Nº 1 SITUACIÓN El nálisis de tres suelos rroj los resultdos que se detlln continución: SUELO 1 Crcterístics generles: Precipitciones medis nules: 1200 mm Tempertur

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega:

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega: PEDES IN TERRA AD SIDERAS VISUS TRABAJO PRÁCTICO N 6 Fech de entreg: PROBLEMA 1: En el circuito mgnético de l figur, l bobin tiene N = 276 espirs y ls dimensiones son = 13 cm, b = 21 cm y S = 16 cm 2.

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos.

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos. Protección de forjdos de hormigón con Igniplster. Resistenci l fuego 60, 90, 0 y 80 minutos. Ensyo: LICOF - 56/0 0.06 Dtos técnicos: Forjdo de hormigón. Armdur de cero. Igniplster plicdo por proyección

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1,

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1, OPIÓN A JUNIO 95 UESTIÓN En un vértice de un cubo se plicn tres fuerzs dirigids según los digonles de ls tres crs que psn por dichos vértices. Los módulos o mgnitudes de ests fuerzs son, y. Hllr el módulo

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles