ELEMENTOS DE ÁLGEBRA MATRICIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELEMENTOS DE ÁLGEBRA MATRICIAL"

Transcripción

1 ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma: a a... a p a a... a p A = () a a... ap A la matriz aterior la hemos desigado de forma abreviada mediate el símbolo A. E geeral, para desigar a ua matriz utilizaremos ua letra mayúscula e egrita. U elemeto geérico de la matriz A se desiga mediate a i dode el primer subídice i hace referecia a la fila e que está situado el elemeto, mietras que el segudo subídice hace referecia a la columa.

2 Eemplos 3 4 A = B = Ua matriz de orde es u escalar. Matriz traspuesta La traspuesta de ua matriz A ( p) es ua matriz B (p ), obteida mediate itercambio de filas y columas, de forma que Eemplos b i =a i i=,,...,p; =,,..., () E geeral, a la matriz traspuesta de A la deomiaremos A. Las traspuestas de las matrices del eemplo aterior so las siguietes: 6 A = B = Vector columa y vector fila U vector columa de orde es ua ordeació de elemetos dispuestos e filas y columa de la siguiete forma: a a a = (3)... a Al vector columa aterior lo hemos desigado de forma abreviada mediate el símbolo a. E geeral, para desigar a u vector columa utilizaremos ua letra miúscula e egrita. U vector fila de orde es ua ordeació de elemetos dispuestos e filas y columas. El traspuesto de u vector fila es u vector columa. E

3 geeral, a u vector fila le desigaremos por ua letra miúscula seguida de apóstrofe. Así, el traspuesto de a dado e (3) es Matriz cuadrada [ a a a ] a = (4)... Se dice que ua matriz es cuadrada si el úmero de filas es igual al úmero de columas. Se dice que ua matriz cuadrada es de orde si tiee filas. Eemplo de matriz cuadrada Traza de ua matriz A = E ua matriz cuadrada de orde la diagoal pricipal está formada por los elemetos a ii (i=,,...,). La traza de ua matriz cuadrada A, a la que desigaremos por tr(a), o por traza(a), es la suma de los elemetos de la diagoal pricipal. Por lo tato, Eemplo: tr( A ) = aii (5) i= La traza de la matriz A del eemplo aterior es Matriz simétrica tr ( A ) = = 33 Se dice que ua matriz cuadrada es simétrica si se verifica que A=A (6) 3

4 Eemplo: 3 4 A = 4 5 Matriz diagoal Se dice que ua matriz cuadrada es diagoal cuado todos los elemetos situados fuera de la diagoal pricipal so ulos. Es decir, e ua matriz diagoal se verifica que a i = 0 para i distito de. Así, la siguiete matriz es diagoal: Matriz escalar a a... 0 A = (7) a Se dice que ua matriz diagoal es escalar cuado todos los elemetos de la diagoal pricipal so idéticos. Es decir, e ua matriz escalar se verifica que a ii = k para todo i. Matriz idetidad Ua matriz idetidad es ua matriz escalar e la que a ii =. A la matriz idetidad se le deomia I. Así, ua matriz idetidad geérica tiee la siguiete cofiguració: I = 0 0 (8) OPERACIONES CON MATRICES Igualdad de matrices La igualdad de dos matrices A=B se cumple si, y solamete si, A y B so del mismo orde y a i =b i para todo i y todo. 4

5 Suma de matrices La suma de las matrices A y B de orde p es igual a ua matriz C, tambié de orde xp, defiida de la siguiete forma: Los elemetos de la matriz C se obtiee así: C=A+B (9) c i = a i +b i i=,,..., ; =,,..., p (0) orde. Para poder realizar la suma, las matrices A y B debe ser del mismo Eemplo La suma de las matrices A y B es desigada por C: 3 A = B = C = = Multiplicació escalar La multiplicació escalar de ua matriz A por u escalar λ se efectúa multiplicado cada elemeto de A por λ. El producto es desigado por λa. Eemplo Dado λ= 4 y 7 6 A = 3 etoces 8 4 λa = 8 5

6 Multiplicació de matrices Si A es ua matriz de orde m y B es ua matriz de orde m p, etoces el producto de estas dos matrices se defie de la siguiete forma AB=C () siedo la matriz producto C, ua matriz de orde p, cuyo elemeto geérico c i viee dado por Eemplos c = a b. () i ik k k = a a b b b3 ( ab + ab) ( ab + ab) ( ab3 + ab3) a a b b b = ( a b + a b ) ( a b + a b ) ( a b + a b ) (4 + 7) (4 9 ) (4 + 6) = (3 5 7) (3 9 5 ) (3 5 6) + + ( + 6 7) ( 9 6 ) ( + 6 6) = Determiate de ua matriz El determiate de ua matriz cuadrada A, al que se desiga por A, es u escalar que se obtiee por la suma de! térmios, cada uo de los cuales es el producto de elemetos. Se obtiee mediate la siguiete fórmula: A = ±a... a a (3) l q E la expresió aterior cada sumado se obtiee permutado el segudo subídice. Obsérvese que el úmero de permutacioes de elemetos es!. El sigo de cada sumado es + o - segú que el úmero de permutacioes realizado a partir de la ordeació origial sea par o impar. Si A =0 se dice que la matriz A es sigular. 6

7 Eemplos A a a = aa aa a a = B b b b 3 = b b b = b b b b b b + b b b b b b + b b b b b b b b b Matriz iversa Ua matriz cuadrada A tiee iversa, a la que se se le desiga por A - si se cumple que AA = A A = I (4) Cuado ua matriz tiee iversa se dice que es ivertible o o sigular. Eemplo viee dada por La iversa de la matriz A 4 A = 3 3 A = 0 4 Vamos a ver expoer u algoritmo para el cálculo de la iversa de ua matriz de orde 3, tato de forma simbólica y como su aplicació a u eemplo. Este algoritmo es geeralizable a matrices de cualquier orde, Sea la matriz a a a 3 A = = 3 a a a a3 a3 a 33 Para ivertir esta matriz hay que realizar las siguietes operacioes: 7

8 ) Se calcula la matriz de meores. El meor del elemeto a i, al que deomiaremos m i, es igual al determiate que se obtiee de la matriz después de elimiar la fila i y la columa m m m m m m m m m = = ) Se calcula la matriz de cofactores. Cada cofactor se calcula de acuerdo co la siguiete fórmula: c i ( ) = i + m i Es decir, el sigo de m i o cambia si i+ es para y cambia si i+ es impar c c c c c c 3 = c3 c3 c ) Se calcula la matriz de adutos. Esta matriz es iguual a la traspuesta de la matriz de cofactores c c c 6 5 ad( A ) = c c c = c3 c3 c 33 4) Se calcula el determiate de la matriz A A = ± aal... aq = a a a + a a a + a a a + a a a + a a a + a a a = = ) La matriz iversa es igual a la matriz de adutos dividido por el determiate de la matriz A: 8

9 A Secomprueba de forma imediata que A A c c c3 6 5 = ad( A) = c c c = 5 4 A A 3 c3 c3 c = = = I 0 0 Eemplo La iversa de la matriz A 4 A = 3 se calcula de la siguiete forma ) Matriz de meores m m 3 m m = 4 ) Matriz de cofactores c c 3 c c = 4 3) Matriz de adutos 4) Determiate de A ad( A ) c c 3 c c 4 = = A = ± a a... a = a a a a a = = 0 l q 3 5) Matriz iversa de A: 9

10 A c c 3 ad( ) 0 4 = A = = A A c c La iversa de ua matriz diagoal es igual a la matriz e la que cada elemeto es el recíproco del correspodiete elemeto de la matriz origial. Eemplo es la siguiete La iversa de la matriz A Idepedecia lieal A = A = Sea u couto de m vectores { a a a } solució de la ecuació,,, m m m, de orde. Si la úica γ x + γ x + + γ x = 0 (5) es γ = γ = = γ m = 0 a, a,, am so liealmete idepedietes. Si existe otras solucioes etoces se dice que so liealmete depedietes. Eemplos los vectores { } a) Los vectores 5 y 8 solo se satisface para γ = γ = 0. so liealmete idepedietes, ya que (5) 0

11 b) Los vectores 3 y 6 9 so liealmete depedietes, ya que (5) se satisface para γ = 3; γ =. Es decir, Rago de ua matriz = 9 0 El rago de ua matriz A m, al que deomiaremos ρ( A ), es el umero máximo de filas o columas que so liealmete idepedietes. Se verifica que ρ( A ) mi( m, ). Si el rago de ua matriz cuadrada A es se dice que es de rago completo. E este caso la matriz A es o sigular y, por tato, A 0. Eemplos a) La matriz 4 7 A = 5 3 tiee el rago igual a (e igú caso podría ser 3), ya que las columas de A so liealmete idepedietes. b) La matriz 6 A = 3 9 tiee el rago igual a, ya que las columas de A so liealmete depedietes = PROPIEDADES DE LAS OPERACIONES CON MATRICES Sea A, B y C matrices y α, β y γ escalares.

12 Multiplicació Trasposició a) E geeral, AB b) [ ] BA α + β + γ A= αa+ βa+ γa= Aα + Aβ + A γ c) A(B + C) = AB + AC d) A0 = 0A = 0 a) α = α b) ( α A) = αa = A α c) ( A+B) = A +B d) ( AB) = B A Determiates BA + CA a) El determiate de ua matriz cuadrada es igual al determiate de su traspuesta, es decir, A = A (6) b) El determiate del producto de matrices cuadradas es igual al producto de los determiates de cada ua de las matrices. Así, ABC = A B C (7) que, c) Si se multiplica ua matriz A de orde por ua costate h se verifica h A = h A (8) e) Si ua matriz A tiee dos filas, o dos columas, idéticas, etoces A =0. Traza a) tr( A) = tr ( A )

13 Iversa b) tr( α) = tr( α ) = α c) tr( A+B) = tr( A) + tr( B ) d) tr( αa) = αtr( A ) e) tr( AB) = tr( BA ) a) La iversa de u producto de matrices cuadradas o sigulares ABC es igual a ( ) ABC = C B A (9) decir, b) La traspuesta de ua iversa es igual a la iversa de la traspuesta, es ( ) A ) = (A (0) c) El determiate de la iversa de ua matriz es igual al recíproco del determiate de la matriz origial. Es decir, A = A () 4 CÁLCULO DE DERIVADAS DE UN ESCALAR RESPECTO A UN VECTOR Derivada de ua forma lieal respecto a u vector Sea a a a = y... a x x x... x = etoces 3

14 ax = a x () Demostració x x ax = [ a a... a ] = a x + a x a x... x Derivado la expresió aterior respecto cada uo de los elemetos de x se obtiee que ax = a x ax = a x : : ax = a x Reuiedo e u vector las derivadas del escalar a x co respecto a cada elemeto de x, teemos la derivada de dicho escalar co respecto al vector x. Por lo tato, ax x a a... a = = Derivada de ua forma cuadrática respecto a u vector Siedo a 4

15 A a a... a a a... a a a... a = y x el vector defiido ateriormete, etoces se verifica que xax = ( A+ A ) x x (3) Demostració [ x x... x ] a a... a x a a... a x xax = = a a... a x = a x + a x x a x x + a x x + a x a x x a xx axx ax Derivado la expresió aterior respecto a cada uo de los elemetos de x se tiee que xax = a x + ( a + a ) x ( a + a ) x x xax = ( a + a ) x + a x ( a + a ) x x xax = ( a + a ) x + ( a + a ) x a x x Reuiedo e u vector las derivadas del escalar x'ax co respecto a cada elemeto de x, teemos la derivada de dicho escalar co respecto al vector x. Por lo tato, 5

16 a a... a a a... a x a a... a a a... a x xax = + = x a a... a a a... a x = ( A+ A ) x Si la matriz A es simétrica se verifica que ' xax = Ax x (4) 5 RAÍCES Y VECTORES PROPIOS Determiació de las raíces y vectores característicos El problema que se platea e este epígrafe es la determiació de uos escalares (λ ) y de uos vectores (u ) tales que satisfaga la siguiete ecuació: Au = λ u (5) dode A es ua matriz dada de orde. Es decir, A debe ser ua matriz cuadrada. A los escalares λ que satisface la ecuació (5) se les deomia raíces características y a los correspodietes vectores u se les deomia vectores característicos. Para las raíces características se utiliza tambié las deomiacioes de valores propios o autovalores. Para los vectores característicos se utiliza alterativamete la expresió de vectores propios. La ecuació (5), mediate ua simple maipulació algebraica, la podemos expresar de la siguiete forma: ( A I) u = 0 (6) λ Si deamos aparte la solució trivial u =0, para que la ecuació (6) tega solució debe cumplirse que A λ I = 0 (7) 6

17 A la ecuació aterior se le deomia ecuació característica de A. Resolviédola se halla raíces características λ. A cada raíz característica va asociado u vector característico u. Cada vector característico puede multiplicarse arbitrariamete por ua costate si afectar al resultado, debido a que la matriz (A-λ.I) de (6) es sigular por la codició impuesta e (7). E muchas aplicacioes, para soslayar la arbitrariedad del resultado, se procede a ormalizar cada vector característico impoiedo la codició uu = (8) De todas formas, aú después de ormalizar subsiste ua arbitrariedad e el sigo, de forma que si u es ua solució, (-)u tambié lo es. Es coveiete e muchas aplicacioes defiir ua matriz U e la que cada columa es u vector característico u. Por lo tato, u u... u... u u u... u... u U = u u... u... u = (9) u u... u... u Propiedades de las raíces y vectores característicos. a) Las raíces características de ua matriz diagoal so los elemetos de la diagoal. b) Las matrices A y A tiee las mismas raíces características, pero o ecesariamete los mismos vectores característicos. c) Si λ es es ua raíz característica de A, etoces /λ es ua raíz característica de A -. d) Desigado a las raíces características de A por λ, λ,..., λ, etoces se verifica que tra = λ (30) = A = λ (3) = 7

18 Si la matriz A es real y simétrica, etoces las raíces y vectores característicos cumple tambié otras propiedades. Ua propiedad relevate e el aálisis multivariate de ua matriz real y simética es la siguiete: e) Ua matriz A real y simétrica de orde, da lugar a vectores que so ortogoales etre sí. Se dice que los vectores u y u h so ortogoales, si se verifica que uu = 0 (3) h U couto de vectores se dice que so ortoormales, si además de la codició aterior está ormalizados segú el criterio (8). La matriz U formada por vectores característicos ormalizados de ua matriz simétrica, es decir, por vectores ortoormales, se deomia ortoormal y cumplirá la siguiete propiedad: UU = I (33) Eemplo de cálculo de raíces y vectores carcterísticos de ua matriz o simétrica Sea la matriz 4 3 A = Aplicado la ecuació (6) a la matriz aterior, se tiee que : U 0 λ = 0 U 0 La correspodiete ecuació característica viee dada por 4 λ 3 λ = 0, es decir, λ 6λ + 5= 0 Co la resolució de esta ecuació de segudo grado (A es de orde x), se obtiee dos raíces características: 8

19 λ = 5; λ = λ = 5; λ = Sustituyedo λ e la ecuació (6), se obtiee es decir, U 0 5 = 0 U 0 3 U 0 = 3 U 0 dode U y U so los elemetos del vector u. De la expresió aterior se obtiee dos ecuacioes U + 3U = 0 U 3U = 0 que so proporcioales debido al carácter sigular de la matriz ( A λ I). Por esta razó, co estas ecuacioes sólo podemos determiar la relació etre U y U, pero o sus valores exactos. Esta relació es U = 3U Co esta relació y la ecuació de ormalizació U + U = se tiee u sistema de dos ecuacioes. Resolviédolo se obtiee u 3 0 = 0 Obsérvese que (-)u tambié es solució al sistema aterior. 9

20 Sustituyedo la seguda raíz λ e la ecuació (6), se obtiee U 0 = 0 U U 0 = U 0 De la expresió aterior se obtiee la relació etre U y U : U = U Co esta relació y la ecuació de ormalizació se obtiee los valores del vector u : u = E este caso, la matriz U será la siguiete: 3 0 U = 0 Eemplo de cálculo de raíces y vectores característicos de ua matriz simétrica Sea la matriz A = La aplicació de la ecuació (A-) da lugar a la siguiete expresió: 0 U 0 λ = 0 U 0 obteiédose la ecuació característica 0

21 λ λ = 0 es decir, λ λ 3= 0 Co la resolució de esta ecuació de segudo grado (A es de orde x), se obtiee dos raíces características: λ = 3; λ = Realizado las sustitucioes pertietes e este caso, llegamos a = u u E este caso la matriz U será la siguiete: U = = Puede comprobarse fácilmete que U es ua matriz ortoormal y, por lo tato, se cumple que = UU I

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013 Matemáticas I E.I.I Tema 2 Aplicacioes Lieales y Matrices Curso 202-203 Itroducció 2 Como requisitos previos para maejar todos lo que e este tema se itroduce se tiee que recordar de cursos ateriores los

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

MATRICES SELECTIVIDAD

MATRICES SELECTIVIDAD MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS

CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS 1 CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS Miguel A. Saiz, Joa Serarols, Aa M. Pérez Dep. de Iformática y Matemática Aplicada Uiversidad de Giroa RESUMEN: La matriz asociada a u edomorfismo f

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

La sucesión de Fibonacci

La sucesión de Fibonacci La sucesió de Fiboacci María Isabel Viggiai Rocha Sea la sucesió {a } defiida por: a = a -1 + a -2 si 3 y a 1 = a 2 = 1. Esta sucesió es coocida como la sucesió de Fiboacci y la aparició de la misma brota

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS GENNY ALEXANDRA NAVARRETE MOLANO Trabajo de grado para optar por el titulo de Matemático DIRECTOR: JOSÉ JOAQUÍN VALDERRAMA Matemático Uiversidad Nacioal de

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil.

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil. Medias Móviles Ua de las herramietas más utilizadas por los aalistas técicos es la llamada media móvil. La media móvil de u istrumeto fiaciero es simplemete el promedio de u úmero, predetermiado, de valores

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2 LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles