PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA"

Transcripción

1 PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos Campus de Albacete 1

2 PROBLEMA 1 Un automovilista descuidado deja su vehículo aparcado en lo alto de una pendiente del 7% al final de la cual hay un rellano seguido de una cuesta arriba del 4% (véase esquema). Si el coeficiente de rozamiento efectivo una vez que el coche empieza a rodar cuesta abajo es 0.05, calcular qué distancia d recorrerá sobre la pendiente del 4%. 7% 10 m 10 m d 4%

3 3

4 PROBLEMA Sobre una plataforma inclinada que puede girar en torno a un eje vertical (véase figura) hay un pequeño dado situado a 0 cm del eje. Si la plataforma gira a 30 rpm y su ángulo es 5º, determinar el coeficiente de rozamiento estático mínimo para que el dado no resbale. 30 rpm 0 cm 5º 4

5 5

6 PROBLEMA 3 Una fuerza variable viene dada por la expresión 4 F = (F en newton, t en segundos) ( 1+ t ) Esta fuerza actúa sobre un cuerpo de kg inicialmente en reposo a partir de t = 0. Calcular: a) El impulso mecánico comunicado por la fuerza al cabo de 3 s. b) Velocidad adquirida en dicho instante. c) Aceleración del cuerpo en ese instante. d) Velocidad máxima que puede adquirir el cuerpo. 6

7 7

8 PROBLEMA 4 Demostrar que cuando un cuerpo atado a una cuerda se mueve en una órbita circular situada en un plano vertical, la diferencia entre las tensiones de la cuerda en las posiciones extremas inferior y superior es igual a seis veces el peso del cuerpo. T T = mg B A 6 m R T A B A T B Punto A: La fuerza centrípeta F CA es la suma de la tensión de la cuerda y del peso (ambos de igual sentido) Punto B: La fuerza centrípeta F CB es la diferencia entre la tensión de la cuerda y del peso (sentidos opuestos) v A A T B T A mg F CA B v B mg F CB FCA = TA + mg v = m A R F CB = T B mg v = m B R 8

9 PROBLEMA 4 (Cont.) FCA = TA + mg F CB = T B T B mg v = m A R v = m B R vb = va + 4gR Relación entre las velocidades en los puntos A y B Energías: referencia de energías potenciales en B ( v v ) m mg ( TA + mg) = B A R m TB TA mg = 4gR R E + E = PA CA E 1 mg R + mv A = CB 1 mv B TB TA = 6mg m R B A Pregunta. Puede hacerse girar en un plano vertical un objeto de masa 0.5 kg sujetándolo con una cuerda que soporta una tensión máxima de.5 kp? 9

10 PROBLEMA 5 El perfil de una montaña rusa corresponde al esquema que se presenta en la figura, donde la vagoneta debe remontar un rizo circular de radio R, y termina su viaje deteniéndose a la derecha del punto F. Para que la atracción sea segura se estima que la velocidad que debe llevar la vagoneta en el punto más alto es el doble de la velocidad mínima necesaria para remontar el rizo. Se pide: Velocidad mínima inicial que debería llevar la vagoneta para superar el rizo. Velocidad mínima inicial, v B, que debe llevar la vagoneta para cumplir la condición de seguridad especificada. Reacción normal de los raíles en el punto C Velocidad de llegada al punto F (despréciese el rozamiento) C R v B F R/4 10

11 PROBLEMA 5 (Cont.) C R v B F R/4 11

12 PROBLEMA 5 (Cont.) 1

13 PROBLEMA 6 La lenteja de un péndulo se cuelga de un hilo inextensible que es capaz de soportar una tensión máxima igual a 1.3 veces el peso de la misma. Si se separa la lenteja de la vertical un ángulo inicial de 60º y a continuación se suelta dejándola oscilar libremente, completará una oscilación completa o llegará a partirse el hilo antes de conseguirlo? Existe algún valor del ángulo inicial que permita que se verifiquen oscilaciones completas de este sistema? (Considérese la lenteja como una masa puntual). 60º Resolvamos el problema general para un ángulo inicial θ 0. Debe comprobarse si la tensión a la que está sometido el hilo excede a la tensión máxima posible para algún valor del ángulo de separación con la vertical a medida que transcurre la oscilación. L 1 cosθ ) ( 0 F c L mg cosθ mg T θ θ 0 L( 1 cosθ ) mg senθ 13

14 PROBLEMA 6 (Cont.) L 1 cosθ ) ( 0 F c mg cosθ mg L T v L θ 0 θ L( 1 cosθ ) mg senθ = g(cosθ cosθ0) El hilo se romperá si se cumple que T 1 mv F c v = m L = T mg cosθ Tomando el origen de energía potencial en el punto más bajo de la oscilación, la velocidad de la lenteja del péndulo como función del ángulo se obtiene mediante el siguiente balance de energía mecánica: = mgl(1 cosθ ) mgl(1 cosθ ) T = mg 0 ( 0 cosθ cosθ ) = 1.3 mg cos θ cos θ 0 = cosθ cosθ = 0 = = Se rompe cuando θ = 30º Si la amplitud es θ 0 = 60º... 14

15 PROBLEMA 6 (Cont.) El valor máximo de la tensión del hilo corresponde a un ángulo θ = 0 y su valor es T m = mg ( 0 cosθ ) F c L T θ θ 0 Tm Por lo tanto, la máxima amplitud posible de una oscilación completa tiene que cumplir la condición T m <1.3 mg cosθ 0 < 0.77 θ 0 < 39.6º cos θ 0 < 1.3 cosθ 0 > 0.77 mg cosθ T = mg mg mg senθ ( 0 cosθ cosθ ) A medida que el ánguloθ se reduce desde su valor inicial θ 0 aumenta la tensión T 15

16 PROBLEMA 7 Una pequeña bolita de diámetro r situada inicialmente en reposo en el polo de una cúpula semiesférica cuyo radio es R (R = 100r) empieza a rodar sobre la superficie de la misma. Se pide: a) b) Determinar la velocidad del centro de masas de la bolita desde que empieza a rodar hasta que pierde contacto con la cúpula, determinando el ángulo θ s, medido con respecto a la vertical, para el que se produce dicha pérdida de contacto. Representar gráficamente el cuadrado de la velocidad del centro de masas de la bolita en unidades gr. c) Determinar la velocidad angular de la bolita en el momento en que pierde contacto con la superficie semiesférica. Cuántas vueltas da la bolita hasta ese momento? r R θ s O 16

17 PROBLEMA 7 (Cont.) En un instante cualquiera r R mg cosθ F c θ O θ mg R( 1 cosθ ) mg senθ A medida que rueda, la energía potencial de la bolita se va convirtiendo en energía cinética de traslación y energía cinética de rotación 1 1 mgr ( 1 cosθ ) = mv + Iω = 1 mv mr v r 7 = mv 10 Relación entre la velocidad del centro de la bolita y el ángulo descrito sobre la superficie v 10 = gr(1 cosθ ) 7 Qué fuerza obliga a la bolita a seguir una trayectoria curva? 17

18 PROBLEMA 7 (Cont.) R mg cosθ F c θ O θ mg N mg senθ A la componente radial del peso hay que restarle la reacción normal N sobre la bolita La diferencia entre ambas es la fuerza centrípeta F c = mg cosθ N El momento en que la bolita se separa de la superficie esférica es aquel en que el valor de N se reduce a cero. Denotaremos por s a las magnitudes en ese momento r R 1 cosθ ) ( s R F cs θ s θ s mg mg senθ s s v m R cosθ = mg s v s = grcosθs O mg cosθ s 18

19 PROBLEMA 7 (Cont.) 10 cos θ Combinando este resultado con el balance de energía: s = v s = grcosθs vs = gr(1 cosθs) cosθs = (1 cosθs) θ s = 54º 7 7 Sustituyendo para la velocidad angular: ( ω ) = gr 1 = gr sr ωs = gr =. 40 r 17 R r Para R = 100 r ω s = 4 rad/s La longitud L del arco de circunferencia de la cúpula recorrida por la bolita es L = θs R 54π = R 180 La longitud l de la circunferencia completa de la bolita es l = π r Por tanto el número de vueltas será (rueda sin deslizar) n L 1 54πR 1 54π 100r = = = = 15 vueltas l πr 180 πr

20 PROBLEMA 7 (Cont.) Representación gráfica (apartado b),0 1,8 1,6 1,4 Componente radial del peso (unidades mg) v en función del ángulo θ (unidades gr) 1, v /gr 1,0 0,8 0,6 0,4 0, 0, Grados 0

21 PROBLEMA 8 La figura muestra dos pistas sin rozamiento en las que hay dos deformaciones de perfil semicircular, una de ellas un promontorio y la otra un badén. Ambas pistas tienen igual longitud. En la cabecera de cada pista hay una bolita; cada una de ellas comienza a moverse en el mismo instante y con la misma velocidad. a) Cuál de ellas llegará antes al final de la pista, suponiendo que ambas lleguen? b) La velocidad inicial de ambas bolitas es m/s. La velocidad de la bolita B cuando está en el fondo del badén es 3 m/s. Qué velocidad tendrá la bolita A cuando llegue a la parte más elevada del promontorio que hay en su pista, si es que llega? A B 1

22

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

TRABAJO Y ENERGIA: PROBLEMAS VARIOS

TRABAJO Y ENERGIA: PROBLEMAS VARIOS TRABAJO Y ENERGIA: PROBLEMAS VARIOS En una erupción volcánica se expulsó una masa de 4 km 3 de montaña con una densidad de 1.6 g/cm 3 hasta una altura media de 500 m. a) Cuánta energía en julios se liberó

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS TRJO Y ENERGI: FUERZS NO CONSERVTIVS Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de Newton) la aceleración que alcanza un bloque de masa m al bajar por

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

Tema IV: Trabajo, Potencia y Energía

Tema IV: Trabajo, Potencia y Energía Problemas de Física º acillerato Tema IV: Trabajo, Potencia y nergía.- Una fuerza de 90N tira de un bloque, inicialmente en reposo que pesa 0 kg, situado en un plano inclinado 30º sobre la orizontal. La

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial.

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Mecánica Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: Crea-ve

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a.

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a. 4.4. CONSERVACIÓN DEL MOMENTO ANGULAR. 4.4.1. La Tierra dista del Sol, una unidad astronómica y es aproximadamente 3500 veces el radio de la Tierra, con ese dato se puede asegurar que la relación entre

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

EJERCICIOS 4ºESO MOV. CIRCULAR

EJERCICIOS 4ºESO MOV. CIRCULAR EJERCICIOS 4ºESO MOV. CIRCULAR 1. Describe las características del movimiento circular uniforme 2. Puede existir un movimiento que tenga aceleración y, sin embargo, el valor de la velocidad sea constante?

Más detalles

LABORATORIO DE MECANICA FUERZA CENTRÍPETA

LABORATORIO DE MECANICA FUERZA CENTRÍPETA 8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Olimpiada Online de Física - OOF 2013

Olimpiada Online de Física - OOF 2013 1. La figura muestra una pieza metálica apoyada sobre une superficie horizontal. Respecto de la tercera ley de Newton, indique verdadero (V) o falso (F) según corresponda. I. El peso y la normal son fuerzas

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II) 1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI e - mail Centro Población Provincia Fecha Teléfono Las siete primeras preguntas no es

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica.

y su derivada respecto de 0, en este instante, es 3 rd/s. O1O2= 0,5 m. O1A=0,2m. O 2 MAQUINAS Y MECANISMOS.Dinámica. Calcular en el mecanismo de la figura la aceleración n angular de 1 respecto de 0, la de 2 respecto de 0, así como la fuerza de la clavija A, de dimensión n despreciable, sobre la guía a y las reacciones

Más detalles

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU A) Posición, velocidad, desplazamiento, espacio recorrido: MRU 1.- Un móvil se mueve sobre un plano horizontal de la siguiente forma: primero 5 m hacia el norte, a continuación 3 m al oeste, seguido de

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 2 2013 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2013. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio)

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

Ejercicios resueltos de movimiento circular uniformemente acelerado

Ejercicios resueltos de movimiento circular uniformemente acelerado Ejercicios resueltos de movimiento circular uniformemente acelerado 1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de 360rpm. a) Calcula la aceleración angular del

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 3 Fuerzas y movimientos circulares Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA Departamento de Física y ATC DIVISIÓN DE FÍSICA APLICADA TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA 1. CINEMÁTICA 1.1 Conceptos Generales 1.2 Tipos de movimiento 2. DINÁMICA 2.1 Leyes de Newton 2.2

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

TRABAJO Y ENERGÍA. F r

TRABAJO Y ENERGÍA. F r TRABAJO Y ENERGÍA. Trabajo mecánico... Trabajo de una fuerza constante... Trabajo de una fuerza variable.. Energía... Energía cinética... Energía potencial.... Energía potencial gravitatoria.... Energía

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles