CIENCIAS NATURALES 7 BÁSICO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CIENCIAS NATURALES 7 BÁSICO"

Transcripción

1 CIENCIAS NATURALES 7 BÁSICO FUERZAS EN ACCIÓN Material elaborado por: Gloria Núñez V Irene Reyes L.

2 1. DESCRIPCIÓN DE LA UNIDAD El objetivo de esta Unidad es que los y las estudiantes puedan identificar la acción de diferentes tipos de fuerzas en diversas situaciones. Así por ejemplo, que sean capaces de reconocer las fuerzas que actúan en un cuerpo en movimiento, como un auto o un péndulo, o sobre un objeto en reposo, como un libro sobre una mesa o una lámpara que cuelga del techo. En esta unidad los estudiantes deberán describir las fuerzas como magnitudes vectoriales, entendiendo que es importante identificar no solo su intensidad, si no también el sentido y dirección en que actúan, debido a que sus efectos varían según varían estas tres variables que describen a una fuerza 2. DURACIÓN APROXIMADA 2 semanas. 3. OBJETIVOS DE APRENDIZAJE Eje Temático: Física Planificar y conducir una investigación experimental para proveer evidencias que expliquen los efectos de las fuerzas gravitacional, de roce y elástica, entre otras, en situaciones cotidianas. 4. HABILIDADES Y ETAPAS DE LA INVESTIGACIÓN CIENTÍFICA Observar y plantear preguntas a. Observar y describir objetos, procesos y fenómenos del mundo natural y tecnológico, usando los sentidos. b. Identificar preguntas y/o problemas que puedan ser resueltos mediante una investigación científica. c. Formular y fundamentar predicciones basadas en conocimiento científico. Planificar y conducir una investigación a. Planificar una investigación experimental sobre la base de una pregunta y/o problema y diversas fuentes de información científica, considerando: la selección de instrumentos y materiales a usar de acuerdo a las variables presentes en el estudio la manipulación de una variable la explicación clara de procedimientos posibles de replicar b. Planificar una investigación no experimental y/o documental a partir de una pregunta científica y de diversas fuentes de información, e identificar las ideas centrales de un documento. c. Llevar a cabo el plan de una investigación científica, midiendo y registrando 2

3 evidencias con el apoyo de las TIC. d. Organizar el trabajo colaborativo, asignando responsabilidades, comunicándose en forma efectiva y siguiendo normas de seguridad. Procesar y analizar la evidencia a. Organizar y presentar datos cuantitativos y/o cualitativos en tablas, gráficos, modelos u otras representaciones, con la ayuda de las TIC. b. Crear, seleccionar, usar y ajustar modelos simples, en forma colaborativa, para apoyar explicaciones de eventos frecuentes y regulares. c. Examinar los resultados de una investigación científica* para plantear inferencias y conclusiones: determinando relaciones, tendencias y patrones de la variable en estudio usando expresiones y operaciones matemáticas cuando sea pertinente, por ejemplo: proporciones, porcentaje, escalas, unidades, notación científica, frecuencias y medidas de tendencia central (promedio, mediana y moda) Evaluar a. Evaluar la investigación científica con el fin de perfeccionarla, considerando: la validez y confiabilidad de los resultados la replicabilidad de los procedimientos las posibles aplicaciones tecnológicas el desempeño personal y grupal Comunicar a. Comunicar y explicar conocimientos provenientes de investigaciones científicas, en forma oral y escrita, incluyendo tablas, gráficos, modelos y TIC. b. Discutir en forma oral y escrita las ideas para diseñar una investigación científica, las posibles aplicaciones y soluciones a problemas tecnológicos, las teorías, las predicciones y las conclusiones. 5. RECOMENDACIONES METODOLÓGICAS En esta unidad se espera que las y los estudiantes reconozcan las fuerzas gravitacional, de roce y elástica y otras fuerzas, y que comprendan que sobre los diferentes objetos y cuerpos pueden estar actuando varias fuerzas simultáneamente. También se espera que sean capaces de graficarlas usando la representación vectorial y realicen diagramas de cuerpo libre. Sin embargo, no se intenta en este curso que lleguen a hacer un análisis cuantitativo de las fuerzas que actúan sobre un cuerpo, si no que establezcan tamaños relativos, direcciones y sentidos de dichas fuerzas mediante su representación vectorial. 3

4 Es importante que rescate las concepciones que los y las estudiantes tienen respecto del concepto de fuerza, pues suelen manifestarse una serie de preconcepciones que pueden entorpecer su comprensión. Por ejemplo, piensan que: solo los cuerpos activos pueden ejercer fuerza la fuerza es una propiedad de los cuerpos la velocidad es proporcional a la fuerza aplicada la aceleración es producto de una fuerza variable un cuerpo de mayor masa ejerce una mayor fuerza etc. 6. MATERIAL DE AULA Para promover el logro de los aprendizajes y el desarrollo de las habilidades de pensamiento científico propuestos, se plantea utilizar el método de indagación en algunas de las actividades, promoviendo y ayudando a que los y las estudiantes vayan construyendo las interpretaciones y conocimiento acerca de los fenómenos naturales estudiados. GUÍA 1: QUIÉN EJERCE LA FUERZA? Esta guía tiene como propósito que los y las estudiantes comiencen a representarse las fuerza como entidades vectoriales, reconociéndolas en situaciones cotidianas. La primera actividad busca rescatar el conocimiento previo de los estudiantes, por lo que no importa si las representaciones que hagan de las fuerzas no están bien. Debe aprovechar esta instancia para que los estudiantes muestren cómo las grafican y discutan entre ellos las diferentes posibilidades antes de formalizar la forma de representar las fuerzas. El propósito con las actividades iniciales es poner de manifiesto que es necesaria la interacción entre dos o más cuerpos para que se ejerza una fuerza. Para cada caso, invite a las alumnas y alumnos a analizar cada situación y identificar las fuerzas que están actuando en cada caso. En general los estudiantes se confunden al representar las fuerzas. Enséñeles que las fuerzas se pueden representar mediantes vectores los que se deben dibujar sobre el cuerpo en el que se ejercen y en las direcciones y sentidos en que actúan. Por ejemplo, para el caso del libro sobre la mesa, las fuerzas deben dibujarse sobre el libro de la manera siguiente: 4

5 Fuerza que ejerce la superficie de la mesa sobre el libro Fuerza que ejerce la Tierra sobre el libro En la lectura que se les presenta a continuación de la actividad se les enseña a representar las fuerzas que actúan sobre un objeto mediante un diagrama de cuerpo libre. Este diagrama tiene la finalidad de facilitar el análisis de las fuerzas que están actuando y poder determinar si existe una fuerza resultante que está afectando el estado de movimiento del cuerpo. Es importante que los estudiantes comprendan que finalmente el estado de movimiento del objeto se verá afectado por la fuerza resultante o neta, y no necesariamente, por las fuerzas que se apliquen. En el caso de la roca, las fuerzas que se están aplicando están equilibradas entre sí, por lo cual la fuerza neta resulta nula y el estado de movimiento de la roca sigue sin variar. Se espera que los alumnos y alumnas hagan este análisis de manera cualitativa. En el caso de la pelota que rebota, invite a los estudiantes a hacer el análisis del movimiento que continúa. Ellos podrán darse cuenta que la pelota, aunque en la imagen aparece que va subiendo, en algún momento comenzará a bajar, lo que es producto de la fuerza resultante, que en este caso es distinta de cero e igual a la fuerza de atracción de la Tierra si es que no se considera la fricción con el aire. Puede que algunos estudiantes sean capaces de identificar la fuerza de roce de la pelota con el aire. Indíqueles que esta fuerza es pequeña y menos que la fuerza con que la Tierra atrae a la pelota, por lo que la fuerza resultante es un poco menor que la de gravedad, pero en la misma dirección y sentido. Pídales a los estudiantes que luego de la lectura, revisen y mejoren los diagramas de las fuerzas que realizaron. 5

6 GUÍA 2: ALGO MÁS ACERCA DE LA FUERZA RESULTANTE El propósito de las actividades de esta guía es reforzar en los estudiantes la comprensión que sobre un cuerpo pueden estar actuando dos o más fuerzas, y que el efecto de cambio en su movimiento es causado por la fuerza neta o resultante. Si bien se espera que entiendan que la fuerza resultante es la suma vectorial no se espera que hagan esta suma de manera cuantitativa si no cualitativa. Es decir, que se den cuenta por ejemplo que aparecen fuerzas que están actuando en la misma dirección, que son de magnitudes iguales pero de sentido opuesto, por lo que se anulan y el cuerpo queda equilibrado en esta dirección. O que hay fuerzas que pueden estar actuando sobre un cuerpo en la misma dirección y sentido, y que por lo tanto sus magnitudes se suman. En la actividad experimental las alumnas y alumnos deberán identificar las fuerzas que actúan sobre una goma que yace sobre una regla, primero cuando esta está en posición horizontal y luego con diferentes grados de inclinación. Los estudiantes deberán dibujar el diagrama de cuerpo libre en cada situación. Basta con que identifiquen dos fuerzas: la normal y el peso. La fuerza que sostiene la goma y que es la que ejerce la superficie de la regla impidiendo que caiga, se denomina fuerza normal (N). Siempre la fuerza normal es perpendicular a la superficie que la ejerce, por ello, cuando se inclina la regla, también se inclina la normal. Por su parte la fuerza de atracción gravitatoria que ejerce la Tierra, el peso de la goma, siempre apunta de forma perpendicular a la superficie del suelo, por lo que al variar la inclinación de la regla, esta no modifica su dirección, desalineándose con la fuerza normal. Al desalinearse las fuerzas de gravedad y normal ya no se equilibran y se obtiene una resultante en la dirección de la inclinación de la regla apuntando hacia abajo por sobre la misma. Es esta resultante la que finalmente cambia el estado de movimiento de la goma y hace que comience a moverse. Fuerza normal (N) Fuerza resultante correspondiente a la componente horizontal del peso. Componente vertical del peso, que se anula con la normal. Fuerza peso 6

7 Sin embargo, los estudiantes podrán observar que al inclinar solo un poco la regla la goma no se mueve. Pregúnteles a que se debe esta situación. Guíelos a que se den cuenta que debe existir otra fuerza que se opone a la componente horizontal del peso y que esta fuerza corresponde al roce. Las alumnas y alumnos deberán llegar a comprender que la fuerza resultante es la suma vectorial entre la componente horizontal del peso y la fuerza de roce. Sólo cuando la componente horizontal del peso supera la fuerza de roce, la goma comienza a moverse y a deslizarse hasta la parte baja de la regla. Fuerza normal (N) Componente horizontal del peso. Fuerza de roce Fuerza peso Componente vertical del peso, que se anula con la normal. La resultante de la suma vectorial de las fuerzas que actúan sobre la goma es el siguiente: Fuerza neta o resultante de la suma vectorial entre la componente horizontal del peso y el roce. Luego de la actividad pídales que hagan la siguiente lectura, y a partir de ella, completen o corrijan sus diagramas de cuerpo libre y sus respuestas. Revise con ellos las correcciones. 7

8 GUÍA 3: EXPERIMENTANDO CON DIFERENTES FUERZAS Esta última actividad busca que los estudiantes exploren las fuerzas que actúan sobre un cuerpo en movimiento. Para esto, se les solicita que armen un montaje consistente en un autito de juguete amarrado con un hilo que termina en un clip grande, donde deberán colgar distinto número de golillas. Ellos deberán identificar en un diagrama de cuerpo libre todas las fuerzas que están actuando: el peso, la normal, el roce y la fuerza aplicada. Podrán observar que cuando colocan cierto número de golillas colgando del hilo, entonces el autito comienza a moverse. Es importante que registren el tiempo del movimiento del autito antes de que las golillas toquen el suelo. Es importante también que los estudiantes definan una línea de partida y una de término, para medir siempre el tiempo que demora el autito en recorrer esta misma distancia colgando diferentes cantidades de golillas en el clip. Necesitarán para ello un reloj con cronómetro o con segundero. Deberán realizar al menos tres medidas para cada cantidad de golillas. Invite a los estudiantes a que sean ellos mismos quienes definan el formato de tabla donde registrarán los datos. Al final de la actividad ellos deberán observar que a medida que aumentan el número de golillas, el autito demora menos en llegar a la meta. Pídales reflexionar sobre qué ocurre con las velocidades en cada caso y guíelos a notar que las velocidades van siempre en aumento: parten de cero (cuando el autito aún no se está moviendo en la línea de inicio) y terminan con un valor mayor de velocidad (cuando llegan a la meta). Ellos deberán darse cuenta que la velocidad final del autito (al llegar a la meta) es mayor en la medida que el número de golillas aumenta, es decir, a medida que la fuerza neta o resultante aumenta. Para la actividad requerirán los siguientes recursos: 40 golillas (argollas) de metal 1 clip grande Hilo de volantín Un autito de juguete Regla Reloj con cronometro Procedimiento 1. Con las golillas de metal, el hilo de volantín, el autito de juguete y la regla, los estudiantes deben realizar el montaje que se indica en la figura. Deberán atar un extremo del hilo al autito, en el otro extremo atar el clip abierto y en él colgar las golillas. Estas consistirán en el sistema de peso descendente y será la fuerza de empuje del autito. Fijar una partida en el inicio de la mesa de trabajo y medir la distancia que recorrerá el 8

9 auto desde el inicio hasta la meta establecida. Señálele a los alumnos que las golillas no topen el suelo si el autito no ha llegado a la meta (cerca del final de la mesa). Montaje: 2. Deberán colgar 10 golillas en el clip (deben mover el auto), soltar el auto desde la partida y medir el tiempo que demora en llegar al fin de la mesa. Repetir esta medición al menos tres veces. 3. Luego, aumentar las golillas de 10 en 10 y en cada caso medir el tiempo que demora el autito en ir desde la partida hasta la meta. 4. Los alumnos deberán registrar sus mediciones en una tabla. Invítelos a que sean ellos mismos que diseñen sus tablas. Una vez terminada la actividad experimental, se propone una segunda actividad con el propósito de que los estudiantes se expliquen por qué es necesario colgar cierto número de argollas para que el autito se mueva, y que si colocan una cantidad inferior, el autito sigue detenido. En esta actividad deberá dar relevancia a la fuerza de roce presente entre el autito y la superficie por la cual se desplaza. Para notar mejor el efecto de la fuerza de roce, los estudiantes deberán modificar la superficie de la mesa colocando un pliego de lija, y luego (opcional) un trozo de alfombra. En estas condiciones, requerirán colgar un mayor número de golillas para que el autito inicie el movimiento. Esto ocurre porque la fuerza de roce es mayor para superficies más rugosas. En el movimiento estudiado existen dos tipos de roce: Roce estático, que es la fuerza de roce que se establece entre la superficie y el cuerpo antes de que comience a moverse. Esta fuerza es variable y aumenta en la medida que aumenta la fuerza aplicada (por las golillas en este caso) equilibrándola y haciendo que el cuerpo permanezca en reposo, hasta un límite en que el movimiento del objeto es inminente. 9

10 Roce dinámico, aparece cuando el cuerpo inicia su movimiento, es menor que el roce estático y es constante. Esto explica por ejemplo, por qué es más fácil empujar un auto u otro objeto cuando ya está en movimiento, comparado con el esfuerzo que se debe hacer para comenzar a moverlo. Para que los estudiantes aprendan sobre esto, pídales que hagan la lectura que sigue, luego coméntela y deles y pídales ejemplos. Ellos deben también, a partir de la lectura, responder unas preguntas finales que invitan a hacer un análisis más detenido de lo observado durante el experimento. 10

CIENCIAS NATURALES 8 BÁSICO

CIENCIAS NATURALES 8 BÁSICO 8 CIENCIAS NATURALES 8 BÁSICO MODELOS ATÓMICOS Material elaborado por: Irene Reyes Lisoni 1. DESCRIPCIÓN GENERAL DE LA UNIDAD El objetivo de esta Unidad es que los y las estudiantes conozcan cómo han ido

Más detalles

La sala de clases! Fuerza y movimiento en la Educación Básica

La sala de clases! Fuerza y movimiento en la Educación Básica La sala de clases! Fuerza y movimiento en la Educación Básica Prof. Bartolomé Yankovic Nola, 2012 1 Los contenidos sobre fuerza y movimiento se concentran en los cursos 4º, 7º y 8º, en estos últimos cursos,

Más detalles

Interacciones: Cómo? Cuándo? Porqué?... Marisa Santo Graciela Lecumberry Silvia Orlando Laura Dalerba

Interacciones: Cómo? Cuándo? Porqué?... Marisa Santo Graciela Lecumberry Silvia Orlando Laura Dalerba Interacciones: Cómo? Cuándo? Porqué?... Marisa Santo Graciela Lecumberry Silvia Orlando Laura Dalerba Félix Ortiz Comentarista Universidad Nacional de Río Cuarto Facultad de Ciencias Exactas, Físico-Químicas

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Unidad: Energía Cinética y Potencial

Unidad: Energía Cinética y Potencial Unidad: Energía Cinética y Potencial El teorema del Trabajo y la Energía Cinética dice que: El cambio de la Energía Cinética de un objeto que se mueve es igual al Trabajo hecho por la fuerza (neta) que

Más detalles

dos Segundo bimestre Una explicación del cambio:

dos Segundo bimestre Una explicación del cambio: Segundo bimestre 00 Tema dos Una explicación del cambio: la idea de fuerza Cómo es la relación entre las fuerzas y los objetos? LA IDEA DE FUERZA: EL RESULTADO DE LAS ITERACCIOES La familia de Valeria

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

Quién ejerce la fuerza? Quién la recibe?

Quién ejerce la fuerza? Quién la recibe? Araucaria2000 Fuerza www.araucaria2000.cl Si observamos a los seres humanos, vemos que generalmente están en constante movimiento: caminan, corren, bailan, hacen deporte. También podemos observar la nieve

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

GUIA. 1- Un. balde con. cuando el. balde: de 2 m/s. en un 40% esté: más despacio. despreciable. rozamiento). propio peso? 4- Un.

GUIA. 1- Un. balde con. cuando el. balde: de 2 m/s. en un 40% esté: más despacio. despreciable. rozamiento). propio peso? 4- Un. GUIA DINÁMICA 1- Un balde con mezcla cuelga del cable de una grúa. Analizar las interacciones presentes y hacerr el diagrama de cuerpo libre del balde en cada caso. Comparar las intensidades de las fuerzas

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Unidad: Conservación de la energía y el momentum lineal

Unidad: Conservación de la energía y el momentum lineal Unidad: Conservación de la energía y el momentum lineal En esta unidad veremos como la conservación de la energía y el momentum lineal conducen a resultados sorprendentes en algunos experimentos. Seguramente

Más detalles

Segunda Ley de Newton

Segunda Ley de Newton Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas

Más detalles

Otras tareas y actividades: Preguntas y problemas

Otras tareas y actividades: Preguntas y problemas FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para

Más detalles

FRICCIÓN TRABAJO Y POTENCIA.

FRICCIÓN TRABAJO Y POTENCIA. INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.

Más detalles

ACTIVIDAD: DIAGRAMA DE FUERZAS

ACTIVIDAD: DIAGRAMA DE FUERZAS ACTIVIDAD: DIAGRAMA DE FUERZAS Cómo se representan las fuerzas? Las fuerzas no se pueden ver, sólo podemos ver sus efectos, como por ejemplo, cuando estiras un elástico, o cuando modelas una figura en

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

TEMA 1 FUERZAS Y ESTRUCTURAS

TEMA 1 FUERZAS Y ESTRUCTURAS 1 TEMA 1 FUERZAS Y ESTRUCTURAS FUERZA es aquella causa capaz de producir cambios en el movimiento de un cuerpo o de cambiar su forma. (Por lo tanto, los cuerpos no tienen fuerza, tienen energía. La fuerza

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Las leyes del movimiento

Las leyes del movimiento Las leyes del movimiento Prof. Bartolomé Yankovic Nola (2012) 1 En el siglo XVII uno de los hombres de ciencia más grandes de todos los tiempos, el italiano Galileo Galilei, realizó los primeros experimentos

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

BASES CURRICULARES 7 Y 8 BÁSICO 1 Y 2 MEDIO CIENCIAS NATURALES UNIDAD DE CURRÍCULUM Y EVALUACIÓN MINISTERIO DE EDUCACIÓN 16 DE DICIEMBRE DE 2013

BASES CURRICULARES 7 Y 8 BÁSICO 1 Y 2 MEDIO CIENCIAS NATURALES UNIDAD DE CURRÍCULUM Y EVALUACIÓN MINISTERIO DE EDUCACIÓN 16 DE DICIEMBRE DE 2013 BASES CURRICULARES 7 Y 8 BÁSICO 1 Y 2 MEDIO CIENCIAS NATURALES UNIDAD DE CURRÍCULUM Y EVALUACIÓN MINISTERIO DE EDUCACIÓN 16 DE DICIEMBRE DE 2013 PROPUESTA APROBADA POR EL CONSEJO NACIONAL DE EDUCACIÓN

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

CIENCIAS NATURALES 7 BÁSICO

CIENCIAS NATURALES 7 BÁSICO CIENCIAS NATURALES 7 BÁSICO SEXUALIDAD Y SALUD Material elaborado por: Patricia Castañeda 1. DESCRIPCIÓN DE LA UNIDAD El objetivo de esta Unidad es que los/las estudiantes conozcan la estructura del aparato

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

FUERZA Y MOVIMIENTO UNIDAD. Navegaremos por... CONVERSEMOS. Un mundo lleno de fuerzas Tipos de fuerzas en la naturaleza Movimientos que se repiten

FUERZA Y MOVIMIENTO UNIDAD. Navegaremos por... CONVERSEMOS. Un mundo lleno de fuerzas Tipos de fuerzas en la naturaleza Movimientos que se repiten UNIDAD 4 FUERZA Y MOVIMIENTO Navegaremos por... Un mundo lleno de fuerzas Tipos de fuerzas en la naturaleza Movimientos que se repiten CONVERSEMOS Fotobanco El básquetbol es un deporte en que los jugadores

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA INTRO.ENERGÍA MECÁNICA Y TRABAJO La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico o biológico sería

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

Las leyes de Newton. 4.1. Espacio y tiempo

Las leyes de Newton. 4.1. Espacio y tiempo Capítulo 4 Las leyes de Newton En el presente capítulo enunciaremos y analizaremos las así llamadas Leyes de Newton. Recurrir a estas leyes para formular la mecánica clásica presenta algunos inconvenientes,

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

Cantidades vectoriales y escalares

Cantidades vectoriales y escalares Solución: Al sustituir las unidades por las cantidades en cada término, tenemos m m, m = ( ) H ^ ist se obtiene m = m + m Con esto se satisfacen tanto la regla 1 como la regla 2. Por tanto, la ecuación

Más detalles

Unidad 5 Energía INTRODUCCIÓN

Unidad 5 Energía INTRODUCCIÓN Unidad 5 Energía INTRODUCCIÓN La palabra energía es una de las que más se emplean en la actualidad. Has pensado a qué se debe esto? El concepto de energía se emplea en todas las ciencias y es muy importante

Más detalles

MÓDULO DE APRENDIZAJE III

MÓDULO DE APRENDIZAJE III MÓDULO DE APRENDIZAJE III ENERGÍA FÍSICA MENCIÓN MATERIAL: FM-14 En la foto se aprecian molinos llamados aerogeneradores. Estos aparatos aprovechan los vientos para producir la energía eólica, que es la

Más detalles

UNIDAD DOS. Intencionalidades Formativas Denominación de capítulos. F(r) en una dimensión

UNIDAD DOS. Intencionalidades Formativas Denominación de capítulos. F(r) en una dimensión UNIDAD DOS Nombre de la Unidad Introducción Justificación Intencionalidades Formativas Denominación de capítulos ONDAS Y ENERGÍA La naturaleza está conformada por ondas y energía, se discutirán estos términos

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

XIX OLIMPIADA ESPAÑOLA DE FÍSICA.

XIX OLIMPIADA ESPAÑOLA DE FÍSICA. P Exp. Estudio experimental de un generador de corriente Introducción; objetivos Según la ley de Faraday, cuando cambia el flujo magnético a través de un circuito se induce en él una fuerza electromotriz

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

UNIVERSIDAD VERACRUZANA

UNIVERSIDAD VERACRUZANA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERIA MANUAL DE PRÁCTICAS DE FISICA BASICA MONOGRAFIA QUE PARA OBTENER EL TITULO DE: INGENIERO MECANICO ELECTRICO P R E S E N TA: FERNANDO CHAVARRIA DOMINGUEZ COATZACOALCOS,

Más detalles

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1.

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. UNGS 1er semestre 009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. 1.- Un niño, de 00 N de peso, sube 10 m de altura con la ayuda de una escalera vertical. Halle el trabajo

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova 1 Prefacio Los autores de este libro han sabido, en la forma más expresiva del diálogo, analizar profundamente casi todas las preguntas del programa y en especial aquellas que son de difícil comprensión.

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

Guía para el docente El movimiento Energía mecánica. Guía para el docente

Guía para el docente El movimiento Energía mecánica. Guía para el docente Guía para el docente Descripción curricular: - Nivel: 2º medio - Subsector: iencias Físicas - Unidad temática: - alabras claves: Energía, Energía potencial, energía cinética, conservación de la energía,

Más detalles

Vectores. Observación: 1. Cantidades vectoriales.

Vectores. Observación: 1. Cantidades vectoriales. Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,

Más detalles

LABORATORIO DE MECANICA FUERZA CENTRÍPETA

LABORATORIO DE MECANICA FUERZA CENTRÍPETA 8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

4. Trabajo y energía. La Energía

4. Trabajo y energía. La Energía 57 4 Trabajo y energía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza Sin energía ningún proceso físico, químico o biológico sería posible

Más detalles

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1

Equipo requerido Cantidad Observaciones Mesa de fuerzas 1 Poleas 3 Anillo de Plástico 1 Portapesa + hilo 3 Juego de Masas 1 DEPARTAMENTO DE FISICA Y GEOLOGIA No 1 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General Encontrar la fuerza resultante de dos vectores por descomposición y por graficación.

Más detalles

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad.

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad. Potencial Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción El concepto de energía potencial

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

NOMBRE DEL ALUMNO(A): GRUPO: N.L. CALIFICACIÓN VECTORES

NOMBRE DEL ALUMNO(A): GRUPO: N.L. CALIFICACIÓN VECTORES UAL UIVERSIDAD AUTÓOMA DE UEVO LEÓ CICLO ESCOLAR: 2015-2016 SEMESTRE : AGOSTO - DICIEMBRE 2015 LABORATORIO PARA REFORZAMIETO 1 DE FÍSICA 2 FECHA: AGOSTO 2015 ELABORÓ EL LABORATORIO: ACADEMIA DE FÍSICA

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

TEMA 7: LA ORGANIZACIÓN DEL TRABAJO

TEMA 7: LA ORGANIZACIÓN DEL TRABAJO TEMA 7: LA ORGANIZACIÓN DEL TRABAJO. La productividad. Concepto y factores que la determinan. 2. El estudio del trabajo. 3. El factor humano en la aplicación del estudio de trabajo. 4. El estudio de métodos

Más detalles

Fundamentos de importancia del Trabajo, Energía y Potencia en física

Fundamentos de importancia del Trabajo, Energía y Potencia en física Fundamentos de importancia del Trabajo, Energía y Potencia en física INTRODUCCIÓN En el campo de la Física no se habla de trabajo simplemente, sino de Trabajo Mecánico y se dice que una fuerza realiza

Más detalles

Patrones de cambio de tendencia y velas japonesas

Patrones de cambio de tendencia y velas japonesas Patrones de cambio de tendencia y velas japonesas VAmos a ver uno de los patrones de cambio de tendencia más conocido y estudiado. Este es el que incluye los martillos, un tipo de velas japonesas, y sus

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Maestro (a): GLOSARIO. Tienes en tus manos el libro de planeación que el CIME ha elaborado para apoyar tu labor pedagógica en este nuevo ciclo:

Maestro (a): GLOSARIO. Tienes en tus manos el libro de planeación que el CIME ha elaborado para apoyar tu labor pedagógica en este nuevo ciclo: 1 o de primaria Maestro (a): Tienes en tus manos el libro de planeación que el CIME ha elaborado para apoyar tu labor pedagógica en este nuevo ciclo: Este libro de planeación presenta de forma dosificada

Más detalles

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i.

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i. IMPULSO po 1.1 Qué es el impulso mecánico? El impulso de una fuerza F es gual al cambio en el momento de la partícula. Supongamos que una fuerza F actúa sobre una partícula y que esta fuerza puede variar

Más detalles

Módulo Nº 3: Números decimales. MATEMÁTICA Guía didáctica. 5 o

Módulo Nº 3: Números decimales. MATEMÁTICA Guía didáctica. 5 o Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica 5 o Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica NIVEL DE EDUCACIÓN BÁSICA División de Educación General Ministerio de Educación República

Más detalles

Unidad: Primera Ley de Newton

Unidad: Primera Ley de Newton Unidad: Primera Ley de Newton Has observado que aunque intentes forzar el movimiento de un objeto, éste tiende a quedarse en reposo? Has pensado alguna vez por qué es necesario el cinturón de seguridad

Más detalles

Índice. Página. Práctica. Actividades. No. 1 Vectores 3. No. 2 Trabajo y Energía (Fricción) 7. No. 3 Poleas 10. No. 4 Segunda Ley de Newton 14

Índice. Página. Práctica. Actividades. No. 1 Vectores 3. No. 2 Trabajo y Energía (Fricción) 7. No. 3 Poleas 10. No. 4 Segunda Ley de Newton 14 Índice Página Práctica No. 1 Vectores 3 No. 2 Trabajo y Energía (Fricción) 7 No. 3 Poleas 10 No. 4 Segunda Ley de Newton 14 No. 5 Cantidad de Movimiento Angular 16 Actividades Actividad 1. Fricción 19

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

2-Trabajo hecho por una fuerza constante

2-Trabajo hecho por una fuerza constante TRABAJO POTENCIA Y ENERGIA 1-Trabajo y Energía En el lenguaje ordinario, trabajo y energía tienen un significado distinto al que tienen en física. Por ejemplo una persona sostiene una maleta; lo que estamos

Más detalles

Tema 3. Fundamentos de Máquinas

Tema 3. Fundamentos de Máquinas Tema 3. Fundamentos de Máquinas Javier Rodríguez Ruiz 1. Trabajo y energía Definición. Elegida una referencia, sea F = (F x, F y ) un vector fuerza constante aplicado sobre una partícula que se mueve desde

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

CIENCIAS NATURALES 3 BÁSICO

CIENCIAS NATURALES 3 BÁSICO CIENCIAS NATURALES 3 BÁSICO NUESTRO SISTEMA SOLAR Material elaborado por: Alejandra Moncada 1. DESCRIPCIÓN GENERAL DE LA UNIDAD Esta Unidad está centrada en los componentes del Sistema Solar y los movimientos

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles