EJERCICIOS METODO SIMPLEX

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS METODO SIMPLEX"

Transcripción

1 EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado y control de calidad. Los congeladores requieren, respectivamente, 2,5 y 3 horas de ensamblaje, 3 y 6 Kg. De esmalte para su pintado y 14 y 10 horas de control de calidad. Los costos totales de fabricación por unidad son, respectivamente, 30 y 28, y los precios de venta 52 y 48, todos ellos en miles de pesos. El empresario dispone semanalmente de horas para ensamblaje, de Kg. De esmalte y horas para control de calidad. Los estudios de mercado muestran que la demanda semanal de congeladores no supera las unidades y que, en particular, la de tipo A es de, al menos, 600 unidades. Se desea: a) Formular un modelo de programación lineal que indique cuántos congeladores deben fabricarse de cada tipo para que el beneficio sea máximo, teniendo en cuenta el estudio de demanda. b) Resolverlo mediante el método simplex. Interpretar la solución óptima incluyendo las variables de holgura. c) Determinar los precios sombra de las horas de ensamblaje y control de calidad. Al fabricante le ofrecen disponer de 200 horas más para ensamblaje con un costo adicional total de $ pesos. Debería aceptar la oferta? Solución: X1: No. De congeladores tipo A X2: No. De congeladores tipo B F.O. Z (max) = (52-30)X1 + (48-28)X2 S.A. 2.5 X1 + 3 X2 <= X1 + 6 X2 <= 8400

2 14 X X2 <= X1 + X2 <= 1700 X2 >= 600 El empresario debe fabricar 882 unidades de congeladores tipo A y 764 unidades de congeladores tipo B para obtener una utilidad máxima de $ a son 765 unidades. 2. Una empresa fabrica dos tipos de silla: ergonómica y normal. Para su construcción una silla pasa por 4 departamentos: ensamble, tapizado, color y terminado. Cada departamento tiene disponible horas, 450 horas, horas, y 150 horas

3 respectivamente. Los requerimientos de producción y utilidades por silla se muestran en la siguiente tabla: a) Plantea el modelo de programación lineal, definiendo las variables b) resuelva el problema por el método simplex, para determinar cuántas sillas normales y ergonómicas se deben producir para obtener mayor utilidad. c) Interprete todas las variables de holgura del problema. SOLUCION X1: Silla normal y X2: Silla ergonómica F.O. Z(máx) : 15X1 + 20X2 S.A. 2X1 + 3X2 <= 1000 X1 + X2 <= 450 4X1 + 6X2 <= 2000 (¼)X1 + (1/2) X2 <= 1000 C.N.N X1, X2 >= 0

4 Se deben fabricar 350 sillas normales y 100 sillas ergonómicas para obtener una utilidad máxima de $ En un laboratorio se fabrican 4 productos P1, P2, P3, P4 que consumen un día por unidad en su proceso completo de producción, aunque se pueden producir varias unidades simultáneamente. El espacio (m2) en el almacén y la mano de obra (número de trabajadores) disponibles limitan la producción. La siguiente tabla contiene los datos relevantes del proceso de producción, así como los costos de fabricación y precios de venta (en miles de pesos). a) Encontrar el plan de producción de beneficio máximo b) Interpretar los valores de los precios sombra Solución

5 X1=p1 X3=P3 X2=P2 X4=P4 Z(MAX)=10X1+20X2+40X3+32X4 S.A 10X1+ 30X2+ 80X3+ 40X4 <900 2X1+ X2+ X3+ 3X4<80 4. En un laboratorio existen dos contadores de bacterias disponibles. El contador C1 puede ser manipulado por un estudiante que gana 400 ptas. por hora. En promedio es capaz de contar 5 muestras en una hora. El contador C2 es más rápido, pero también más sofisticado. Solo una persona bien preparada pero que gana 1000 Ptas. Por hora puede manipularlo. Con la misma precisión que C1 el contador C2 permite contar 10 muestras en una hora. Al laboratorio se le dan 1000 muestras para que se cuenten en un

6 periodo que no exceda las 80 horas Cuántas horas deben usar cada contador para realizar la tarea con un coste mínimo? Cuál es el dicho coste? Solución: Sean X1 y X2 las horas utilizadas con el primer y segundo contador, respectivamente. Puesto que los dos contadores pueden estar trabajando simultáneamente tendremos dos restricciones X1 <= 80 y X2 <= 80, y el problema que resulta es: Minimizar Z= 400X X2 S A: X1 <= 80 X2 <= 80 6X1 + 10x2 = 1000 X1, X2 >= 0

7 El contador 1 debe utilizar 80 horas y el contador 2 utilizar 52 horas para obtener un coste mínimo de La compañía bluegrass farm., Lexington, Kentucky, está experimentando una ración especial para caballos de carreras. Los componentes disponibles para la ración son un peso común para caballos, un producto de avena enriquecido con vitaminas y minerales. Los valores nutritivos por unidad de libra y los costes para los tres componentes alimenticios son los siguientes: Supóngase que el entrenador de los caballos fija los requerimientos diarios de la ración en 3 unidades del ingrediente A, en 6 unidades del ingrediente B y en 4 unidades del ingrediente C. para efectos de control de peso, el entrenador no desea que el alimento total diario de un caballo exceda las 6 libras. Plantear y resolver el problema para determinar cuál es la mezcla optima diaria de los tres componentes alimenticios. Solución Sean X1, X2, X3 LAS LIBRAS DE LOS TRS COMPONENTES: pienso, avena y aditivo, respectivamente. El problema que resulta es Min Z=25X1+50X2+300X3 S.A 0.8X X2>3 X1+1.5X2+3X3>6 0.1X1+0.6X2+2X3>4 X1+X2+X3<6 X1, X2, X3 >0

8 Para determinar la mezcla optima diaria se debe consumir libras de pienso,0.9459libras de avena y libras de aditivo. Para obtener un costo mínimo de En su consumo diario de alimento, un animal rapaz necesita 10 unidades de alimento A, 12 unidades de alimento B y 12 unidades de alimento C. estos requerimientos se satisfacen cazando dos tipos de especies. Una presa de la especie 1 suministra 5, 2 y 1 unidades de los alimentos A, B y C respectivamente; una presa de la especie 2 suministra 1, 2 y 4 unidades respectivamente de los alimentos A, B y C, capturar y digerir una presa de la especie 1 requiere 3 unidades de energía en promedio, mientras que el gasto de energía correspondiente para la especie 2 es de 2 unidades. Cuántas presas de cada

9 especie deberá capturar el depredador para satisfacer sus necesidades alimentarias, haciendo un gasto minimo de energía? Solución: Sean Xi el numero de presas de cada especie (i=1,2) Minimizar z=3x1 +2X2 Sujeto a 5X1 + X2 > 12 2X1 + 2X2 >12 X1 + 4X2 = 12 X1. X2 > 0

10 El animal rapaz necesita 4 presas de la especie 1 y 2 presas de la especie 2 para consumir un mínimo de 16 unidades de energía promedio. 7. Una familia dispone de una explotación agraria de 100 Ha de terreno cultivable y dispone de $ ptas. Para invertir. Los miembros de la familia pueden producir un total de 3500 Horas-hombre de mano de obra durante los meses de invierno y de 4000 horas hombre durante el resto del tiempo, el verano. Si no fuesen necesarias en la explotación familiar una parte de esas horas hombre se emplearan para trabajar en un campo vecino a razón de 500 ptas. La hora en invierno y de 600 en verano. En la explotación se pueden obtener ingresos produciendo tres tipos de cosecha Soja, Maíz y Avena y cuidando las vacas lecheras y gallinas ponedoras. Para las cosechas no se necesitan inversión (se autoabastecen), pero cada vaca exige un desembolso de $ Ptas; y cada gallina les cuesta $800 Ptas. Para el pasto de las vacas se necesitan 1,5 Ha por cada vaca, 70 horas-hombre durante el invierno y 50 Horas-hombre durante el verano. Cada vaca produce un ingreso neto de $ Ptas. Las gallinas se pueden pasear por cualquier lugar, no necesitando pues de un terreno propio, pero hay que dedicar 0,6 horas-hombre en invierno y 0,3 horas-hombre en verano para cada gallina, de cada una de ellas se obtiene un beneficio de 700 Ptas. Por la noche hay que recoger las gallinas y las vacas, para ello se disponen de un gallinero de 300 plazas y de un establo para treinta y dos vacas, si hubiera más morirían asfixiadas. La cosecha de Soja requiere 20 Horas-hombre de trabajo por Ha, en invierno y 5º en verano; la de maíz requiere 35 horas-hombre de trabajo por Ha en invierno y 75 en verano y la de avena requiere 10 horas-hombre de trabajo por Has en invierno y 40 en verano. El rendimiento neto que se obtiene, por cada Ha de la cosecha de Soja es de 51 Ptas, por cada Ha de la cosecha de maíz es de $ Ptas, y por cada Ha de la cosecha de avena es de $ Ptas. Como es lógico la familia quiere maximizar sus ingresos. Plantea el problema de programación lineal que corresponda. SOLUCION X1: Número de Ha dedicadas al cultivo de Soja X2: Número de Ha dedicadas al cultivo de Maíz X3: Número de Ha dedicadas al cultivo de Avena X4: Número de Vacas X5: Número de Gallinas

11 X6: Número de horas trabajadas en invierno X7: Número de horas trabajadas en verano F.O. Z(máx): X X X X X X X7 S.A. X1 + X2 + X X4 <= X X5 <= X1 + 35X2 + 10X3 + 70X X5 + X6 = X1 + 75X2 + 40X3 + 50X X5 + X7 = 4000 X4 < = 32 X5 < = 300

12 Se deben cultivar solamente 31.2 Has de Maíz, y debe de tener 32 vacas en el establo y 200 gallinas en el gallinero, además de trabajar solamente 48 horas en el invierno y nada en el verano para obtener una máxima utilidad de $ Ptas. 8. Un agricultor es propietario de 500 Ha. de tierras, adecuadas para cultivar trigo, avena o centeno. Por cada hectárea que cultive, necesita la mano de obra, incurre en los costes y obtiene los beneficios que se indican en la tabla siguiente: Si el agricultor dispone de mano de obra capaz de proporcionar 5000 horas-hombre en el periodo de cultivo, y de euros. Para gastos de cultivo, se pide que: a) Encuentres las superficies de cultivo que maximicen los beneficios del agricultor. SOLUCION X1: Número de Ha dedicadas al cultivo de Trigo X2: Número de Ha dedicadas al cultivo de Avena X3: Número de Ha dedicadas al cultivo de Centeno F.O. Z(máx) : 60X X X3 S.A. 6X1 + 8 X X3 <= X X X3 <= X1 + X2 + X3 <= 500

13 El agricultor debe cultivar solamente 400 Has de Avena, para obtener un máximo beneficio de $ En una pequeña empresa se fabrican sólo dos tipos de aparatos, A y B. Como máximo pueden fabricarse 3 aparatos de cada tipo y, obligatoriamente, al menos uno de tipo B. Se quieren obtener unas ventas superiores a 600 euros, teniendo en cuenta que los precios a los que vende los artículos A y B son 300 y 100 euros, respectivamente. Zmax: 300 X X 2 S.A. X 1 3 X 2 1/3 X 1 + X CN (-) X, Y 0

14 Para obtener unas ventas superiores a 600 euros, se deben fabricar 3 aparatos de tipo A y 3 aparatos de tipo B, para tener una máxima ganancia de 1200 euros. 10. Una refinería tiene disponibles dos crudos que tienen los rendimientos que se muestran en la tabla 1. Debido a limitaciones en el equipo y en el almacenamiento, la producción de gasolina, keroseno y fuel oil debe de estar limitada como se indica en la tabla mencionada. La refinería no tiene limitaciones en la producción de otros productos como gas oil. El beneficio de procesar el crudo 1 es de 1EUR/barril y de procesar el crudo 2 es de 0,7EUR/barril. Averiguar cual debe de ser la alimentación optima de estos dos crudos a la refinería. Zmax: (70 X X x 3 ) + (31 X X x 3 )

15 S.A. 70 X X X X X X X X x X X x CN (-) X, Y 0 Para obtener una producción óptima de estos dos crudos la refinería debe producir cantidad de gasolina y cantidad de fuel oil, para tener este rendimiento se necesitan 200 EUR/barril.

16 1. Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a 120 euros y 90 euros para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 de aluminio, y para la de montaña 2 kg. De los dos metales. Cuántas bicicletas de paseo y de montaña venderá? SOLUCIÓN: Bicicleta\ metal Acero Aluminio Precio Paseo Montaña Disposición Z(Max)= 120x+ 90y s.a 3x+2y 120 x+2y 80 x,y 0 Z(max):120x + 90y + 0h1+ 0h2 3x+2y+h1=120 X+2y+h2=80 cj ci VB Bi x y h1 h2 Өi 0 h h zj cj-zj Interacción 1 NF1=F1/ /3 1/3 0 NF2 =F2 NF

17 40 1 2/3 1/ /3-1/3 1 cj Ci VB Bi x Y h1 h2 Өi 120 X /3 1/ h /3-1/ zj cj-zj C.E Interacción 2 NF2=F2*3/ /4 ¾ NF1=F1-(NF2*2/3) /3 1/ /3-1/6 ½ /2-1/2 cj Ci VB Bi x y h1 h2 Өi 120 X ½ -1/2 90 Y /4 3/4 zj cj-zj X=20 Y=30 Z=5100

18 2. Una fábrica produce neveras utilitarias y de lujo. La fabrica esta dividida en dos secciones: montaje y acabado. Los requerimientos de trabajo vienen dados por la siguiente tabla: El máximo número de horas de trabajo disponible es de 120 en montaje y 180 en acabado, debido a las limitaciones de operarios. Si el beneficio es de 300 por cada nevera utilitaria, y de 400 por cada nevera de lujo, cuantas neveras deben fabricarse para obtener el máximo beneficio? Solución Z(max)=300x+400y s.a: 3x+3y 120 3x + 6y 180 X,Y 0 300x +400y + 0h1 + 0h2 3x + 3y + h1 = 120 3x + 6y + h2 =180 cj Ci VB Bi X Y h1 h2 Өi 0 h h zj cj-zj Interacción 1 NF2=F2/6 30 1/ /6

19 NF4= F4 NF1 * /2 3 0 ½ 30 3/ /2 cj Ci VB Bi X Y h1 h2 Өi 0 h1 30 3/ / Y 30 ½ 1 0 1/6 60 Zj /3 cj-zj /3 Interacción 2 NF1=F1* 2/ /3-1/3 NF2=F2-(NF1*1/2) 30 ½ 1 0 1/6 10 ½ 0 1/3-1/ /3 1/3 cj Ci VB Bi X Y h1 h2 300 X /3-1/3 400 Y /3 1/3 zj /3 100/3 cj-zj /3-100/3 X=20 Y=20 Z=14000

20 3. considere el siguiente modelo de programación lineal Z (max)= 5x1 + 20x2 + 25x3 s.a 2x1 + x2 40 2x2 + x3 30 3x1-1/2x3 15 X1, x2,x3, 0 5x1 + 20x2 +25x3 + 0 h1 +0h2 + 0h3 2x1 + x2 + h1 =40 2x2 + x3 + h2 =30 3x1 1/2x3 + h3 =15 cj ci VB Bi X1 X2 X3 h1 h2 h3 Өi 0 h h h / zj cj-zj Interaccion 1 NF1=F1 (F2 *0) NF3= F3+(F2*1/2) / ½ 0 ½ ½ 1 cj ci VB Bi X1 X2 X3 h1 h2 h3 Өi 0 h X h ½ 1 10

21 zj cj-zj Interacción 2 NF3= F3 / / /6 1/3 NF1=F1-(NF3*2) / /3 2/ / /3-2/3 NF2 =F2 (NF3 *0) cj ci VB Bi X1 X2 X3 h1 h2 h3 0 h / /3-2/3 25 X X / /6 1/3 zj / /6 5/3 cj-zj 0-95/ /6-5/3 X1=10 X2=0 X3=30 Z= Un atleta debe tomar por lo menos 4 unidades de vitamina A, 6 unidades de vitamina B y 12 unidades vitamina C cada día. Hay dos productos P1 y P2 que en cada frasco contienen las siguientes unidades de esas vitaminas:

22 Si el precio de un bote de P1 es de 0,50 y el de un bote P2 es de 0,80, averigua cómo deben mezclarse ambos productos para obtener la dieta deseada con el mínimo precio. Zmin: 0.5 X Y S.A 4 X + Y 4 X + 6 Y 6 4 X + 6 Y 12 CN (-) X, Y 0 Zmin: 0.5X + 0.8Y + 0S 1 + 0S 2 + 0S 3 + MA 1 + MA 2 + MA 3 S.A 4X + Y - S 1 + A 1 = 4 X + 6Y - S 2 + A 2 = 6 4X + 6Y - S 3 + A 3 = 12

23 Cj M +M +M Ci VB Bi X Y S 1 S 2 S 3 A 1 A 2 A 3 +M A M A M A Zj 22M 9M 13M -M -M -M M M M Cj Zj 0.5-9M M C.E -M M M INTERACCION 1 NF 2 = 1 1/ / /6 0 NF 1 = F 1 NF / / / / / /6 0 NF 3 = F 3 (NF 2 *6)

24 Cj M +M + M Ci VB Bi X Y S 1 S 2 S 3 A 1 A 2 A 3 +M A / / / Y 1 1/ / / M A Zj 0.8+9M 2/15+41/6M 0.8 -M - -M M 2/5-7/6M M 2/15+7/6M Cj Zj 11/30-0 M 2/15-7/6M M 0-2/5+13/6M 0 41/6M C.E INTERACCION 2 NF 1 = F 1 /23/6 18/ /23 1/23 0-6/23-1/23 0 NF 2 = F 2 (NF 1 *1/6) 1 1/ / /6 0 3/23 1/6 0-1/23 1/38 0 1/23-1/ / /23-4/23 0-1/23 4/23 0 NF 3 = F 3 (NF 1 *3)

25 / /23 3/ /23-3/ / /23 20/ /23-20/23 1 Cj M +M +M Ci VB Bi X Y S 1 S 2 S 3 A 1 A 2 A X 18/ /23 1/23 0 6/23-1/ Y 20/ /23-4/23 0-1/23 4/23 0 ~ +M A 3 84/ /23 20/ /23-20/ Zj 25/23+84 /23M / /23M -27/230-20/230 -M 11/115-18/23M 27/230-20/23M M Cj Zj /115-18/23M 2/15-7/6M C.E M -11/ /23M - 27/ /23M 0 INTERACCION 3 NF 3 = F 3 *23/20 21/ / /20-9/ /20 NF 1 = F 1 -(NF 3 *1/23)

26 18/ /23 1/23 0 6/23-1/ / /230 1/23-1/20-9/230-1/23 1/20 3/ /10 0 1/20 3/10 0-1/20 NF 2 = F 2 (NF 3 *4/23) 20/ /23-4/23 0-1/23 4/ / /115 4/23-1/5-18/115-4/23 1/5 8/ /5 0-1/5-1/5 0 1/5 Cj M +M +M Ci VB Bi X Y S 1 S 2 S 3 A 1 A 2 A X 3/ /10 0 1/20 3/10 0-1/20 ~ 0.8 Y 8/ /5 0-1/5-1/5 0 1/5 8 0 S 2 21/ / /20-9/ / Zj 79/ / /200-1/ /200 Cj Zj 0 0-1/ /200 1/100 -M -27/200 C.E INTERACCION 4 NF 3 =F 3 *10/9 14/ /9-23/ /9 23/18 NF 1 = F 1 + (NF 3 *3/10)

27 3/ /10 0 1/20 3/10 0-1/20 7/ /10 1/3-23/60-3/10-1/3 23/ /3-1/3 0-1/3 1/3 NF 2 = F 2 - (NF 3 *1/5) 8/ /5 0-1/5-1/5 0 1/5 14/ /5 2/9-23/90-1/5-2/9 23/90 2/ /9 1/18 0 2/9-1/18 Cj M +M +M Ci VB Bi X Y S 1 S 2 S 3 A 1 A 2 A X /3-1/3 0-1/3 1/3 0.8 Y 2/ /9 1/18 0 2/9-1/18 0 S 1 14/ /9-23/ /9 23/18 Zj 23/ /90-11/90 0 1/90 11/90 Cj Zj /90 11/90 M -1/90-11/90 X= 2 Y=2/3 Z=23/15 5. RESUELVA: Z (MAX) : 3X 4Y S.A. 4X 2Y 16 3X 6Y 18

28 2X 5Y 30 7X 2Y 56 Z (MAX) : 3X 4Y 0h₁ 0h₂ S S₄ MA₃ MA₄ 2X 5Y h₁ = 30 7X 2Y h₂ =56 4X 2Y S A₃ =16 3X 6Y S₄ A₄ =18 Cj M -M Ci VB Bi X Y h₁ h₂ S₁ S₂ A₁ A₂ 0 h₁ h₂ M A₁ M A₂ Zj -34M -7M -8M 0 0 M M -M -M Cj Zj 3+7M 4+8M 0 0 -M -M 0 0 C.E. F.S INTERACCION 1 NF = 3 ½ NF₁= F₁ (NF 5) NF2= F 2 (NF 4

29 /3 1/ /3-1/3 NF 3 = F 3 (NF 4 2) /3 1/ /3-1/3 Cj M -M Ci VB Bi X Y h₁ h₂ S3 S4 A3 A4 0 h₁ 15-1/ /6 0-5/6 0 h₂ /3 0-1/ M A /3 1-1/ Y 3 1/ /6 0 1/6 6 Zj M M -2/3- -M 2/3+1/3M 1/3M Cj Zj 1+3M M 2/3+1/3M 0-2/3-4/3M INTERACCION 2 NF 3 = 10/ /3 1/3 1/9-1/9 NF1=F1 + (NF3 ½) 15-1/ /6-5/6 5/3 1/ /6 1/6 1/18-1/18 50/ /6 1/6 8/9-8/9

30 NF2=F2 (NF3 6) /3-1/ /3-2/ /3 1/3 NF4=F4 (NF3 1/2) 3 1/ /6 1/6 5/ /6 1/6 1/18-1/18 4/ /6-1/6-2/9 2/9 Cj M -M Ci VB Bi X Y h₁ h₂ S3 S4 A3 A4 0 h₁ 50/ /6 8/9 1/6-8/ h₂ /3-2 1/3 3 x 10/ /3 1/9 1/3-1/ Y 4/ /6-2/9-1/6 2/9 Zj 46/ /3-5/9 1/3 5/9 Cj Zj /3 5/9-1/3+M -5/9-M INTERACCION 3 NF1=F1 9/8 75/ /8 0-3/16 1 3/16-1 NF2=F2 + (NF1 1/3) /3-2 1/3 25/ /8 0-1/16 1/3 1/16-1/3 145/ /8 1 3/ /16 0 NF3=F3 (NF1 1/9) 10/ /3 1/9 1/3-1/9 25/ /8 0-1/48 1/9 1/48-1/9

31 5/ /8 0-5/16 0 5/16 0 NF4=F4 + (NF1 2/9) 4/ /6-2/9-1/6 2/9 25/ /4 0 1/24 2/9 1/24-2/9 11/ /4 0 1/8 0-1/8 0 Cj M -M Ci VB Bi X Y h₁ h₂ S3 S4 A3 A / /8 0-3/16 1 3/ h₂ 145/ /8 1 31/ / X 3 5/ /8 0-5/16 0 5/16 0 Y 4 11/2 0 1 ¼ 0 1/8 0-1/ Zj 103/ /8 0-7/16 0 7/16 0 Cj Zj 0 0-5/8 0 7/16 0-7/16 0 INTERACCION 4 NF2=F2 16/31 580/ /31 16/ NF1=F1 + (NF2 3/16) 75/ /8 0-3/16 1 3/ / /248 3/31 3/16 0-3/ / /31 3/ NF3=F3 + (NF2 5/16) 5/ /8 0-5/16 0 5/ / /248 5/31 5/16 0-5/ / /31 5/

32 NF4=F4 (NF2 1/8) 11/2 0 1 ¼ 0 1/8 0-1/ / /124 2/31 1/8 0-1/8 0 98/ /31-2/

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Ejemplos de planteamientos de Programación Lineal

Ejemplos de planteamientos de Programación Lineal Ejemplos de planteamientos de Programación Lineal 1. Una familia campesina es propietaria de 125 acres y tiene fondos para $40 000 para invertir. Sus miembros pueden producir un total de 3 500 horashombre

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Problemas de Programación Entera

Problemas de Programación Entera Problemas de Programación Entera 1. Se está estudiando la manufactura de tres nuevos productos textiles, que denominaremos P1, P2 y P3. Cada producto requiere para su producción el alquiler de una máquina,

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

Ejercicios resueltos de Programación Lineal

Ejercicios resueltos de Programación Lineal Investigación Operativa I 009 Ejercicios resueltos de Programación Lineal Mauricio estrella Erika Beatriz Palacin Palacios Pajuelo Daniel PREGUNTA Ingeniería de Sistemas y Computación UNDAC 3..6 la empresa

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

1. Cortar y teñir el material 2. Coser 3. Terminar (insertar el porta sombrilla, los separadores de palos, etc.) 4. Inspeccionar y embalar

1. Cortar y teñir el material 2. Coser 3. Terminar (insertar el porta sombrilla, los separadores de palos, etc.) 4. Inspeccionar y embalar UN PROBLEMA SENCILLO DE MAXIMIZACION La compañía Par, Inc. Es un pequeño fabricante de equipo y accesorios para golf cuyos administradores han decidido incursionar en el mercado de las bolsas para bastones

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Sistema de ecuaciones lineales Los métodos de solución de sistemas de ecuaciones son un recurso muy útil para resolver diversas situaciones de la vida que pueden ser traducidas a un modelo matemático y

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia:

El fabricante desea planificar el proceso de producción y para ello establece las siguientes metas ordenadas por orden de importancia: Titulación: Ingeniero en Organización Industrial Asignatura: Investigación Operativa Curso: 2010/2011 RECOPILACIÓN EXÁMENES PRÁCTICAS Programación Multiobjetivo 1. [JUNIO 2010] (4.5 puntos) En el proceso

Más detalles

Interpretación CINIIF 13 Programas de Fidelización de Clientes

Interpretación CINIIF 13 Programas de Fidelización de Clientes Interpretación CINIIF 13 Programas de Fidelización de Clientes Referencias NIC 8 Políticas Contables, Cambios en las Estimaciones Contables y Errores NIC 18 Ingresos de Actividades Ordinarias NIC 37 Provisiones,

Más detalles

Después de que un producto agrícola sale de la explotación agrícola, puede pasar a través de uno o incluso dos mercados mayoristas y una cadena de

Después de que un producto agrícola sale de la explotación agrícola, puede pasar a través de uno o incluso dos mercados mayoristas y una cadena de 1 Los precios son un importante factor económico en una economía de mercado. Desde el punto de vista del análisis económico los precios son el medio de agregación para proporcionar un panorama general

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25 Tarea 7 Soluciones. Una inversión de $3500 produce un rendimiento de $420 en un año, qué rendimiento producirá una inversión de $4500 a la misma tasa de interés durante el mismo tiempo? Sol. Sea x el porcentaje

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) Tema 6- Parte II 1 ANÁLISIS DE PROYECTOS En ambiente de incertidumbre Los flujos de caja a descontar no son ciertos Criterio a aplicar

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

2. LOS SISTEMAS DE COSTOS

2. LOS SISTEMAS DE COSTOS 2. LOS SISTEMAS DE COSTOS En el actual desarrollo de las técnicas y sistemas de costos se persiguen tres importantes objetivos: La medición de los costos, la más correcta y precisa asignación de costos

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

Programación Lineal. Programación Lineal

Programación Lineal. Programación Lineal Programación Lineal Modelo General Max Z = c 1 + C 2 +... c n, s.a. a 11 + a 12 +... + a 1n b 1 a 21 + a 22 +... + a 2n b 2.. a m1 + a m2 +... + a mn b m 0, 0, x 3 0,..., 0 Programación Lineal Interpretación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Carrera: Técnico Superior en Programación

Carrera: Técnico Superior en Programación 1 Sistema de dos ecuaciones lineales Resolver los siguientes sistemas de dos ecuaciones lineales en forma analítica y gráfica. Verificar los resultados obtenidos. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Más detalles

Desarrollamos nuestra creatividad usando fracciones

Desarrollamos nuestra creatividad usando fracciones QUINTO Grado - Unidad 2 - Sesión 07 Desarrollamos nuestra creatividad usando fracciones En esta sesión los niños y las niñas resolverán problemas relacionados con fracciones, a través del uso de representaciones

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

PROGRAMACIÓN LINEAL Teoría General de Programación Lineal y Fase de Formulación y Construcción de Modelos.

PROGRAMACIÓN LINEAL Teoría General de Programación Lineal y Fase de Formulación y Construcción de Modelos. PROGRAMACIÓN LINEAL Objetivo: Proponer en forma cuantitativa acciones o decisiones a tomar para optimizar sistemas donde existan recursos escasos y se presenten relaciones lineales, mediante la teoría

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

OPCION A ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS - JUNIO DE 2006 1

OPCION A ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS - JUNIO DE 2006 1 UNIVERSIDAD DE ZARAGOZA PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS JUNIO DE 2006 Ejercicio de: ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS Tiempo disponible: 1 h. 30 m. Se valorará el uso de vocabulario y la notación

Más detalles

Maximizar Z = 2X1 + X2 + 0,75X3 + 0,5X4 SOLUCION AL PRIMER PROBLEMA DE SIMPLEX

Maximizar Z = 2X1 + X2 + 0,75X3 + 0,5X4 SOLUCION AL PRIMER PROBLEMA DE SIMPLEX Primer problema de SIMPLEX (incluye un modelo de Wilson). Los alumnos de 1º de LADE de la Facultad de Ciencias Económicas y Empresariales de Badajoz deciden constituir una empresa (LADE, S.A.), dedicada

Más detalles

MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010

MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010 MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010 1. Un fabricante produce semanalmente un solo artículo para dos clientes. Este artículo es un insumo para ambos clientes

Más detalles

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión?

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? 1 RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? La respuesta es sencilla. El rendimiento requerido siempre depende del riesgo

Más detalles

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables

TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables TALLER 2: Programación Lineal-Planteamiento de problemas con dos variables En cada caso plantear el problema y encontrar la solución por el método grafico. Utilice el software QSB para verificar la solución.

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

Razón del circulante.

Razón del circulante. Razones financieras Las razones de liquidez, actividad y deuda miden principalmente el riesgo. Las razones de rentabilidad miden los rendimientos. Las razones de mercado abarcan riesgo y rendimiento. Razones

Más detalles

Problemas + PÁGINA 37

Problemas + PÁGINA 37 PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,

Más detalles

Zona de creación de granjas

Zona de creación de granjas Introducción Zona de creación de granjas Para conseguir el éxito, deberás investigar en la amplia base de datos del programa para conocer mejor a tus animales y los cuidados y atenciones que necesitan.

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

PAU, 2014 (septiembre)

PAU, 2014 (septiembre) PAU, 2015 (modelo) Una empresa comercializa un determinado producto. Compra a su proveedor cada unidad que comercializa, a un precio de 150. La empresa se está planteando la producción del bien que distribuye.

Más detalles

Boletín Informativo. Tratamiento Contable de los Programas de Fidelización (Parte II)

Boletín Informativo. Tratamiento Contable de los Programas de Fidelización (Parte II) Boletín Informativo Auditoría Herramientas de Control de Gestión Junio de 2010 Año 3, Número 45 Continuando con el número anterior, en el presente Boletín ponemos a consideración de nuestros lectores,

Más detalles

FINANZAS: Gestionando para el emprendimiento

FINANZAS: Gestionando para el emprendimiento FINANZAS: Gestionando para el emprendimiento El término Finanzas incorpora cualquiera de los siguientes significados: El estudio del dinero y otros recursos El management y el control de dichos recursos

Más detalles

EXTREMADURA / JUNIO 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / OPCIÓN A / EXAMEN COMPLETO

EXTREMADURA / JUNIO 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / OPCIÓN A / EXAMEN COMPLETO Instrucciones EXTREMADURA / JUNIO 2003 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE 1. Lea todas las cuestiones cuidadosamente. 2. Elija la opción (A o B) para la que considere que se encuentra mejor preparado/a.

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Sistemas de Calidad Empresarial

Sistemas de Calidad Empresarial Portal Empresarial Aljaraque Empresarial Sistemas de Calidad Empresarial 1 ÍNDICE 1. INTRODUCCIÓN. 2. CONCEPTO DE CALIDAD Y SU SISTEMA. 3. MÉTODO PARA IMPLANTAR UN SISTEMA DE GESTIÓN DE LA CALIDAD. 4.

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

BREVE MANUAL DE SOLVER

BREVE MANUAL DE SOLVER BREVE MANUAL DE SOLVER PROFESOR: DAVID LAHOZ ARNEDO PROGRAMACIÓN LINEAL Definición: Un problema se define de programación lineal si se busca calcular el máximo o el mínimo de una función lineal, la relación

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VALOR DEL DINERO EN EL TIEMPO Tema 1.4 Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. Introducción En la empresa como en la vida personal, constantemente se deben tomar decisiones,

Más detalles

MODULO 4. 1.4.4 RAZONES DE RENTABILIDAD.

MODULO 4. 1.4.4 RAZONES DE RENTABILIDAD. MODULO 4. RAZONES DE RENTABILIDAD - DEFINICIÓN 1.4.4 RAZONES DE RENTABILIDAD. La rentabilidad es el incremento porcentual de riqueza e implica la ganancia que es capaz de brindar una inversión, estrictamente

Más detalles

Para poder tener una buena imagen de las empresas y plena confianza en lo que nos presentan éstas deben:

Para poder tener una buena imagen de las empresas y plena confianza en lo que nos presentan éstas deben: 4.1 INTRODUCCIÓN Actualmente, la competencia es intensa y global y es muy claro que no podemos seguir administrando las empresas como lo hemos venido haciendo en las últimas décadas, limitándonos solo

Más detalles

CASO Nº 1 *** CERÁMICAS SALAMANCA, S.A. La empresa Cerámicas Salamanca, S.A. se dedica a la distribución de materiales

CASO Nº 1 *** CERÁMICAS SALAMANCA, S.A. La empresa Cerámicas Salamanca, S.A. se dedica a la distribución de materiales CASO Nº 1 *** CERÁMICAS SALAMANCA, S.A. La empresa Cerámicas Salamanca, S.A. se dedica a la distribución de materiales para la construcción derivados de la cerámica. Aunque tiene su sede, almacenes y fábrica

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

UD10: LAS INVERSIONES DE LA EMPRESA

UD10: LAS INVERSIONES DE LA EMPRESA UD10: LAS INVERSIONES DE LA EMPRESA 1. El Sr. García ha comprado un apartamento por 100.000 y espera venderlo dentro de un año en 132.000. a) Cuál sería el TIR de esta inversión? (1 punto) b) Si esta rentabilidad

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

Tema 5: Dualidad y sensibilidad de los modelos lineales.

Tema 5: Dualidad y sensibilidad de los modelos lineales. ema 5: Dualidad y sensibilidad de los modelos lineales. Objetivos del tema: Introducir el concepto de Sensibilidad en la Programación Lineal Introducir el concepto de Dualidad en la Programación Lineal

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía, de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.-

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- PROGRAMACIÓN LINEAL CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- 1. Definición. Técnica de programación matemática para resolver problemas de optimización de recursos (maximización, minimización) cuando

Más detalles

Contabilidad Orientada a los Negocios

Contabilidad Orientada a los Negocios Tema 5 Introducción Como todos sabemos, al pagar por alguna cosa, cualquiera que esta sea, que jamás haya sido utilizada, se debe desembolsar una cantidad de dinero, esto es porque, al igual que todas

Más detalles

Unidad 7 Aplicación de máximos y mínimos

Unidad 7 Aplicación de máximos y mínimos Unidad 7 Aplicación de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Interpretará el concepto de ingreso y costos marginal. Aplicará la función de ingresos en problemas de maimización. Aplicará

Más detalles

INNOVACION EDUCATIVA FORMACION PARA EL TRABAJO AUXILIAR ADMINISTRATIVO

INNOVACION EDUCATIVA FORMACION PARA EL TRABAJO AUXILIAR ADMINISTRATIVO INNOVACION EDUCATIVA FORMACION PARA EL TRABAJO AUXILIAR ADMINISTRATIVO ANTECEDENTES.- Tengo 52 años de Maestro trabajando en la educación administrativa, de los cuales los últimos 25 años son como Director

Más detalles