1 de 17 SOLUCIÓN NUMÉRICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "http://www.matematicaaplicada.info 1 de 17 jezasoft@gmail.com SOLUCIÓN NUMÉRICA"

Transcripción

1 1 de 17 La Dorada, 07 de Octubre de 011 SOLUCIÓN NUMÉRICA 7. La copañía de udanzas Raírez cobra $70 por transportar cierta áquina 15 illas y $100 por transportar la isa áquina 5 illas. a) Deterine la relación entre la tarifa total y la distancia recorrida, suponiendo que es lineal. b) Cuál es la tarifa ínia por transportar esta áquina? c) Cuál es la cuota por cada illa que la áquina es transportada? SOLUCIÓN Con base en la inforación suinistrada, teneos dos variables relacionadas. Las variables relacionadas son tarifa en dinero contra distancia de recorrido en las udanzas, designare T coo la variable tarifa y D coo la variable distancia por recorrer en la udanza. Debo designar la variable dependiente y la variable independiente de esta relación. La tarifa depende de la distancia recorrida para la udanza y no de fora inversa. Coo se afira que la relación de lineal: T = a* D + b 1 Con base en la ecuación general de la línea recta, el coeficiente que acopaña a la variable independiente se le llaa pendiente y al otro coeficiente se le llaa eleento independiente o corte con el eje dependiente, que para este caso es T. El problea nos entrega dos coordenadas: ( D1, T1 ) = ( 15, 70) ( D, T ) = ( 5,100) Se aclara que los subíndices de las variables significan a qué punto pertenecen. Las coordenadas se han designado al prier punto y segundo punto, se podría asignar en fora contraria y no habría problea. Con base en la ecuación <1>, donde existen dos incógnitas, que requerios para deterinar la relación lineal entre las variables. Reeplazare las coordenadas suinistradas por el problea en la

2 de 17 La Dorada, 07 de Octubre de 011 ecuación <1> y obtendré dos ecuaciones con dos incógnitas. ( ) ( ) D, T = 15, 70 T = a* D + b = a*15 + b 15a + b = 70 ( ) ( ) D, T = 5,100 T = a* D + b 100 = a* 5 + b 5a + b = He encontrado un sistea de dos ecuaciones con dos incógnitas, solucionare el sistea por el étodo algebraico de eliinación> ( 15a + b = 70)( 1) 5a + b = a b = 70 5a + b = a = 30 a = El valor encontrado de a que es el coeficiente de la variable independiente es la pendiente de la línea recta que representa el coportaiento lineal de las dos variables. Ahora reeplazo el valor de a encontrado en la ecuación <> ( ) b = b = 70

3 3 de 17 La Dorada, 07 de Octubre de 011 b = b = 5 Con base en los valore obtenidos por los procesos algebraicos, podre concluir que la ecuación de fora lineal que representa el coportaiento de la Tarifa en función de la Distancia, está dada por: T = 3* D La tarifa ínia por transportar esta áquina, se suscribe a la tarifa que se cobra cuando la distancia de la udanza es cero: ( ) T = 3* = 5 La cuota por cada illa que la áquina es transportada, corresponde al increento que se tiene por cada illa de recorrido en la distancia de la udanza. Este valor corresponde al valor de la pendiente de la ecuación que representa el coportaiento lineal entre la Tarifa y la Distancia a recorrer. Por cada illa de recorrido la Tarifa se increenta en 3 (TRES) unidades onetarias. Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica: TARIFA

4 14. Para la función, deterine: 4 de 17 La Dorada, 07 de Octubre de 011 ( )( ) y = x + x 1 a) las intersecciones con el eje X. b) las coordenadas del vértice. c) la intersección con el eje Y. d) bosqueje la curva. SOLUCIÓN Con base en la inforación suinistrada, se deben realizar las ultiplicaciones de la expresión algebraica planteada, con el objeto de obtener la expresión general de una función de grado. ( 4)( 1) y = x x y = x + x x y = x x + 4 Con base en la expresión general de la ecuación de segundo grado, se podrán obtener parte de las soluciones requeridas. La concavidad la podre concluir con el valor del coeficiente de la variable de grado dos de x. >0, esto iplica que es cóncava hacia arriba. Para obtener los interceptos con el eje x, requerios la ecuación factorizada, de tal fora que hare uso de la ecuación inicial. x + = 0 x = ( x + )( x 1) = 0 x 1 = 0 x = 1 Para obtener las coordenadas del vértice, utilizare la ecuación general: x v ( ) ( ) b 1 = xv = = = a 4

5 5 de 17 La Dorada, 07 de Octubre de 011 Para obtener la coordenada y, reeplazare en la ecuación general: yv = xv xv + 4 y v = + 4 = 1 9 Vertice =, La intercepción con el eje y, la podre obtener dándole valor de cero a la variable x en la ecuación general: y = x x + 4 ( ) ( ) y = = 4 La función cruza al eje y en la coordenada (0,4) Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica: 5,00 4,50 4,00 3,50 3,00,50,00 1,50 1,00 0,50 0,00 -,50 -,00-1,50-1,00-0,50 0,00 0,50 1,00 1,50

6 6 de 17 La Dorada, 07 de Octubre de Un fabricante deterina que el ingreso R obtenido por la producción y venta de x artículos está dado por la función: ( ) = R x x x Deterine cuantos artículos deben fabricarse y vender para obtener un áxio ingreso y cuál es el ingreso áxio. SOLUCIÓN Con base en la inforación suinistrada y solo observando la expresión algebraica de la función que representa el coportaiento de los ingresos en función del núero de artículos fabricados; el coeficiente de la variable de grado dos es enor de cero, por esta razón puedo concluir que la función es cóncava hacia abajo, esto significa que posee un áxio; el áxio se encuentra ubicado en la coordenada del vértice. x v b 350 = xv = = 700 a 0.5 ( ) Concluyo que el núero de artículos para alcanzar el áxio ingreso es de 700 artículos. Para obtener el ingreso áxio, lo que debo hacer es reeplazar la cantidad áxia de artículos encontrada en el paso anterior, en la ecuación que nos entregan: ( ) = R x x x v v v R ( 700) = 350( 700) 0.5( 700) R ( 700 ) = $1.500 Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica:

7 7 de 17 La Dorada, 07 de Octubre de 011 y Si la tasa efectiva de interés de un CDT a 1 años fue del 8.3%, cuál fue la tasa noinal de interés ofrecida por la entidad? r ef : Tasa de Interés efectiva en años. r: Tasa de interés noinal en años. r ef r = 1+ 1 : Periodo de tiepo años. Meses, días, etc. SOLUCIÓN Con base en la inforación suinistrada por el problea y en relación a la expresión algebraica, debereos despejar de la expresión algebraica dada, la variable r, que representa el interés noinal.

8 8 de 17 La Dorada, 07 de Octubre de 011 r r ef ef + 1 = = 1+ r r r 1 + = r ef + 1 r 1+ = r ef + 1 r r ef 1 1 = + 1 ( 1 1) = r = r ef + ref = ( 1 ) ( 1 ) r = r =

9 9 de 17 La Dorada, 07 de Octubre de 011 r = %

10 10 de 17 La Dorada, 07 de Octubre de 011 SOLUCIÓN PARAMÉTRICA El hecho de recurrir a la paraetrización de las soluciones, consiste en la realización inicial de la solución nuéricas de los probleas, luego de realizar la verificación de que la solución nuérica sea la correcta; se procede a reeplazar los valores nuéricos suinistrados en el planteaiento del problea en el procediiento de solución nuéricas por variables literales (variables paraétricas) claraente definidas, lo anterior con el objeto de llevar la solución a una herraienta inforática coo EXCEL, y luego de realizar el interface apropiado para el ingreso de la inforación en una hoja de cálculo, se procede a redactar las forulas algebraicas utilizadas en la solución, en fora algorítica o la fora graatical y de sintaxis, que utiliza la herraienta inforática en la que se desea ipleentar la solución; para obtener la respuesta al problea con base en las posiciones relativas y/o absolutas, donde se alojaran los paráetros suinistrados para la obtención de la solución requerida por el problea. La ventaja que brinda la realización de una hoja de cálculo en la solución paraétrica de un problea, es la de solucionar toda clase de probleas con valores diferentes de las variables paraétricas o de los valores suinistrados inicialente por el problea; lo anterior aplia suficienteente el odelo de solución a una cantidad indeterinada de posibles probleas que puedan surgir en la vida laborar, con la isa inforación suinistrada y requiriendo la solución de los isos cuestionaientos. 7. La copañía de udanzas Raírez cobra $70 por transportar cierta áquina 15 illas y $100 por transportar la isa áquina 5 illas. a) Deterine la relación entre la tarifa total y la distancia recorrida, suponiendo que es lineal. b) Cuál es la tarifa ínia por transportar esta áquina? c) Cuál es la cuota por cada illa que la áquina es transportada? SOLUCIÓN Con base en la inforación suinistrada, teneos dos variables relacionadas. Las variables relacionadas son tarifa en dinero contra distancia de recorrido en las udanzas, designare T coo la variable tarifa y D coo la variable distancia por recorrer con la udanza. Debo designar la variable dependiente y la variable independiente de

11 11 de 17 La Dorada, 07 de Octubre de 011 esta relación. La tarifa depende de la distancia recorrida para la udanza y no de fora inversa. Coo se afira que la relación de lineal: T = a* D + b 1 Con base en la ecuación general de la línea recta, el coeficiente que acopaña a la variable independiente se le llaa pendiente y al otro coeficiente se le llaa eleento independiente o corte con el eje dependiente, que para este caso es T. El problea nos entrega dos coordenadas: ( D1, T1 ) = ( 15, 70) ( D, T ) = ( 5,100) Se aclara que los subíndices de las variables significan a qué punto pertenecen. Las coordenadas se han designado al prier punto y segundo punto, se podría asignar en fora contraria y no habría problea. Con base en la ecuación <1>, donde existen dos incógnitas, que requerios para deterinar la relación lineal entre las variables. Reeplazare las coordenadas suinistradas por el problea en la ecuación <1> y obtendré dos ecuaciones con dos incógnitas. ( ) ( ) ( ) ( ) D, T = D, T T = a* D + b D, T = D, T T = a* D + b 3 He encontrado un sistea de dos ecuaciones con dos incógnitas, solucionare el sistea por el étodo algebraico de sustitución> Despejando b de la ecuación <> y reeplazándola en la ecuación <3> T = a* D + b 1 1 b = T a* D 4 1 1

12 1 de 17 La Dorada, 07 de Octubre de 011 Reeplazando la ecuación <4> en la ecuación <3> y procedo a despejar la variable a. T = a* D + b 3 ( ) T = a* D + T a* D 1 1 T = a* D + T a* D 1 1 ( ) ( ) T = a D D + T 1 1 T T = a D D 1 1 T T1 = a D D1 T T1 a = 5 D D 1 Con base en las ecuaciones obtenidas por los procesos algebraicos, podre concluir que la ecuación de fora lineal que representa el coportaiento de la Tarifa en función de la Distancia, está dada por: T = a* D + b La tarifa ínia por transportar esta áquina, se suscribe a la tarifa que se cobra cuando la distancia de la udanza es cero: ( ) T = a* 0 + b = b La cuota por cada illa que la áquina es transportada, corresponde al increento que se tiene por cada illa de recorrido en la distancia de la udanza. Este valor corresponde al valor de la pendiente de la ecuación

13 13 de 17 La Dorada, 07 de Octubre de 011 que representa el coportaiento lineal entre la Tarifa y la Distancia a recorrer. Por cada illa de recorrido la Tarifa se increenta en a unidades onetarias. Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica en la solución. 14. Para la función, deterine: ( )( ) y = x + x 1 y = A( x + B)( x + C) A = B = C = 1 a) las intersecciones con el eje X. b) las coordenadas del vértice. c) la intersección con el eje Y. d) bosqueje la curva. SOLUCIÓN Con base en la inforación suinistrada, se deben realizar las ultiplicaciones de la expresión algebraica planteada, con el objeto de obtener la expresión general de una función de grado. y = A( x + B)( x + C) = ( + * )( + ) ( ) ( ) y Ax A B x C y = Ax + A* B x + A* C x + A* B* C

14 14 de 17 La Dorada, 07 de Octubre de 011 ( ) y = Ax + A* B + A* C x + A* B* C Con base en la ecuación general de la función de grado : a = A c = A* B* C y = ax + bx + c b = A* B + A* C Con base en la expresión general de la ecuación de segundo grado, se podrán obtener parte de las soluciones requeridas. La concavidad se puede concluir con base en el valor del coeficiente de la variable de grado dos de x. Si a>0 se concluye cóncava hacia abajo. Para obtener los interceptos con el eje x, requerios la ecuación factorizada, de tal fora que hare uso de la ecuación inicial. ( )( ) A x B x C x + B = 0 x = B = 0 + = 0 = x C x C Para obtener las coordenadas del vértice, utilizare la ecuación general: x v ( A* B A* C) b + = xv = a * A Para obtener la coordenada y, reeplazare en la ecuación general: ( )( ) = (, ) y = A x + B x + C v v v Vertice x y La intercepción con el eje y, la podre obtener dándole valor de cero a la variable x en la ecuación general: v v

15 15 de 17 La Dorada, 07 de Octubre de 011 y = ax + bx + c ( 0) ( 0) y = a + b + c y = c y = A* B* C La función cruza al eje y en la coordenada (0,c) Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica. 1. Un fabricante deterina que el ingreso R obtenido por la producción y venta de x artículos está dado por la función: R( x) = c + bx + ax ( ) = R x x x c = 0 b = 350 a = 0.5 Deterine cuantos artículos deben fabricarse y vender para obtener un áxio ingreso y cuál es el ingreso áxio. SOLUCIÓN Con base en la inforación suinistrada y solo observando la expresión algebraica de la función que representa el coportaiento de los ingresos en función del núero de artículos fabricados; el coeficiente de la variable de grado dos es enor de cero, por esta razón puedo concluir que la función es cóncava hacia abajo, esto significa que posee un áxio; el áxio se encuentra ubicado en la coordenada del vértice.

16 16 de 17 La Dorada, 07 de Octubre de 011 x v = b a Concluyo que el núero de artículos para alcanzar el áxio ingreso es de 700 artículos. Para obtener el ingreso áxio, lo que debo hacer es reeplazar la cantidad áxia de artículos encontrada en el paso anterior, en la ecuación que nos entregan: ( ) = + + ( ) = + + R x c bx ax R x c bx ax v v v Coo copleento de la solución, que no se pide en el planteaiento del problea, hare la grafica. 8. Si la tasa efectiva de interés de un CDT a 1 años fue del 8.3%, cuál fue la tasa noinal de interés ofrecida por la entidad? r ef : Tasa de Interés efectiva en años. r: Tasa de interés noinal en años. r ef r = 1+ 1 : Periodo de tiepo años. Meses, días, etc. SOLUCIÓN Con base en la inforación suinistrada por el problea y en relación a la expresión algebraica, debereos despejar de la expresión algebraica dada, la variable r, que representa el interés noinal. E + 1 = 1+ N

17 17 de 17 La Dorada, 07 de Octubre de 011 E + 1 = 1+ N N 1+ = E + 1 N 1+ = E + 1 N E 1 1 = + ( 1 1) N = E + = 1 E = 0.083

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano) IES CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LS PLS JUNIO (RESUELTOS por ntonio enguiano) TEÁTICS II Tiepo áio: horas inutos Elija una de las dos opciones, o, conteste a las cuatro cuestiones que

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Funciones Lineal, Cuadrática, Exponencial

Funciones Lineal, Cuadrática, Exponencial Cálculo I Funciones Lineal, Cuadrática, Exponencial Eduardo Saavedra A. October 12, 2006 1 1. Investigaciones cardiovasculares han mostrado que a un nivel de colesterol superior a 210, cada aumento del

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

Unidad 7.4: Ecuaciones lineales y desigualdades Matemáticas 5 semanas de instrucción

Unidad 7.4: Ecuaciones lineales y desigualdades Matemáticas 5 semanas de instrucción Resumen de : ETAPA 1 (Resultados deseados) En esta unidad se le presenta al estudiante formalmente por la primera vez como se utiliza la pendiente (razón de cambio) para representar situaciones de la vida

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS:

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS: TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Función Lineal y su Gráfica Nombre Asignatura: Algebra Sigla MAT2001 Sala de clases Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las

Más detalles

Aplicaciones del Cálculo Diferencial e Integral. Msc. Gerardo Garita Orozco Universidad Latina

Aplicaciones del Cálculo Diferencial e Integral. Msc. Gerardo Garita Orozco Universidad Latina Aplicaciones del Cálculo Diferencial e Integral Msc. Gerardo Garita Orozco Universidad Latina ÍNDICE 1.- Qué es el cálculo diferencial 2.- Aplicaciones de las derivadas en la construcción de gráficos 3.-Criterio

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010 Funciones Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 010 Introducción Es frecuente que se describa una cantidad en términos de otra; por ejemplo: 1.

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

Problemas de funciones para 2º E.S.O

Problemas de funciones para 2º E.S.O Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

Máquinas asincrónicas

Máquinas asincrónicas Electricidad básica ENTREGA 1 Máquinas asincrónicas Elaborado por Joel S.Faneite Ross Consideraciones generales sobre la áquina asincrónica En artículos anteriores, se ha considerado la áquina de C.C que

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo conjunto. Ejemplos reales de relaciones que envuelven funciones:

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE CIENCIAS ECONÓMICO ADMINISTRATIVAS. Ciencias Económico Administrativas 2010.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE CIENCIAS ECONÓMICO ADMINISTRATIVAS. Ciencias Económico Administrativas 2010. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE CIENCIAS ECONÓMICO ADMINISTRATIVAS Ciencias Económico Administrativas 2010. 1 ÁREA DE CIENCIAS ECONÓMICO ADMINISTRATIVAS INTRODUCCIÓN

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta. º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente

Más detalles

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Sistema de ecuaciones lineales Los métodos de solución de sistemas de ecuaciones son un recurso muy útil para resolver diversas situaciones de la vida que pueden ser traducidas a un modelo matemático y

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 4 5 5 6 Resolver las siguientes ecuaciones

Más detalles

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos:

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos: TEMA 8: FUNCIONES Una función es una relación entre dos magnitudes, x e y, que asigna a cada valor de x, un único valor de y. Estas magnitudes reciben el nombre de variables, siendo x la variable independiente,

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

PRONÓSTICO DE VENTAS

PRONÓSTICO DE VENTAS PRONÓSTICO DE VENTAS Mapa... 2 Introducción... 3. PRONÓSTICO DE VENTAS O PROYECCIÓN DE VENTAS... 4.. Factores a tener en cuenta para realizar el pronóstico de ventas.... 4 2 TÉCNICAS DE PROYECCIÓN DE VENTAS....

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

CONSERVACIÓN DE LA ENERGIA

CONSERVACIÓN DE LA ENERGIA CONSERVACIÓN DE LA ENERGIA ASIMOV - 8 - ENERGÍA MECÁNICA - CONSERVACIÓN DE LA ENERGÍA ENERGÍA POTENCIAL Suponé que sostengo una cosa a del piso y la suelto. Al principio la cosa tiene velocidad inicial

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 11, por la modalidad de libre escolaridad,

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

TSU EN DESARROLLO DE NEGOCIOS

TSU EN DESARROLLO DE NEGOCIOS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura MATEMÁTICAS 2. Competencias Administrar el proceso de ventas mediante estrategias, técnicas y herramientas adecuadas, para

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de

Más detalles

GUÍA Nº1. Las Funciones.

GUÍA Nº1. Las Funciones. GUÍA Nº1. Las Funciones. El estudio de las funciones no es solamente una preocupación contemporánea. La idea de función aparece implícita en variadas disciplinas a través del tiempo; se presenta en fórmulas,

Más detalles

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente

Más detalles

Sec FUNCIONES POLINOMICAS

Sec FUNCIONES POLINOMICAS Sec. 3.1-3.2 FUNCIONES POLINOMICAS Función Polinómica Un polinomio o una función polinómica es una expresión algebraica de la forma n n 1 n 2 P( x) a x a x a x... a x a, n n 1 n 2 1 0 donde los coeficientes

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH 1) ANÁLISIS DE CORRELACIÓN Dado dos variables, la correlación permite hacer estimaciones del valor de una de ellas conociendo el valor de la otra variable.

Más detalles

RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS

RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS "" "a" "n" "" DP. - AS - 59 7 Mateáticas ISSN: 988-79X RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS DE ENUNCIADO VERBAL CON PARÁMETROS 6 - PAU - Universidad de Oviedo J Un agente inobiliario puede realizar tipos

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió?

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió? 07 Lección Refuerzo Mateáticas De Metro a... APRENDO JUGANDO Copetencia Resuelve probleas de conversiones de superficie de anera autónoa y ediante el odelo realiza tareas de conversión. Diseño instruccional

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

CAPÍTULO VI AMORTIZACIONES

CAPÍTULO VI AMORTIZACIONES CAPÍTULO VI AMORTIZACIONES 324 6.1.- AMORTIZACIONES 6.1.1.- CONCEPTOS BÁSICOS En el ábito de las finanzas y el coercio, el concepto aortización está asociado a deuda, es decir, se refiere al pago gradual

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Epidemiología General y Nutricional Nutrición en Salud Pública Gestión de Políticas en Salud

Epidemiología General y Nutricional Nutrición en Salud Pública Gestión de Políticas en Salud Notas Técnicas 1. Fuentes de Información: 1.1. Para el número de muertes de menores de 1 año: Las muertes de menores de 1 año se obtuvieron procesando las Bases de Datos oficiales de la Dirección de Estadísticas

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VALOR DEL DINERO EN EL TIEMPO Tema 1.4 Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. Introducción En la empresa como en la vida personal, constantemente se deben tomar decisiones,

Más detalles

EJERCICIOS PROPUESTOS CAPÍTULO 3

EJERCICIOS PROPUESTOS CAPÍTULO 3 ADMINISTRACIÓN FINANCIERA FUNDAMENTOS Y APLICACIONES Oscar León García S. Cuarta Edición EJERCICIOS PROPUESTOS CAPÍTULO 3 Matemáticas Financieras Última Actualización: Agosto 18 de 2009 Consultar últimas

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS. MAT 1604 ó ubicación por el examen de C- MAT o COMPASS.

HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS. MAT 1604 ó ubicación por el examen de C- MAT o COMPASS. HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS MAT 020 ALGEBRA ELEMENTAL CREDITOS ACADEMICOS: 2.0 EQUIVALENCIA EN HORAS: 4.5 HORAS DE CLASE: 4.5 PREREQUISITO: MAT 1604 ó ubicación por el examen de

Más detalles

1 de 1 Manizales, 9 de Agosto de 01 1. (VALE POR UN PUNTO) El costo para producir un par de zapatos es de $5700 y depende de la materia prima y de la mano de obra. Si el costo de la materia prima es el

Más detalles

ANUALIDADES SIMPLES CIERTAS ORDINARIAS

ANUALIDADES SIMPLES CIERTAS ORDINARIAS UNIVERSIDAD DE ORIENTE UNIVO FACULTAD DE CIENCIAS ECONOMICAS CATEDRA: MATEMÁTICAS FINANCIERAS GUIA DE EJERCICIOS SOBRE: ANUALIDADES SIMPLES CIERTAS ORDINARIAS ELABORADO POR: LIC. LUIS EDUARDO BENITEZ SOLIS

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE Erving Quintero Gil Ing. Electroecánico Bucaraanga Colobia Para cualquier inquietud o consulta escribir a: quintere@hotail.co quintere@gail.co quintere6@yahoo.co Problea.4

Más detalles

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta UNIDAD XVII LA LINEA RECTA Modulo 4 Ecuación de la recta OBJETIVO Encontrar y determinar la ecuación de una recta, conocidos los puntos de intersección con los ejes coordenados. 4. 1. LINEA RECTA. Lugar

Más detalles

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3

Más detalles

Funciones Cuadráticas en una Variable Real

Funciones Cuadráticas en una Variable Real en una Variable Real Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido adrática : Contenido Discutiremos: qué es una función cuadrática : Contenido Discutiremos: qué es una función cuadrática

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN AUTOR: ANTONIO CAMARGO MARTÍNEZ Mateáticas financieras Clave: 1154 Plan: 2005 Créditos: 8 Licenciatura: Contaduría Seestre:

Más detalles

Unidad 6 Cálculo de máximos y mínimos

Unidad 6 Cálculo de máximos y mínimos Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos

Más detalles

Laboratorio Física I

Laboratorio Física I Laboratorio Física I Guía Pedro Miranda y Fabián Juárez 1. Informes de laboratorio 1.1. Introducción Uno de los elementos más utilizados en la comunicación de conocimientos es el informe. El propósito

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

TEMA I: Modelación Experimental de Procesos

TEMA I: Modelación Experimental de Procesos TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere

Más detalles

El Descuento Financiero o Bancario

El Descuento Financiero o Bancario El Descuento Financiero o Bancario En el mundo financiero las operaciones comerciales se realizan a través del crédito y el pago se efectúa mediante documentos o instrumentos comerciales que son los llamados

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007 Sección Tecnologías de Internet Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007 Hacia una propuesta didáctica para la enseñanza de Métodos Numéricos

Más detalles

2. GRAFICA DE FUNCIONES

2. GRAFICA DE FUNCIONES . GRAFICA DE FUNCIONES En vista de que el comportamiento de una función puede, en general, apreciarse mu bien en su gráfica, vamos a describir algunas técnicas con auda de las cuales podremos hacer un

Más detalles

Ingeniería Económica

Ingeniería Económica CAPITULO II: TERMINOLOGÍA Y DIAGRAMAS DE FLUJO DE CAJA 1. Terminología Básica Los términos comúnmente utilizados en la ingeniería económica son los siguientes: P = Valor o suma de dinero en un momento,

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles