Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO Introducción 4. Nomenclatura

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura"

Transcripción

1 T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos grsos EUMEN Progrcó o lls Mtlb

2 Cálculo uérco Igrí

3 T 4: grsos lls o lls. Itroduccó E st t s lz coo s pud llzr ls cucos ás cous qu podos cotrr l cpo d l grí pr podr plcr ls téccs d just dt rgrsos lls qu prt cotrr los prátros d sts cucos qu rprst corrctt l procso studdo. A cotucó s lz coo slccor l jor procó ll pr u cojuto d dtos (rgrsó ll). Est últo cso s td l posbldd d dos o ás vrbls studdo ls rgrsos lls últpls.. Nocltur Más dlt s lz l cso d rgrsos o lls pr cucos qu o prt sr llzds. vrbl dpdt / j d ordds vrbl dpdt / j d bscss fucó objtvo zr cofcts dl just ll ordd l org 3. Llzcó pdt d cucos d u just ll spl (subídc) vrbl j (subídc) dto E st prtdo tl coo hos dcho s prtd lzr lguos étodos d trsforcó pr ls cucos o lls cucos lls doptdo l for dd l cucó : () Dbos sñlr uqu s obvo qu st cucó l costt s l pdt d l rct l costt l trsccó co l j (l vlor d pr l ordd s dcr l ordd l org). l rlcó / qu stos lzdo dopt l for d cucó pocl: ()

4 Cálculo uérco Igrí l llzcó s scll ( plt vst): ( ) log( ) log( ) log (3) D st for rprst l logrto d frt l logrto d l ordd l org srá log( ) l pdt d l rct. Db dcrs qu uqu st cso s h utlzdo l logrto dcl sts rlcos s cupl gult s hubéros utlzdo l logrto pro pusto qu tr llos l úc dfrc s u costt: ( ) log l( ) (4) Otro jplo qu podos cosdrr s l cso d l cucó: (5) E st cso dvddo bos téros por vrtdo l rlcó obtdríos: (6) Así rprstdo (/) frt tdríos qu l costt sr l pdt d l rct qu obtdríos l costt l ordd l org d st rct. Ls fors stts d llzr cucos qu s rsu l Tbl. Tbl. Métodos d llzr crts cucos. Tpo d cucó Ej Ej Pdt Ordd l org b b b l () b l () / b 4. Ajust ll ( b) / b b c l (-c) l b l

5 T 4: grsos lls o lls Cosdros u cojuto d dtos / qu quros pror dt u cucó ll. ( ) ( ) ( ) t.. D st for l su d los cudrdos tr los rrors d los dtos l procó ll vdrí dd por: ( ) [ ] ( ) t (7) dod t rprst l vlor prdcho d pr u puto dtrdo. coo hos dcho buscos los vlors d stos cofcts qu hc ío l vlor d podos plcr l crtro ás grl d búsqud d áos íos guldo l drvd prcl cro. ( ) ( ) (8) usos l propdd couttv d l su sts cucos qud: (9) rsolvos st sst d cucos co dos cógts podos hllr los vlors d l pdt l trsccó co l org d l jor procó ll posbl d curdo co l crtro slccodo. ( ) () Co llo obtos los cofcts d l jor procó ll pr ustros putos. Ahor dbos cosdrr s st procó ll s bu. s cosdr qu l rror st orlt dstrbudo lrddor d l lí d rgrsó l rror stádr d st vdrá ddo por: ( ) ()

6 Cálculo uérco Igrí U bu dd dl just ll s st rror stádr orlzdo por l rgo dl j. () Otro prátro tbé usdo co l rgrsó ll s l cofct d corrlcó qu s pud dfr por: B r B (3) B dod s l fucó objtvo zr qu v dd por l cucó (7). Pusto qu coo hos cotdo l rgrsó ll s us pr dtrr costts dscoocds por do d l pdt l trsccó l org l stcó dl rror stádr l dtrcó d sts costts s tbé útl. El rror stádr l pdt vdrá ddo por: (4) ( ) ( A ) El rror stádr l dtrcó d l trsccó l org vdrá ddo por: 4.. Ajusts MATLAB (5) E MATLAB s us l fucó polft. El forto d st fucó s l sgut: [p] polft() dod: p s l vctor qu cot los cofcts orddos d or or grdo s u structur pr usr co polvl co l fldd d str l rror d l stcó s l vctor qu cot l vrbl dpdt s l vctor qu cot l vrbl dpdt s l grdo dl poloo l qu quros justr los putos prtls.

7 5. grsó ll últpl T 4: grsos lls o lls Ls rgrsos lls pud sr fáclt tdds l cso d o ás vrbls. Cosdros l cso d u fucó ll d vrbls dfds por: ( ) t (6) E st cso l probl s lgr l plo qu jor just los dtos ddos por ustro cojuto d putos. lgos l crtro ddo trort tdríos: ( ) (7) D gul for qu l prtdo tror s toos drvds prcls d st fucó co rspcto cd uo d los cofcts gulos sts drvds prcls cro l rsolvr l sst d cucos tdros los cofcts pr l procó ll qu jor rprst ustro cojuto d dtos. E l cso d l fucó qu os ocup co dos vrbls dpdts l sst d cucos qud coo s dc (8). (8) Est sst d cucos pud sr scrto d for trcl: C b Dod C s l trz d los cofcts s l vctor corrspodt ls costts dl just b s l vctor d los téros dpdts dl sst (8). cosdros l probl d u fucó ll d vrbls: j (9) j j toos l crtro d zr los cudrdos d l dfrc tr los vlors d l fucó los corrspodts l procó ll los téros corrspodts ls dos trcs qu rsultrí dl sst d () cucos lls s podrí obtr dt:

8 Cálculo uérco Igrí C b j k j j j k dod () dod l sutoro s td todos los dtos prtls. L rsolucó dl sst d cucos rsultt (sst trcl) drí lugr l obtcó d los cofcts buscdos. El rror stádr d l stcó pud sr prodo por: 5.. Pltto ltrtvo for trcl. ( ) () El sst d cucos (8) pud obtrs fáclt prtr d los dtos prtls. Cosdros qu ustros dtos prtls stá ddos d l for: ( ) dod tos vrbls dpdts cojutos d dtos prtls. E l trz tror u subídc j dc l dto j d l vrbl. A prtr d l trz tror ldo l últ colu (qudrí trz d dsos ) trspodo l trz rsultt (srí trz d dsos ) srtdo u fl d uos s fácl costrur l sgut trz : Al ultplcr por su trspust obtos l trz C dfd trort:

9 T 4: grsos lls o lls C T D gul for podos clculr l vctor b coo producto d por l vctor qu cot ls vrbls dpdts: b 5.. Dduccó drct for trcl L rgrsó ll últpl co vrbls prdctors bsdo obsrvcos stá dd por: E for trcl podríos por Y T (dod so los rrors qu s qur zr) s dcr: supodo E(); Vr() I σ zos L su d los cudrdos d los rrors: ( ) ( ) ( ) T T T T Y Y

10 Cálculo uérco Igrí oprdo: T T T T T T T T T T ( ) Y Y Y Y Y Y Y drvdo rspcto l vrbl guldo cro: T Y 6.. grsos o lls por lo tto: T ( ) Y E st prtdo úct s po los psos qu s dbrí sgur pr str los prátros d u rgrsó o ll. Los psos sr los quvlts los ddos los prtdos trors supodo qu cptos l crtro d zr l cudrdo d l dfrc tr los vlors rls d los putos los vlors d l stcó d l fucó. Estos psos srí: Obtr l fucó d curdo co l crtro d just slccodo. Clculr ls drvds prcls d st fucó co rspcto los prátros qu studos. solvr l sst d cucos ( st cso o lls) qu s obtdrá. Otr for d obtr stos prátros usult ás scll rápd s usr 7. su téccs d optzcó uérc pr zr st fucó cosdrdo u prr stcó d los prátros d curdo coo vros ts sucsvos. L llzcó d u cucó s u pso prvo l optzcó d los prátros qu jor just u cojuto d dtos prtls. Ddo u cojuto d vrbls dpdts 3 u fucó s posbl clculr los vlors qu jor s just los dtos prtls sgú l cucó:

11 T 4: grsos lls o lls 8. Progrcó pr llo s db zr l rror d l procó rspcto cd uo d los vlors Mtlb. Est rror s df coo l cudrdo d ls dfrcs tr los vlors prdchos los rls grsó ll últpl (sgú l pltto ltrtvo for trcl) fucto rlu(x) % EGEION LINEAL MULTIPLE % Etrd X s u trz % ls dstts fls so dsttos dtos prtls % ls colus rprst dstts vrbls % l ult colu s l vrbl dpdt % El vctor cotdrá los prátros optzdos [dtosvr]sz(x); vr-;% Nuro d vrbls dpdts (.) vlorsx(:dtos:); uosos(dtos); [uos;vlors']; % troduc u fl d uos C*'; % Costruos l trz C X(:vr); % l últ colu s l vrbl dpdt b*; % Vctor [LUP]lu(C); % Fctorzcó d l trz C % A prtr d quí s rsulv l sst ll C*b ztp*b; grv(l)*zt; v(u)*gr

TEMA 4. REGRESIONES LINEALES Y NO LINEALES

TEMA 4. REGRESIONES LINEALES Y NO LINEALES TEMA 4. REGRESIONES LINEALES Y NO LINEALES. Itroduccó. Noecltur 3. Lelzcó de ecucoes 4. Ajuste lel 5. Regresó lel últple 6. Regresoes o leles 7. RESUMEN 8. Progrcó e Mtlb . Itroduccó E este te se lz coo

Más detalles

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN.

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN. tgrco uérc étodos d tgrcó NGRACÓN NUÉRCAÉODOS D NGRACÓN troduccó Clculo tgrl y drcl rs udtls cálculo tsl l cálculo tgrl c dl cálculo d árs l org dl cálculo tgrl pud rotrs l Grc clásc clculo d árs por l

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

ANÁLISIS DE ERROR DE ESTADO ESTABLE

ANÁLISIS DE ERROR DE ESTADO ESTABLE AÁLISIS DE ERROR DE ESTADO ESTABLE El rror stcoro s u dd d l xcttud d u t d cotrol. S lz l rror stcoro dbdo trds scló, rp y prábol. COTROL AALÓGICO COTROL DIGITAL Esqu Error Fucó d trsfrc d ll Es ( Rs

Más detalles

Ecuaciones Diferenciales Homogéneas

Ecuaciones Diferenciales Homogéneas stsc l cucó drcl l trvlo I. ) Dcó: U cucó ) Dcó: S u cucó cot ls drvds o drcls d u o ás vrbls dpdts co rspcto u o ás vrbls dpdts, s dc qu s u cucó drcl. ) Dcó: S l cucó cot drvds ordrs d u o ás vrbls dpdts

Más detalles

DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD PÉNDULO SIMPLE

DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD PÉNDULO SIMPLE EERIACIÓ E A ACEERACIÓ E A GRAVEA PÉUO SIPE Atoo J. Brbro / ro Hrdz Puh / Alfoso Clr / Pblo uñz / José A. d oro / Ptr orl pto. Fís Apld UC Pédulo spl O O s Y X os s El oto O td rsturr l posó d qulbro O

Más detalles

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden Bds d rgí otdo Tor d Boch. Torí d ctró cs r.org d ds. Modo d Krog-Py. jo. stdo Sódo Potc áss otc qu s usó áss tror fu u otc tt. s áss d uy u rsutdo s s ctr trs tá us ocurr u tto d ctros. S rgo, otros trs

Más detalles

TEMA 1. OPERACIONES BANCARIAS A CORTO

TEMA 1. OPERACIONES BANCARIAS A CORTO 1 E 6 TEMA 1. OPERACIONES BANCARIAS A CORTO PLAZO (I) 1.1. Itrouccó 1.2. Cuts corrts 1.3. Cuts corrts bcrs 1.4. Cuts créto 1.5. Cálculo los ttos fctvos 1. INTROUCCIÓN Toos los rchos rsrvos. Qu prohb l

Más detalles

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales Cítulo 4: Rotcos Multdmsols co Orcos ctorls Como s vo l cítulo tror s ud hcr rotr u ojto l sco D roorcodo - utos o cohrlrs s dcr s roorco l j d rotcó l cul s l rrstcó d u sml -D. E st cítulo s lz y td

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

Cátdr Mtátic II Espcilidds Mcáic - Quíic Ejrcicios d Aplicció d l drivd co rcts tgts orls ϕ Dds ls ucios ϕ S Hllr ϕ cos ϕ ϕ cos ϕ cos ϕ Qué águlo or co l j o ls tgts l curv puto cu scis s? θ θ. pr θ θ

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Exportación e Importación en formato XML

Exportación e Importación en formato XML Exportcó Importcó formto XML Tléfoo (506) 2276-3380 Fx (506) 2276-3778 d@c.co.cr www.d.com 1 Exportcó d Iformcó formto XML Pr xportr dto dd lpho formto XML, l mú Admtrcó, cutr l opcó Exportr S motrrá l

Más detalles

FRACCIONARIOS Y DECIMALES

FRACCIONARIOS Y DECIMALES FRACCIONARIOS Y DECIMALES Hg clck obr l t qu coultr: 1. Núro Frccoro - Frccoro grl - Frccoro hoogéo y htrogéo - Clfccó lo frccoro - Frcco quvlt - Ruccó frcco (plfccó) - Covró frccoro cl 2. Núro Dcl Núro

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad: Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x REGREION LINEAL IMPLE FORMULARIO Mdl d Rgrsó Ll mpl Jrg Glt Rsc + β + ε qu β s fjs, ε s u vrl ltr c sprz E(ε) 0 vrz V(ε) σ fj. Ls prámtrs dl mdl s, β σ. rprst l vrl dpdt, qu tm vlrs fjs dtrmds pr l prmtdr.

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

Acerca de los homomorfismos

Acerca de los homomorfismos Acrc d los hooorsos Crlos S. Ch Acrc d los hooorsos. Hooorsos. Oprcos 3. lcos 4. os tors d soorí 5. Estc d hooorsos. Hooorsos.. d d hooorso: Dcó _ Ddos dos spcos vctorls sor l so curpos d sclrs s do hooorso

Más detalles

suma sucesiva de los primeros m términos como se ve a continuación m 1

suma sucesiva de los primeros m términos como se ve a continuación m 1 A veces se ecest deterr l su de uchos téros de u sucesó ft. Pr expresr co fcldd ess sus, se us l otcó de sutor. Dd u sucesó ft,,,...,... el síbolo represet l sutor o su sucesv de los preros téros coo se

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

Para medir la importancia de la clase modal como medida central usaremos el concepto de tasa de variación. Se denota por V

Para medir la importancia de la clase modal como medida central usaremos el concepto de tasa de variación. Se denota por V dds d Tdc Ctrl y Dsprsó EDIDAS DE TENDENCIA CENTRAL Y DISERSIÓN dds d Tdc Ctrl So mdds d u cojuto d dtos qu proporco u vlor smpl y rprsttvo, qu rsum u gr volum d ormcó. Est vlor td ubcrs l ctro dl cojuto

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

Formulario de matemáticas

Formulario de matemáticas Forlro tát lgr- Sgo (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - (+) / (+) = + (-) / (-) = + (+) / (-) = - (-) / (+) = - Fro Proto otl ftorzó ( ) ( ) ( ) ( ) ( ) ()() ()( ) ( )( ) ()( ) L lo ot rl log

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

Cómo es la distribución de los alimentos servidos?

Cómo es la distribución de los alimentos servidos? Cómo s l distribució d los limtos srvis? 5 " Co u bu limt ció, p Los iños y iñs s ppr pr cosumir los limtos 6 CUÁL ES EL OBJETIVO? Promovr y forzr buos hábitos d higi los iños y iñs como l lv d mos ts

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

VIGAS COMPUESTAS O REFORZADAS

VIGAS COMPUESTAS O REFORZADAS VIGAS COMPUSTAS O RFORZADAS Udd N 7 VIGAS COMPUSTAS O RFORZADAS 7.. Ojtvos Al trr l studo d st udd ustd drá sr cpz d rsolvr los sguts ojtvos trzdos pr l studo d tsos sccos d vg copust por dsttos trls..

Más detalles

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado. MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid

Más detalles

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos.

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos. Te 3 lorcó e Rets lorcó e rets Defos ret fcer coo u cojuto e cptles que h e hcerse efectvos e eteros vecetos. (, t, ( 2, t 2,, (, t Llreos téros e l ret ls cutís e los cptles fceros que copoe l ret (,

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE TEMA MODELO DE REGRESIÓN LINEAL SIMPLE. INTRODUCCIÓN A LA REGRESIÓN SIMPLE! 4 Supogamos qu la varal s ua fucó lal d otra varal, dod la rlacó tr y dpd d parámtros! y! dscoocdos. Itroduccó a la Rgrsó Smpl!

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

INTEGRACION o CUADRATURA

INTEGRACION o CUADRATURA Puede ocurrr que NEGRACON o CUADRAURA d se u ucó cotu ácl de tegrr o u ucó cotu dícl o posle de tegrr drectete o que o coozcos l ucó tuld, solo u cojuto de vlores eddos. Los étodos se s e que, dd ecotrr

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

Unidad 1 Fundamentos de Algebra Matricial Parte 1

Unidad 1 Fundamentos de Algebra Matricial Parte 1 Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor

Más detalles

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente.

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente. SUCESIONES 1. El it d l sucsió d térmio grl A) B) 1 C) 0 + 1 3 + + 3 vl: (Covoctori juio 001. Exm tipo G) El it d u potci s igul l it d l bs lvdo l it dl xpot. + 1 1 Límit d l bs: 3 + 3 Límit dl xpot:

Más detalles

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias Uiversidd de l Repúblic Cálculo Fcultd de Igeierí - IMERL Segudo semestre 6 Práctico - Itegrles impropis y Series. Itegrles impropis. Se f : [,) R u fució cotiu tl que f (t) y defiimos F() = f (t)dt. Demostrr

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONOL M.C. ELIZABEH GPE. LAA HDZ. M.C. OSÉ MANUEL OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO LEÓN

Más detalles

Cálculo diferencial integral en una variable Facultad de Ingeniería - IMERL Segundo semestre Práctico Semana xm (1 x) n dx = 1

Cálculo diferencial integral en una variable Facultad de Ingeniería - IMERL Segundo semestre Práctico Semana xm (1 x) n dx = 1 Uiversidd de l Repúblic Cálculo diferecil itegrl e u vrible Fcultd de Igeierí - IMERL Segudo seestre 8 Práctico Se 6. Cbio de vrible liel. Se f : R R u fució itegrble y,b R tl que < b. Probr que: Pr todo

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1 ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL Síolos. E ls tls siguits,, c, y ot costts, itrs qu u, v, w y so vrils, u, v, y w so tos fucios. L s l sist Npirio o tié llo turl logritos s ot

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió A/D y D/A L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió AD y DA L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

S-\v as. v--.' v.w 32. V.'-i'.v,

S-\v as. v--.' v.w 32. V.'-i'.v, vo u * I V s.- sm# 8KB Sl..V-v-"' -. - yv:» S vs W: g> >: S-\v s -.v. ;*K\ *> v M v--.' v.w 32. s;. v.; *. :>S * II hv#?' -> -. * - ESTADO B M 83 SS'S'o sm IS v'v#\ v&? s V.'-'.v, M I * st^w : V v-\f #

Más detalles

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura:

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura: Puede ocurrr que NEGRACON o CUADRAURA d se u ucó cotu ácl de tegrr o u ucó cotu dícl o posle de tegrr drectete o que o coozcos l ucó tuld, solo u couto de vlores eddos. Los étodos se s e que, dd ecotrr

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

Construyendo la función exponencial

Construyendo la función exponencial Costrdo l ció ocil Cr SÁNCHZ DÍZ Pd costrirs l ció ocil ri o trl coo l ció ivrs d l ció logrito trl r d idtiicrs co l ocil d s úro rl os d ror tl coicidci l cso d ot tro tié rciol l cso d ot rl d diirs

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

TEMA 8: DETERMINANTES

TEMA 8: DETERMINANTES DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros:

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles