SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1
|
|
- Ana Isabel Saavedra Acosta
- hace 2 años
- Vistas:
Transcripción
1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6 () (+) Mínimo (, f()) (, -) (-) (-) Máimo (-, f(-) ) (-, ) b) f ( ) 9 D(f) (Por ser polinómica) ; ó Posibles máimos o mínimos. () 6 (+) Mínimo (, f()) (, ) - 8 () - 6 (-) Máimo (, f()) (, ).- Calcular las asíntotas de las funciones siguientes: a) f ) a ) A.V. : (Posibles asíntota verticales) 8 Indeterminado ; es asíntota vertical - ; es asíntota vertical ( a) A.H.: A.H. Posiciones de la curva respecto a la asíntota horizontal: 8 8 ( ) La curva se aproima por encima de la asíntota horizontal. Punto de corte de la curva la asíntota horizontal: 8-8 no ha P. de corte b) a) A.O.: m + n m No ha A.O. ( es A.H.) f ( ) 8 b ) A.V.: + 8 ( + ) ó - (Posibles A.V.) indet no es A.V
2 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA ; 8 Indeterminado 8 Es asíntota vertical b ) A.H.: No ha A.H. 8 b ) A.O.: m + n m 8,5 8 n,5 - - A.O. 8 8 Punto de corte de la curva la asíntota oblicua: D(f) no ha P. de corte c) f ( ) c) A.V. : - (Posible asíntota vertical) Indeterminado ; Es asíntota vertical c ) A.H.: No ha A.H. c ) A.O.: m + n m n + A.O. Punto de corte de la curva la asíntota oblicua: + - no ha P. de corte +.- Representar gráficamente las siguientes funciones: b) f ( ).- Dominio: D(f) R
3 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Simetría: f(-) (-) (-) + f ( ) Eje Y f() Simétrica respecto al.- Puntos de corte con los ejes: a) Con el Eje X: f ( ) (Cambio t) t t + no ha solución no ha puntos de corte con el eje X. b) Con el Eje Y: f() + P(, )..- Asíntotas: a) A.V: D(f) R No ha A.V. b) A.H.: c) A.O.: m + n no ha A.H. m no ha A.O. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos. ; ( ) ; - ó Posibles máimos ó mínimos. Int. Crec.:(-,)(,+); Int. Decrec.: (-,-)(,) Máimo: (,f())(, ); Mínimos: (-,f(-)) (-, ) (,f()) (, ) 6.- Intervalos de Concavidad conveidad. Puntos de Infleión: ; Int. Concav.: (-,- 58)( 58,+) ; Int. Conve.: (- 58, 58), P.I. : (- 58,f(- 58)) (- 58, ) ; ( 58,f( 58)) ( 58, ),,58 Posibles P.I. 7.- Regiones: no ha solución f() es positiva en (-, +) f()^-*^
4 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA b) f ( ).- Dominio: D(f) R {}.- Simetría: f(-) - f() Es simétrica respecto al Origen.- Puntos de corte con los ejes: a) Con el Eje X: + No ha P. de corte b) Con el Eje Y: f ( ) No ha P. de corte.- Asíntotas: a) A.V: Posible A.V.; Indeterminado ; Es asíntota vertical b) A.H.: No ha A.H. c) A.O.: m + n; m n A.O. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos. - Int. Crec.: (-,-)(,+), Máimo: (-,f(-))(-, -); ; Posibles Máimos ó Mínimos. Int. Decrec.:(-,)-{}, Mínimo:(,f())(,) 6.- Intervalos de Concavidad conveidad. Puntos de Infleión: No ha solución no ha P.I. Int. Concav.: (,+) ; Int. Conve.: (-,) 7.- Regiones: No Ha soluc. f() es positiva en (,+) es negativa en (-. ) f()(*^+)/ f()*
5 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 5 c) f ( ).- Dominio: + - no ha solución D(f) R.- Simetría: f(-) f ( ) Es simétrica respecto al Origen.- Puntos de corte con los ejes: a) Con el Eje X: P(,) b) Con el Eje Y: f() / P(,.- Asíntotas: a) A.V: + No ha asíntota vertical b) A.H.: A.H. c) A.O.: m + n; m No ha A.O. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos ; 6 Posibles Máimos ó Mínimos Int. Crec.: (-, ); Int. Decrec.: (-, -) (,+) Máimo: (, f()) (, ); Mínimo: (-, f(-)) (-, -) 6.- Intervalos de Concavidad conveidad. Puntos de Infleión: ;,6 Posibles P.I. Int. Concav.: (-,6, ) (,6,+) Int. Conve.: (-, - 6) (,,6) ; 96 8 ( ) f( ) /( ^ + ) P.I.: (, f()) (, ) (-,6, f(-,6)) (-,6, -,87) (,6, f(,6)) (,6,,87) 7.- Regiones: f() es positiva en (,+) es negativa en (-. )
6 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 6 d) f ( ).- Dominio: ( ) D(f) R {}.- Simetría: f(-) f() - f() No es simétrica respecto al eje Y ni es simétrica respecto al Origen..- Puntos de corte con los ejes: a) Con el Eje X: - P(,) b) Con el Eje Y: f() /(-) P(,).- Asíntotas: a) A.V: Posible A.V.; Indeterminado b) A.H.: ; Es asíntota vertical No ha A.H. c) A.O.: m + n; m n - A.O. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos. (- + ) ó Posibles Máimos ó Mínimos Int. Crec.: (, ) Int. Decrec.: (-, ) (, +); Maimo: (, f()) (, -6 75) Mínimo: no tiene 6.- Intervalos de Concavidad conveidad. Puntos de Infleión: Posible P.I. Int. Concav.: (-, ); Int. Conve.: (, ) (, +); P.I. (,f()) (,) 7.- Regiones: f() es positiva en (-. ) es negativa en (,) (,+) 6 ; ; f()-^/(-)^ f()
7 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 7 f ( ).- Dominio: D(f) R {}.- Simetría: f(-) f ( ) Es simétrica respecto al Origen.- Puntos de corte con los ejes: a) Con el Eje X: P(, ). b) Con el Eje Y: f() P(, )..- Asíntotas: a) A.V: Posibles A.V.; Indeterminado ; es asíntota vertical - ; es asíntota vertical b) A.H.: es A.H. c) A.O.: no ha a que eiste A.H. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos. ; - no ha ni Máimos ni Mínimos Int. Crec.:no ha; Int. Decrec.: R {} Intervalos de Concavidad conveidad. Puntos de Infleión: ( + 6) posible P.I. f()/(^-) Int. Concav.: (-,) (,+); Int. Conve.: (-, -) (,) P.I. (, f()) (, ) 7.- Regiones: f() es positiva en (-,) (,+) es negativa en (-.-) (,)
8 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 8 f) f ( ).- Dominio: + - No tiene solución D(f) R.- Simetría: f(-) f ( ) Es simétrica respecto al Eje Y.- Puntos de corte con los ejes: a) Con el Eje X: P(, ). b) Con el Eje Y: f() P(, )..- Asíntotas: a) A.V: no ha A.V. a que D(f) R b) A.H.: es A.H. c) A.O.: no ha a que eiste A.H. 5.- Intervalos de Crecimiento de Decrecimiento. Máimos mínimos. ; Posible Máimo ó Mínimo Int. Crec.: (,+); Int. Decrec.: (-, ); Mínimo: (,f()) (,); Máimo: no tiene 6.- Intervalos de Concavidad conveidad. Puntos de Infleión: 58 Posibles P.I. Int. Concav.: (- 58, 58) Int. Conve.: (-,- 58)( 58,+) 6 6 ; -6 + f()^/(^+) f() P.I. : (- 58,f(- 58)) (- 58, 5) ; ( 58,f( 58)) ( 58, 5), Regiones: no ha sol. f() es positiva en siempre. - -
9 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 9.- Hallar los intervalos de crecimiento, de decrecimiento, concavidad conveidad, máimos, mínimos puntos de infleión, de las siguientes funciones: a) f ( ) e D(f) e e - + ( ) e - (-) e - ( + ) e - ( ); e - ( ) e - > Posible má. ó mín Intervalo de crecimiento: ( -, ) Máimo: (, ) Intervalo de decrecimiento: (, +) e - (-) ( ) + e - (-) e - ( 5); e - ( 5) 5 5 Posible P.I e - > - + Intervalo de concavidad: (5,+) P.I.:(5, ) Intervalo de conveidad: ( -, 5) b) Ln f ( ) D(f) (,+) Ln Ln Ln ; - Ln Ln e Ln e e e Posible má. ó mín. e Intervalo de crecimiento: (, e) Máimo (e, /e) Intervalo de decrecimiento: (e,+) ln ln Ln Ln Ln - + Ln Ln 5 e Ln e 5 8 Posible P.I Intervalo de concavidad: ( 8,+) P.I.: ( 8, ) Intervalo de conveidad: (, 8) c) f ( ) Ln9 9 > ; 9 no no - D(f) (-, ) ; 9 - Posible máimo ó mínimo 9
10 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA Intervalo de crecimiento: (-, ) Máimo (, ) Intervalo de decrecimiento: (, ) no ha P.I. - Intervalo de conveidad: (-, ) d) f() + sen en [,] ; D(f) R D(f)/[, ] [, ] + cos ; + cos cos - Posibles Má. ó mín. Intervalo de crecimiento: [, ] + + Intervalo de decrecimiento: no tiene f() toma el valor máimo, en el intervalo [,], en el punto el valor mínimo en el punto : Máimo: (,); Mínimo: (,) - sen - sen, ó posibles P.I. - + Intervalo de concavidad: (, ) P.I. (, ) Intervalo de conveidad: (, ) 5.- Determinar a, b, c para que la curva a b c, Pasa por el punto (, ) tenga por puntos críticos dicho punto. Si + a + b + c 6 + a + b a) Pasa por (, ) f() + a + b + c a + b + c - () c) Punto crítico en f () f () 6 + a + b a + b - 6 () d) Punto crítico en f () f () + a + b a + b - () Resolviendo el sistema formado por las ecuaciones () ( ): a b 6 a b 6 a - 8 a - 9 a b a b Sustituendo el valor de a en la ecuación () : b - 6 b Sustituendo los valores de a b en la ecuación () : c - c - Solución: a 9; b ; c -
11 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 6.- Determinar a, b, c para que la curva a b c, tenga un punto de infleión en la recta tangente a la gráfica de f() en ese punto sea. + a + b 6 + a a) Punto de infleión en f () 6 + a a - b) En la tangente es f () m + a + b 6 + b b 5 c ) En la tangente es - Pasa por el punto (, -) f() - + a + b + c c - c -. Solución: a - ; b 5; c Sabiendo que la derivada de una función f() tiene la siguiente gráfica: a) Intervalos de crecimiento decrecimiento etremos relativos de f(). Los puntos -, son posibles máimos ó mínimos, a que f (-) f () f (). Como el dominio de la función es R, tenemos: Intervalos de Crecimiento: (-, - ) (,) Intervalos de Crecimiento: (-, ) (, + ) Máimos: en - ; Mínimo en b) Qué ocurre a la función en en?. Razonar la respuesta. Los puntos son posibles P.I. de f() a que al ser máimos ó mínimos de f () f () f (). - + Decrec. Crec. Decrec. son Puntos de Infleión a que (-) (+) (-) cambia la curvatura en dichos puntos
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
APLICACIONES DEL CÁLCULO DIFERENCIAL-II
APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim
Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:
TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un
10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría
0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida
Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,
Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
Análisis de funciones y representación de curvas
12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í
Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A
Matemática I Extremos de una Función. Definiciones-Teoremas
Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas
1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un
Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos 4.4- Resolver los siguientes límites aplicando la regla de L Hôpital: ; a) sen e e lim ; b) lim ; c) lim e d) lim 0 0 sen 0 e)
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
TEMA 1: Cálculo Diferencial de una variable
TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD
UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE
MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas
ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.
. Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
MURCIA JUNIO 2004. + = 95, y lo transformamos 2
MURCIA JUNIO 4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OBSERVACIONES IMPORTANTES: El alumno deberá responder a una sola de las dos cuestiones de cada uno de los bloques. La puntuación de las dos
DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES
UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
FUNCIONES Y GRÁFICAS.
FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones
CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática
CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth
representación gráfica de funciones
representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades
x + x 2 +1 = 1 1 = 0 = lím
UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)
EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición
MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio
BACHILLERATO EUROPEO 2009 MATEMÁTICAS 3 PERIODOS FECHA: 8 de junio DURACIÓN DEL EXAMEN : 3 horas (180 minutos) MATERIAL AUTORIZADO: Formulario europeo Calculadora no gráfica y no programable OBSERVACIONES:
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Interpretación de gráficas símbolos Con la finalidad de reafirmar la relación eistente entre el contenido de un concepto, la notación simbólica utilizada para representarlo
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Aplicaciones de las derivadas
I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Aplicaciones de las derivadas (estudio de funciones) Por Javier Carroquino CaZas Catedrático de matemáticas del
Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8
Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sean f : R R y g : R R las funciones definidas por f(x) = x 2 + ax + b y g(x) = c e (x+1) Se sabe que las gráficas de f y g se cortan en el punto ( 1, 2) y tienen en ese punto la
APLICACIONES DE LA DERIVADA
7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece
a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím
Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,,
. Sea F( ) arcsen. Repaso general de matemáticas I π π a) Obtén la gráfica de h ( ) = F ( ) - e indica el dominio e imagen de h. D, ; I, π π b) Obtén la gráfica de g( ) F( ) e indica el dominio e imagen
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje
Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:
Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA
Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN
a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.
Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,
Idea de Derivada. Tasa de variación media e instantánea
Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar
Teoría de Conjuntos y Funciones
Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos
1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x
. [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años.
MATEMÁTICAS para Mayores de 25 años Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años. Curso 2014-2015 Conviene recordar que los contenidos y criterios
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan
9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN
9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula
7 Aplicaciones de las derivadas
Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0
ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio
1-Comportamiento de una función alrededor de un punto:
Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos
Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)
PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.
Unidad 6 Cálculo de máximos y mínimos
Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos
8 Representación de funciones
8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
Selectividad Septiembre 2008 SEPTIEMBRE 2008
Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable