1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional."

Transcripción

1 1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador. (x 2 4)(x x + 24) 0 ( x 2 ) ( x + 2 ) ( x + 3 ) ( x + 8 ) 0, entonces tenemos que x 8 o x 3 o x 2 o x 2 Y Domf (, 8) ( 8, 3) ( 3, 2) ( 2, 2) (2, + ) 2. Encontrar los interceptos con x y y de la función racional. r(x) x2 3x 18 x 2 3 Para encontrar el intercepto con y, sustituimos x 0 en la función original: r(0) 02 3(0) El intercepto con y es (0, 6) Para encontrar el intercepto con x, sustituimos y r(x) 0 en la función original: 0 x2 3x 18 x 2 3 La expresión es cero cuando el numerador es cero. x 2 3x 18 0, factorizando (x 6)(x + 3) 0 entonces tenemos que x 6 o x 3 Los interceptos con x son ( 3, 0) y (6, 0). 3. Encontrar las asíntotas de la función racional. x2 3x 18 x 3 3 Para encontrar las asíontotas verticales necesitamos factorizar y simplificar la expresión racional. x 2 3x 18 x 3 3 (x 6)(x + 3) (x 3 3)(x x + 3 6) 1

2 El denominador es cero cuando x entonces tenemos una asíntota vertical en x 3 3. Como el grado del polinomio del numerador es menor que el grado del polinomio del denominador la función tiene una asíntota horizontal en y Encontrar las asíntotas de la función racional. (x2 1)(9x 2 + 1) 16x 4 1 Para encontrar las asíontotas verticales necesitamos factorizar y simplificar la expresión racional. (x2 1)(9x 2 + 1) 16x 4 1 (x + 1)(x 1)(9x2 + 1) (4x 2 + 1)(4x 2 1) (x + 1)(x 1)(9x2 + 1) (4x 2 + 1)(2x + 1)(2x 1) El denominador es cero cuando 2x o 2x 1 0 entonces tenemos asíntotas verticales en x 1/2 y x 1/2. Para encontrar posibles asíntotas horizontales u oblícuas debemos expandir el numerador y el denominador. (x2 1)(9x 2 + 1) 16x 4 1 9x4 8x x 4 1 Como los grados del numerador y el denominador son iguales, la función tiene una asíntota horizontal en el cociente de los coeficientes principales del numerador y el denominador, en este caso y 9/16 5. Encontrar las asíntotas de la función racional. (x2 1)(x + 3)(x + 5) x 3 1 Para encontrar las asíontotas verticales necesitamos factorizar y simplificar la expresión racional. (x2 1)(x + 3)(x + 5) x (x 1)(x + 1)(x + 3)(x + 5) (x + 1)() (x 1)(x + 3)(x + 5) 2

3 Como el denominador, despueés de simplificar, no se hace cero para ningn valor de x la función no tiene asíntotas verticales. Para encontrar posibles asíntotas horizontales u oblícuas debemos expandir el numerador y el denominador. (x 1)(x + 3)(x + 5) (x2 + 2x 3)(x + 5) x3 + 7x 2 + 7x 15 Como el grado del numerador es un grado mayor que el del denominador la función tiene una asíntota oblícua, para encontrarla hacemos división larga de la expresión x + 8 ) x 3 + 7x 2 + 7x 15 x 3 + x 2 x 8x 2 + 6x 15 8x 2 + 8x 8 Entonces la función la podemos reescribir como: x x 23 14x 23 De esta manera cuando x + tenemos que f(x) x + 8. Y la asíntota oblícua es y x + 8 x Haga un bosquejo de la grfica de (x 3)(x + 4). Para encontrar el dominio igualamos el denominador a cero: (x 3)(x + 4) 0, entonces x 4 o x 3 entonces Domf (, 4) ( 4, 3) (3, ) Como la expresión ya está factorizada y simplificada, las asíntotas verticales están en los puntos donde el denominador es cero. AV: x 4 y x 3 3

4 Como el grado del denominador es mayor que el grado del numerador la función tiene una asíntota horizontal en y 0. El intercepto con y lo encontramos al sustituir x 0, f(0) (0 3)(0 + 4) 1 12 Por lo tanto el intercepto con y es (0, 1/12) Los interceptos con x los encontramos sustituyendo y 0 y la expresión es cero cuando el numerador es cero. x entonces x 1 y hay un intercepto con x en ( 1, 0) Tabla de variación de signos: Factor x x x EXP Bosquejo de la gráfica 4

5 7. Haga un bosquejo de la grfica de 12(x2 + 13x + 42) (2x 3)(3x + 8). Para encontrar el dominio igualamos el denominador a cero: (2x 3)(3x + 8) 0, entonces x 8/3 o x 3/2 entonces Domf (, 8/3) ( 8/3, 3/2) (3/2, ) Para encontrar asíntotas factorizamos y simplificamos la expresión. 12(x x + 42) (2x 3)(3x + 8) (x + 6)(x + 7) (2x 3)(3x + 8) Una vez que la expresión ya está factorizada y simplificada, las asíntotas verticales están en los puntos donde el denominador es cero. AV: x 8/3 y x 3/2 Como el grado del denominador es igual al grado del numerador la función tiene una asíntota horizontal en el cociente de los coeficientes principales del numerador y el denominador. 12(x x + 42) (2x 3)(3x + 8) 12x x x 2 + 7x 24 Por lo tanto la asíntota horizontal está en y 12/6 2. El intercepto con y lo encontramos al sustituir x 0, El intercepto con y es (0, 21) f(0) 12( (0) + 42) (2(0) 3)(3(0) + 8) (12)(42) ( 3)(8) 21 Los interceptos con x los encontramos sustituyendo y 0 y la expresión es cero cuando el numerador es cero. 12(x + 6)(x + 7) 0 entonces x 7 y x 6 hay dos interceptos con x: en ( 7, 0) y en ( 6, 0) Tabla de variación de signos: Factor /3 3/2 x x x x EXP

6 Bosquejo de la gráfica 8. Haga un bosquejo de la grfica de x4 + 2x x(x 2 4). Para encontrar el dominio factorizamos el denominador y lo igualamos la cero: x(x 2 4) x(x 2)(x + 2) 0, entonces x 2 o x 0 o x 2 entonces Domf (, 2) ( 2, 0) (0, 2) (2, ) Para encontrar asíntotas factorizamos y simplificamos la expresión. x 4 + 2x x(x 2 4) (x 2 + 1) 2 x ( x 2 ) ( x + 2 ) Una vez que la expresión ya está factorizada y simplificada, las asíntotas verticales están en los puntos donde el denominador es cero. AV: x 2 y x 0 y y 2 Como el grado del numerador es un grado mayor que el del denominador la función tiene una asíntota oblícua. La división larga de los polinomios es: Entonces podemos escribir la función como x4 + 2x x(x 2 4) x + 6x2 + 1 x 3 4x De esta manera cuando x + tenemos que f(x) x. Y la asíntota oblícua es y x 6

7 La función no tiene intercepto con y pues x 0 no está dentro del dominio de f. Los interceptos con x los encontramos sustituyendo y 0 y la expresión es cero cuando el numerador es cero. Pero, x 4 + 2x (x 2 + 1) 2 > 0 para toda x por lo tanto la función no tiene interceptos con x Tabla de variación de signos: Factor (x 2 + 1) x x x EXP Bosquejo de la gráfica 9. Construya la ecuación de una función racional con asíntotas verticales en x 3 y en x 2, y con asíntota horizontal en y 1. Para cumplir la condición de las asíntotas verticales necesitamos que el denominador de la función sea cero en x 3 y en x 2. Una función que cumple con es condición es: 1 (x + 3)(x 2) Además para que la función tenga una asíntota horizontal en y 1 el grado del numerador debe ser igual al grado del denominador y el cociente de sus coeficientes principales debe ser 1. Al expandir el denominador tenemos que (x+3)(x 2) x 2 +x 6 por lo tanto es un polinomio de grado 2 y coeficiente principal 1. Necesitamos entonces en 7

8 el numerador un polinomio de grado 2 y coeficiente principal 1. Una función que cumple esto es: x 2 (x + 3)(x 2) 10. Construya la ecuación de una función racional con dos asíntotas verticales en x 5 y en x 5, con una asíntota horizontal en y 0, con intercepto con el eje y en (0, 5) y dos interceptos con el eje x en ( 1, 0) y (1, 0). Para cumplir la condición de las asíntotas verticales necesitamos que el denominador de la función sea cero en x 5 y en x 5. Una función que cumple con es condición es: 1 (x + 5)(x 5) Para que la función tenga interceptos con el eje x en ( 1, 0) y (1, 0) los factores x + 1 y x 1 deben aparecer en el denominador. (x + 1)(x 1) (x + 5)(x 5) Ahora, para que la función tenga una asíntota horizontal en y 0 el grado del numerador debe ser menor que el grado del denominador. Hasta ahora los grados del numerador y del denominador son iguales, para aumentar el grado del denominador sin agregar otra asíntota vertical podemos subir el exponente de alguno de los factores de él. (x + 1)(x 1) (x + 5)(x 5) 2 Para cumplir con la condición de intercepto con y en (0, 5) la función al ser evaluada en x 0 debe dar como resultado 5. Con la construcción hasta ahora tenemos que: (0 + 1)(0 1) f(0) (0 + 5)(0 5) Por lo tanto si queremos que nuestra función cumpla con f(0) 5 debemos multiplicar f por una constante k tal que k f(0) 5, esto es k 5/f(0) 5/( 1/125) 625 Por lo tanto la función que cumple con todos los requisitos es: 625(x + 1)(x 1) (x + 5)(x 5) 2 8

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN. CURSO: Matemática básica 1

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN. CURSO: Matemática básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN CURSO: Matemática básica 1 SEMESTRE: Primero CODIGO DE CURSO: 101 TIPO DE EXAMEN: Segundo parcial

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Límites: tipos de indeterminaciones 6

Límites: tipos de indeterminaciones 6 Índice Páginas Cálculo de límites. Tipos de Indeterminación. Límites cuando tiende a ±. Posibilidades : a) Obtenemos solución directamente. b) Indeterminación c) Indeterminación - d) Indeterminación 5

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0 FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Fundación Uno. ) 2n, el resultado es: D) b a E)1. entonces el valor de "y" es: II) x y = 3 A)16 B)9 C)4 D)1 E)2. Desarrollo

Fundación Uno. ) 2n, el resultado es: D) b a E)1. entonces el valor de y es: II) x y = 3 A)16 B)9 C)4 D)1 E)2. Desarrollo ENCUENTRO # 27 TEMA: Inecuaciones. CONTENIDOS: 1. Desigualdades.Propiedades. 2. Inecuación lineal o de primer grado. 3. Inecuación cuadrática o de segundo grado. Ejercicio Reto 1. Al simplificar ( a 2

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved. 4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 3: Funciones de varias variables Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Concepto de función de dos variables - Dominio y conjunto imagen - Representación gráfica - Funciones

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

MATEMÁTICAS Y SUS APLICACIONES: CURSO 0

MATEMÁTICAS Y SUS APLICACIONES: CURSO 0 Leandro Marín Muñoz MATEMÁTICAS Y SUS APLICACIONES: CURSO 0 LIBRO DE EJERCICIOS Capítulo 1. Números, Polinomios y Funciones Ejercicio 1.1. Dado el número decimal 54, encuentra su representación binaria.

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y.

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y. FUNCIÓN CUADRÁTICA 5º AÑO 013 PROF. RUHL, CLAUDIA FUNCIÓN CUADRÁTICA BATÁN, ROMINA FORMA CANÓNICA FORMA POLINÓMICA FORMA FACTORIZADA Y = a. ( x h ) + k Y = a. x + b. x + c y = a. ( x x1 ). ( x x FORMA

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Operaciones con Funciones

Operaciones con Funciones Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: suma, resta, multiplicación y división de funciones : Contenido Discutiremos: suma, resta, multiplicación y

Más detalles

LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1

LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1 LÍMITES Y CONTINUIDAD (asíntotas) Tema 6 Matemáticas Aplicadas CS I 1 FUNCIONES DE PROPORCIONALIDAD INVERSA Tema * 1º BCS Matemáticas Aplicadas CS I 2 FUNCIÓN DE PROPORCIONALIDAD INVERSA LA FUNCIÓN DE

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

Teoría Tema 1 Inecuaciones

Teoría Tema 1 Inecuaciones página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Descripción: dos. función. decreciente. Figura 1. Figura 2

Descripción: dos. función. decreciente. Figura 1. Figura 2 Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700. (1) Considere la función h : R R definida por. h(x) = x2 3

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700. (1) Considere la función h : R R definida por. h(x) = x2 3 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700 (1) Considere la función h : R R definida por h() = 3 3 Halle el dominio y las raíces de la función Las asíntotas verticales y las horizontales

Más detalles

Dominio y Campo de Valores de una Función. Prof. S. Vélez 1

Dominio y Campo de Valores de una Función. Prof. S. Vélez 1 Dominio y Campo de Valores de una Función Prof. S. Vélez 1 Ojetivos Determinar el dominio de una función dado su gráfica Determinar el campo de valores, recorrido o alcance de una función dado su gráfica.

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

FUNCIÓN REAL DE VARIABLE REAL

FUNCIÓN REAL DE VARIABLE REAL Ejercicios de Repaso 2 de mayo de 2011 Ejercicio Halla el dominio de las siguientes funciones. (a) 7 x 2 5 (b) 1 x 3 +1 (c) x 1 x 4 3x 2 4 (d) x3 6x 2 +4x+8 x 3 x 2 9x+9 (g) 1 3 x (j) ln(x) 1 (e) x2 4

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES. INTRODUCCIÓN A LOS LÍMITES. Definición intuitiva de límite.. DEFINICIÓN RIGUROSA DE LÍMITE. Límites reales.. Propiedades de los límites.. Estrategias para calcular límites. - Límites

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández.

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández. Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones Profesor(a):Mtra. Judith Ramírez Hernández. Periodo: Enero Junio 2012 Topic: Real Numbers and classification

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si

Más detalles