Figura 5.1 a: Acimut de una dirección de mira

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Figura 5.1 a: Acimut de una dirección de mira"

Transcripción

1 Tema N 5 Determinación del Acimut de una dirección 5.1- Acimut de una dirección El acimut de una línea cualquiera es el ángulo que forma el meridiano del lugar con el plano vertical que contiene dicha línea, [Figura 5.1a]. Si consideramos las proyecciones de los planos verticales sobre el horizonte astronómico del observador, definimos al acimut de una línea o dirección como el ángulo horizontal que forma el plano del meridiano (o la línea meridiana Norte Sur) y el plano vertical que contiene a la línea de una dirección considerada. La dirección considerada puede materializarse mediante una mira. Figura 5.1 a: Acimut de una dirección de mira El objeto elegido como mira debe ser fijo, lejano y muy puntual. Por lo general se toma el foco o la punta de alguna antena que sea visible a la noche. Si estamos en el campo y no se cuenta con nada, deberemos materializar la mira nosotros mismos.

2 Sea el punto O la posición de un observador con coordenadas latitud y longitud conocidas, [Figura 5.1b], se definen sobre el plano horizontal los siguientes elementos: Figura 5.1b: Acimut de la Mira AM Mira dirección hacia un objeto fijo alejado. S dirección de un astro cualquiera. Lo origen de las lecturas horizontales del instrumento (valor de cero grados en el círculo graduado). AM acimut de la mira. Dirección que deseamos conocer. A acimut calculado a través de las observaciones del astro S. Ls ángulo horizontal medido del astro S. LM ángulo horizontal medido a la mira. De la [Figura 5.1b] puede deducirse la siguiente expresión: AM A LM Ls AM A + (LM Ls) (1) Analizando la ecuación (1) notamos que el problema consiste en hallar el acimut de cálculo A del astro observado. Para obtener A, trabajamos sobre el triángulo de posición, [Figura 5.1c]:

3 Aplicando el teorema del coseno: cos (90 - δ) cos (90 - ϕ) cos Z + + sen (90 - ϕ) sen Z cos (π - A) sen δ sen ϕ cos Z + cos ϕ sen Z (-cos A) Figura 5.1c: Triángulo de posición sen δ sen ϕ cos Z cos ϕ sen Z cos A Finalmente: cos A sen ϕ cos Z - sen δ (2) cos ϕ sen Z En la expresión (2) tenemos que ϕ es la latitud del lugar de observación (se supone conocida al menos aproximadamente), δ es la declinación del astro extraída de un catálogo o efemérides, interpolada para la fecha y hora de observación y, Z es la distancia cenital medida con el instrumento (corregida por refracción y paralaje). Como vemos, podemos conocer A midiendo solamente distancias cenitales. Con el valor calculado de A lo introducimos en la ecuación (1) para obtener el acimut de la mira AM buscado. Resumiendo, a través de la observación de un astro podemos calcular el acimut de una dirección cualquiera (AM). Este valor nos servirá para materializar la dirección de la línea meridiana en el punto de estacionamiento y, por lo tanto, conocer la posición del punto Sur, origen del sistema de coordenadas Horizontal Acimut de una dirección por medio de observaciones del Sol. No siendo el Sol un elemento puntual (ocupa aproximadamente medio grado), se deberá observar en forma doble tangenteando sus bordes con los hilos vertical y horizontal de la cruz de retículo instrumental, [Figura 5.2a].

4 Figura 5.2 a: Bisección del Sol en dos cuadrantes simétricos Es evidente que con una sola observación podríamos hacer el cálculo, corrigiendo las lecturas vertical y horizontal por el semi-diámetro del Sol (extraído de las efemérides). Pero logramos mejor precisión y nos aseguramos bisectar el centro del Sol realizando un par de mediciones en cuadrantes simétricos. Tomando los promedios hallaremos las lecturas reducidas al centro del astro y como si éste hubiese sido medido en el instante intermedio entre las dos posiciones. Las observaciones en los cuadrantes deben realizarse en el menor tiempo posible a fin de minimizar errores. En la práctica se efectúan lecturas de varios pares de observaciones en las dos posiciones del instrumento (círculo izquierdo I y círculo derecho II) Operaciones Prácticas La sucesión de operaciones para llevar a cabo las prácticas de las observaciones solares, utilizando un teodolito topográfico o astronómico provisto de un filtro solar es la siguiente: (1) Materialización del topocentro con una estaca. Estacionamiento y nivelación del instrumento. (2) Determinación del error de índice (ε) instrumental. Para ello se bisecta un punto alejado cercano al horizonte en las dos posiciones del teodolito. La suma de ambas lecturas verticales debería dar 360º pero, como el aparato no está libre de este error,

5 la diferencia en más o en menos corresponderá al doble del error. El error de índice deberá sumarse con su signo a cada lectura vertical que se realice. (3) Se elige una mira en un punto alejado para evitar errores de paralaje y se realiza la lectura horizontal de la misma en primera posición (o círculo izquierdo). (4) Bisección del Sol tangenteando los hilos. Se toma la hora al minuto para interpolar la declinación. Se hacen las lecturas vertical y horizontal completando al menos tres parejas. (5) Se finaliza la serie bisectando nuevamente la mira para leer su ángulo vertical. (6) Se gira el instrumento en posición II (vuelta de campana) y se repite la sucesión anterior. (7) Se completa la planilla de observación promediando las lecturas horizontales y verticales de cada pareja y se promedian las lecturas horizontales de mira para cada posición. (8) Se toma la presión y la temperatura Planilla de Observación La siguiente tabla es un ejemplo de una planilla con las observaciones realizadas en campaña.

6 La declinación del Sol debe emplearse en la fórmula (2) interpolada para el día y la hora promedio de la observación Cálculo de la Distancia Cenital La distancia cenital leída, que denotaremos con Z, es la lectura vertical leída (Lv) compensada por el error de índice (ε): Z Lv ± ε. A partir de esta medida leída, podemos calcular la distancia cenital verdadera (Z), afectándola de las siguientes correcciones: Z Z + Ro - p (3) donde: Z es la distancia cenital leída. Ro es la refracción. Se calcula como Ro Rn (1+A) (1+B), donde a su vez Rn es la refracción normal (Rn 60.4 tg Z ), A es un coeficiente en función de la temperatura y B es un coeficiente en función de la presión atmosférica en mm de Hg. p es la paralaje anual del Sol. Se calcula como p po sen Z, donde po es la paralaje normal y vale 8.8 Los valores de A y B tabulados son los siguientes : t C A Presión B La planilla de cálculo a continuación nos permite organizar la reducción de las observaciones.

7 Promedios Promedio 1 (Pareja 1 + Pareja 6) / 2 Promedio 2 (Pareja 2 + Pareja 5) / 2 Promedio 3 (Pareja 3 + Pareja 4) / 2 Promedio final (Promedio 1 + Promedio 2 + Promedio 3) / 3

8 Residuos V 1 Promedio final Promedio 1 V 2 Promedio final Promedio 2 V 3 Promedio final Promedio 3 Error Cuadrático Medio dónde: n es el número de parejas. ε cm 2 ΣVi n ( n 1) 5.3- Acimut de una dirección por medio de observaciones de estrellas. Cuando el astro utilizado es una estrella, la observación se simplifica notablemente por ser éstas un punto y facilitar en consecuencia su bisección. Para el cálculo, no se tiene en cuenta la corrección por paralaje anual ya que, a diferencia del Sol, se desprecia por tomar un valor muy pequeño. Pero la observación con estrellas implica la confección previa de un programa de estrellas que contenga los elementos de calaje para poder así ubicarlas en la esfera celeste. Además, las observaciones se complican por el hecho de trabajar en horario nocturno y tener que dar vuelta campana del teodolito con el consiguiente peligro de perder la estrella Condiciones más favorables para la observación Para la determinación del acimut de una dirección mediante observaciones con estrellas, encontraremos la posición en la esfera celeste para la cual los valores de latitud (ϕ) adoptada y la distancia cenital (Z) leída, influyan lo menos posible con sus errores. Vamos a calcular entonces la influencia de dichos errores en la determinación del acimut (A). Del triángulo de posición, [Figura 5.1c], podemos deducir la siguiente expresión: sen δ senϕ cos Z sen Z cos ϕ cos A (4)

9 Diferenciando la ecuación (4) respecto a ϕ, Z y A, y haciendo constar que podemos considerar que δ constante debido a que el valor extraído del catálogo tiene un error muy insignificante a los valores que establecemos para la latitud o la distancia cenital, es decir que dδ 0. 0 (cos ϕ cos Z + sen Z senϕ cos A) dϕ + ( senϕ ( sen Z) cos Z cos ϕ cos A) dz + + ( sen Z cos ϕ sen A) da 0 (cos ϕ cos Z + sen Z senϕ cos A) dϕ ( sen ϕ sen Z cos Z cos ϕ cos A) dz + + ( sen Z cos ϕ sen A) da sen Z cos ϕ sen A da ( sen ϕ sen Z + cos Z cos ϕ cos A) dz (cos ϕ cos Z + sen Z sen ϕ cos A) dϕ (5) + Sea el conocido triángulo de posición, [Figura 5.3a], aplicando el teorema de los cinco elementos al lado 90-δ tenemos: Figura 5.3 a: Triángulo de posición cos δ cos H cos ϕ cos Z + sen Z sen ϕ cos A (6) sen ( 90 δ ) cosq sen Z cos (90 ϕ) sen (90 ϕ) cos Z cos ( π A) cos δ cos Q sen Z senϕ + cos ϕ cos Z cos A (7)

10 Del teorema del seno: sen (90 ϕ) sen Q sen (90 δ ) sen ( π A) sen A cos ϕ cos δ sen Q (8) Reemplazando (6), (7) y (8) en (5) obtenemos: sen Z cos δ sen Q da cos δ cos Q dz cos δ cos H dϕ da cos δ cos Q dz sen Z cos δ sen Q cos δ cos H dϕ sen Z cos δ sen Q da dz cos H dϕ (9) sen Z tg Q sen Z sen Q Para que la influencia de los errores cometidos en ϕ y Z sean mínimos, debemos buscar que el da sea lo más chico que se pueda. Para que esto último suceda, tenemos que hacer pequeñas las fracciones que constituyen el segundo miembro de la ecuación diferencial (9). Entonces, es necesario que sus denominadores sean lo más grande posible. Prescindiendo de las consideraciones que podemos hacer respecto al ángulo horario H y la distancia cenital Z, los dos denominadores serán máximos cuando el ángulo paraláctico Q 90º, en cuyo caso la tg Q y el sen Q 1. Es decir que para la determinación del acimut A es conveniente hacer las observaciones en el momento en que el ángulo paraláctico vale 90º, o sea en máxima elongación. Los elementos de calaje que nos permitirán ubicar las estrellas a observar deberán elegirse de acuerdo a la condición de máxima elongación vista en el Tema correspondiente: tg ϕ sen ϕ cos δ cos H, cos Z, sen A tg δ sen δ cos ϕ

11 En la práctica conviene observar estrellas a uno y otro lado del meridiano del lugar. Vale decir, al este y al oeste del meridiano Selección de estrellas Para conocer la ascensión recta (α) de las estrellas que se encuentren elongando, partimos de la fórmula del tiempo sidéreo θl α + H. Considerando las posiciones al este y al oeste con los signos correspondientes tendremos: θl α + H (para estrellas al oeste), θl α - H (para estrellas al este). A partir de la elección de una hora (HOA) del comienzo de las observaciones, la transformo en tiempo sidéreo (θl). Como cos H tg ϕ/tg δ y la declinación debe ser grande para que la estrella sea circunpolar (δ -60º), considerando además que para nuestra localización geográfica la latitud ϕ -31º 30, entonces: cos H tg -31º/tg -60º 4 h 30 m. Por lo tanto, será muy conveniente tomar valores para el ángulo horario H entre 4 h y 4 h 30 m. Finalmente, para estrellas al oeste del meridiano será α w θl 4 h y para estrellas al este del meridiano será α E θl + 4 h. Para calcular los elementos de calaje basta trabajar con los ángulos al minuto. Una vez estacionado el teodolito, nivelado y calculado su error de índice, se reproduce en el círculo vertical el Z de calaje y en el círculo horizontal el A de calaje. Por último, esperamos la hora de pasaje de la estrella. Si los elementos de calaje están bien calculados, las estrellas entrarán en el campo de visión del ocular, no necesariamente por el centro. Con el movimiento fino horizontal deberé llevar el hilo vertical coincidente con la estrella. Para colocar el calaje A, el cero del instrumento debe estar en el sur, es decir que el teodolito debe tener la dirección de la línea meridiana previamente determinada con algunos minutos de arco de error. Esto último debe haberse logrado con un acimut con Sol. El acimut por estrellas es mucho más preciso que el logrado con determinaciones del Sol o cualquier otro método.

12 Planilla de Observación La siguiente tabla es un ejemplo de una planilla con las observaciones realizadas en campaña. La planilla de cálculo es la misma que para el acimut con Sol, pero en este caso sin considerar la paralaje (Z Z + Ro). Una vez obtenidos los seis valores de acimutes de la mira, se promedian y se determina el error cuadrático medio de la misma manera que con las observaciones con Sol.

Determinación del acimut por observación al Sol

Determinación del acimut por observación al Sol Astronomía Geodésica Práctica Número 3 Determinación del acimut por observación al Sol ADVERTENCIA DE SEGURIDAD: en esta práctica nunca miréis al Sol directamente con el teodolito!!! 1 Objetivos En la

Más detalles

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

Sistemas de coordenadas en la esfera celeste

Sistemas de coordenadas en la esfera celeste astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica

Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica Equivalencias con el programa oficial de la asignatura de Topografía del Grado en Ingeniería Agronómica Bloque 1: CONCEPTOS BÁSICOS Tema 1: Generalidades Tema 2: Estudio de los errores en Topografía Bloque

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Construimos un CUADRANTE y aprendemos a utilizarlo.

Construimos un CUADRANTE y aprendemos a utilizarlo. Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación

Más detalles

10 Anexo A: Aspectos Básicos de la Radiación Solar

10 Anexo A: Aspectos Básicos de la Radiación Solar 10 Anexo A: Aspectos Básicos de la Radiación Solar 10.1 Relaciones astronómicas Tierra-Sol La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol 1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en

Más detalles

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad TRIGONOMETRÍA EJERCICIOS PROPUESTOS.. Indica la medida de estos ángulos en radianes. a) º c) º b) º d) º a) º rad c) rad º rad b) rad º rad d) rad rad º º Epresa en grados los siguientes ángulos. a) rad

Más detalles

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN SOBRE LA MEDIDA DEL ARCO DE SEPARACIÓN DE DOS ESTRELLAS BINARIAS Cuando se trata de medir el arco comprendido entre la posición en la bóveda

Más detalles

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado

Más detalles

Cálculo de altura de formación de auroras.

Cálculo de altura de formación de auroras. Cálculo de altura de formación de auroras. Andrea Polo Padilla E X P E D I C I Ó N S H E L I O S C A R L A M E N D O Z A R U T A D E L A S E S T R E L L A S 2 0 1 5 I E S L u c a s M a r t í n E s p i

Más detalles

Prácticas de Astronomía. 1 Descripción y características del Telescopio. 2 Localización de objetos.

Prácticas de Astronomía. 1 Descripción y características del Telescopio. 2 Localización de objetos. Prácticas de Astronomía. 1 Descripción y características del Telescopio. El telescopio de la Facultad de Ciencias tiene una apertura de D = 40cm, y una distancia focal de f = 180cm. El movimiento del telescopio

Más detalles

Determinación de la Longitud

Determinación de la Longitud Tema 7 Determinación de la Longitud Geográfica DETERMINACION DE LA LONGITUD DE UNA ESTACION. El objeto de la Astronomía de Posición es la determinación de las coordenadas geográficas terrestres de un Punto

Más detalles

A S T R O N O M Í A T e l u u rr ii oo

A S T R O N O M Í A T e l u u rr ii oo A S T R O N O M Í A Telurio Telurio A S T R O N O M Í A Se trata de un módulo de gran utilidad para estudiar los movimientos relativos de los tres astros que protagonizan nuestra vida diaria: el Sol, la

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Manual de Prácticas de Topografía III ÍNDICE

Manual de Prácticas de Topografía III ÍNDICE ÍNDICE PRÁCTICA 1 Partes del tránsito y nivel... 2 PRÁCTICA 2 Uso de estación total y libreta electrónica... 3 PRÁCTICA 3 Medición de una base con cinta de acero... 5 PRÁCTICA 4 Medición de un predio por

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.

A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e. Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Laboratorio de Física General Primer Curso (Mecánica) LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Fecha: 07/0/05 1. Objetivo de la práctica Comprobar la ley de conservación de la energía mecánica mediante

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este

Más detalles

APLICABILIDAD DE LA TRIGONOMETRÍA: MIDIENDO ALTURAS

APLICABILIDAD DE LA TRIGONOMETRÍA: MIDIENDO ALTURAS APLICABILIDAD DE LA TRIGONOMETRÍA: MIDIENDO ALTURAS AUTORIA NOEMI MÍNGUEZ LOPERA TEMÁTICA TRIGONOMETRÍA ETAPA 3º Y 4º DE ESO Resumen En este artículo vemos una de las aplicaciones de la tosca geometría

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

LEVANTAMIENTO TOPOGRAFICO

LEVANTAMIENTO TOPOGRAFICO TOPOGRAFÍA Es una ciencia que estudia el conjunto de procedimientos para determinar las posiciones relativas de los puntos sobre la superficie de la tierra y debajo de la misma, mediante la combinación

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

1. LA REPRESENTACIÓN DE LA TIERRA

1. LA REPRESENTACIÓN DE LA TIERRA 1. LA REPRESENTACIÓN DE LA TIERRA 1.1. La forma de la Tierra La Tierra tiene forma esférica, aunque no es una esfera perfecta, ya que se encuentra achatada en dos puntos geográficos, llamados polos. El

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

UNIDAD 1: ASTRONOMÍA DE POSICIÓN. MOVIMIENTOS DE LA TIERRA

UNIDAD 1: ASTRONOMÍA DE POSICIÓN. MOVIMIENTOS DE LA TIERRA 1 UNIDAD 1: ASTRONOMÍA DE POSICIÓN. MOVIMIENTOS DE LA TIERRA ESQUEMA: a) Dónde estamos: localizándonos Importancia de conocer nuestra situación, o la un objeto en el cielo. 1.- Coordenadas: Qué son? Para

Más detalles

Tema 0. REPASO. Javier Rodríguez Ruiz. Curso 2013-2014

Tema 0. REPASO. Javier Rodríguez Ruiz. Curso 2013-2014 Tema 0. REPASO Javier Rodríguez Ruiz Curso 2013-2014 1. Afirmaciones científicas 1.1. Los tres tipos de afirmaciones En toda teoría científica utilizamos afirmaciones que siempre consideraremos ciertas.

Más detalles

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA SISTEMA DE LANOS ACOTADOS AUNTES REALIZADOS OR ANTONIO CUESTA El sistema de lanos Acotados o Sistema Acotado constituye, al igual que el Sistema Diédrico, un sistema de representación reversible en el

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA

Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA Practica No. 02 LEVANTAMIENTO TOPOGRÁFICO DE UN TERRENO CON WINCHA Y JALÓNES AGRIMENSURA C D B A Canal de riego Parcela de Cultivo Objetivo: Realizar el levantamiento de una pequeña parcela usando instrumentos

Más detalles

Transformación de coordenadas

Transformación de coordenadas Anexo A Transformación de coordenadas Para realizar las transformaciones entre sistemas de coordenadas astronómicos, se utilizarán giros en el espacio, ya que todos los sistemas se suponen con el mismo

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Estudiando Trigonometría

Estudiando Trigonometría La idea es relacionar los segmentos de un triángulo rectángulo cualquiera con sus respectivos ángulos interiores de modo que tras un tiempo se generalice a cualquier situación def.: Teorema de Pitágoras

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

EQAlign 1.0. Manual de usuario

EQAlign 1.0. Manual de usuario Manual de usuario 1 EQAlign versión 1.0 EQAlign es un programa que asiste en la puesta en estación de una montura ecuatorial por el método de J. Scheiner, haciendo los cálculos basándose en las mediciones

Más detalles

Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es

Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es CURSO de FÍSICA DE LA ATMÓSFERA RADIACIÓN SOLAR Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es ÍNDICE SOL Y LA CONSTANTE

Más detalles

GEORAMA ROTACIÓN DE LA TIERRA EN TORNO AL SOL. ROTACIÓN EN TORNO A SÍ MISMA

GEORAMA ROTACIÓN DE LA TIERRA EN TORNO AL SOL. ROTACIÓN EN TORNO A SÍ MISMA GEORAMA INTRODUCCIÓN La presente práctica ha sido concebida para acompañar el aparato denominado Georama (del griego geos = Tierra, orama = vista o representación). Es una práctica suficientemente completa

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras

Tema 6. Seminario de Electrónica Instalaciones de Telecomunicaciones. Antenas y Líneas L Satélite de RTV. Infraestructuras Seminario de Electrónica 1º GM Técnico T Instalaciones de Telecomunicaciones Infraestructuras Comunes de Telecomunicación n en Viviendas y Edificios Satélite de RTV Generalidades La emisión y recepción

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO AUTORÍA JAIME MESA JIMÉNEZ TEMÁTICA PROGRAMACIÓN EN CONTROL NUMÉRICO ETAPA F. P. Resumen La programación en control numérico

Más detalles

Trabajo y energía: ejercicios resueltos

Trabajo y energía: ejercicios resueltos Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la

Más detalles

CONTROL DE LA VARIEDAD

CONTROL DE LA VARIEDAD EL CONTROL DE LA VARIEDAD 1 y ALGUNAS APLICACIONES DEL ABC. ------------------------------------------------------------------------------------------- INTRODUCCION. En el trabajo El gráfico ABC como técnica

Más detalles

Cádiz y las expediciones científicas del siglo XVIII

Cádiz y las expediciones científicas del siglo XVIII Cádiz y las expediciones científicas del siglo XVIII Nuevos métodos y nuevos instrumentos: la navegación astronómica en la edad moderna 62 Edición de los Cursos de Verano de Cádiz 7 de julio de 2011 Es

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Manual de instrucciones. Nivel topográfico Builder's de 22X Modelo No. 40-6910

Manual de instrucciones. Nivel topográfico Builder's de 22X Modelo No. 40-6910 7443H-Spanish_Manuals 10/24/13 4:05 PM Page 1 Nivel topográfico Builder's de 22X Modelo No. 40-6910 Manual de instrucciones Felicitaciones por haber elegido este nivel topográfico Builder s de 22X. Le

Más detalles

Medición de la aceleración de la gravedad mediante plano inclinado

Medición de la aceleración de la gravedad mediante plano inclinado Medición de la aceleración de la gravedad mediante plano inclinado Lopez, Johanna Giselle (gyf_lola@hotmail.com) Martinez Roldan, Antu (antucolomenos@hotmail.com) Viglezzi, Ramiro (ramiro.viglezzi@gmail.com)

Más detalles

Cosmología para la enseñanza media

Cosmología para la enseñanza media Cosmología para la enseñanza media P. Kittl (1) y G. Díaz (2) (1) Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 2777, Santiago, Chile (2)

Más detalles

XIX OLIMPIADA ESPAÑOLA DE FÍSICA.

XIX OLIMPIADA ESPAÑOLA DE FÍSICA. P Exp. Estudio experimental de un generador de corriente Introducción; objetivos Según la ley de Faraday, cuando cambia el flujo magnético a través de un circuito se induce en él una fuerza electromotriz

Más detalles

TALLER DE ASTRONOMIA

TALLER DE ASTRONOMIA TALLER DE ASTRONOMIA Es necesario levantar al cielo los ojos para poder ver la tierra Francisco José de Caldas Desde la antigüedad el hombre ha construido monumentos y observatorios astronómicos para seguir

Más detalles

CIENCIAS SOCIALES 5º EL UNIVERSO

CIENCIAS SOCIALES 5º EL UNIVERSO EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.

Más detalles

Medición del radio de la Tierra

Medición del radio de la Tierra Metodología del Álgebra y la Geometría en la Enseñanza Secundaria Metodología de los Recursos en la Enseñanza de las Matemáticas en Secundaria Medición del radio de la Tierra Facultad de Matemáticas 26

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas

Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas Primer Simposio Latinoamericano para la integración de la tecnología en el aula de ciencias y matemáticas PROBLEMAS DE OPTIMIZACIÓN 1.-Entre todos los rectángulos de perímetro 10 cm. encontrar el de mayor

Más detalles

GEOMETRÍA 1.- INTRODUCCIÓN:

GEOMETRÍA 1.- INTRODUCCIÓN: GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones

Más detalles

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 14 PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes

Más detalles

Cómo motivar a los estudiantes mediante actividades científicas atractivas TEODOLITO

Cómo motivar a los estudiantes mediante actividades científicas atractivas TEODOLITO TEODOLITO Enrique González Gisbert Vicente Manzana Mondragón Carlos Colás Pérez COLEGIO LICEO CORBÍ Valencia Objetivos: En los programas de diversificación se dan una serie de circunstancias, como las

Más detalles

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Profesor(a): Juana Inés Pérez Zárate Periodo: Enero Junio 2012 Topic:

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

1.1Estándares de longitud, masa y tiempo

1.1Estándares de longitud, masa y tiempo CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás

Más detalles

Curso sobre el Sistema Solar: Lección nro. 1

Curso sobre el Sistema Solar: Lección nro. 1 Curso sobre el Sistema Solar: Lección nro. 1 Que es el Sistema Solar? a1) Aspecto del Firmamento: Idea General. Comenzaremos por considerar lo que es posible conocer del Sistema Solar sin la ayuda de ningún

Más detalles

(* seguiremos religiosamente a Chavasse adaptándolo a nuestras necesidades).

(* seguiremos religiosamente a Chavasse adaptándolo a nuestras necesidades). DESBASTE El objetivo del desbaste es el de eliminar la mayor cantidad de vidrio posible acercándose a la forma definitiva que tendrá el espejo buscando la forma esférica. En este caso (D=120 mm. F7), la

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

MECANIZADO DE METALES.

MECANIZADO DE METALES. MECANIZADO DE METALES. Uno de los procesos de conformación es el de arranque de viruta. En contraste con otros métodos, en los procesos de conformación con arranque de viruta hay una gran pérdida de material

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Teclado sobre una PDA para Personas con Parálisis Cerebral

Teclado sobre una PDA para Personas con Parálisis Cerebral Manual de Usuario - 1 - - 2 - Teclado sobre una PDA para Personas con Parálisis Cerebral Capítulo 1. MANUAL DE USUARIO 12.1 Descripción de la aplicación Este programa le permitirá llevar a cabo las siguientes

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Curso Básico de Astronomía 2011-1

Curso Básico de Astronomía 2011-1 Curso Básico de Astronomía 2011-1 Sistemas de Coordenadas Astronómicas Dr. Lorenzo Olguín Ruiz 1 Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 4. Coordenadas Galácticas 2 Coordenadas

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

ACTIVIDAD 2.- 1.- Definiciones.

ACTIVIDAD 2.- 1.- Definiciones. ACTIVIDAD 2.- Localización de astros mediante coordenadas (Altura y Acimut) Por Sr. Federico Fernández Porredón. Catedrático de secundaria. IES San Hermenegildo, Tenerife. Dr. Miquel Serra-Ricart. Astrónomo

Más detalles

Fórmulas y funciones

Fórmulas y funciones 05... Fórmulas y funciones En este tema vamos a profundizar en el manejo de funciones ya definidas por Excel, con el objetivo de agilizar la creación de hojas de cálculo, estudiando la sintaxis de éstas

Más detalles