INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO
|
|
- Carlos Luna Soriano
- hace 5 años
- Vistas:
Transcripción
1 INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. En física la energía se define como la propiedad de un objeto o de un sistema en virtud de la cual puede realizar trabajo, se mide en Joule (J). El trabajo es una magnitud escalar, a pesar de ser el producto de dos vectores como lo muestra la siguiente definición: W = F d La expresión anterior también se puede expresar como: W = F d cos α Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. F m α m fig. 1 d La unidad de medida del trabajo en el SI es el Joule. De la simple observación de esta definición, se puede apreciar que el trabajo es cero si se cumple alguno de los siguientes puntos: I) La fuerza es nula II) El desplazamiento es nulo III) La fuerza y el desplazamiento son perpendiculares entre sí. Nota: Sobre el tercer punto recuerda que cos 90º = 0, de ahí que el trabajo es cero. Así también, como cos 180º = -1, es decir, si la fuerza y el desplazamiento son opuestos (α = 180º), entonces el trabajo es negativo. Finalmente se realiza un trabajo positivo sobre un cuerpo, cuando la fuerza tiene el mismo sentido que el desplazamiento (0 º < α < 90 º )
2 Trabajo neto: En el caso que se ejerza más de una fuerza constante, al mismo tiempo sobre un cuerpo, en la ecuación W = F d cos α, F representa el módulo de la fuerza neta o resultante y así podemos obtener el trabajo neto. En el ejemplo mostrado en la figura 2, la fuerza neta es F = F 1 + F 2 + F 3 + F 4 F 3 F 1 F 4 F 2 fig. 2 A continuación se muestran dos gráficos de fuerza versus desplazamiento (sus módulos). En ambos casos el área achurada representa el trabajo realizado por la fuerza. F(N) F(N) d(m) d(m) Gráfico para una fuerza constante Gráfico para una fuerza variable 2
3 Trabajo realizado al subir o bajar un cuerpo: al levantar o bajar un cuerpo con velocidad constante aplicando una fuerza F 0 tal como lo muestra la figura 3, se puede observar que sobre el cuerpo, además actúa la fuerza peso (P). F 0 P h fig. 3 Al subir el cuerpo, el trabajo hecho por F 0 es positivo y es igual a mgh, el que realiza P es negativo y es igual a -mgh. Cuando el cuerpo baja, F 0 hace un trabajo -mgh y P realiza un trabajo mgh. Nota: Cuando se pregunta por el trabajo necesario para levantar o bajar un cuerpo, es el trabajo mínimo, es decir, para que el objeto se mueva con velocidad constante. Potencia Mecánica Para ilustrar el significado de potencia pondremos como ejemplo, un objeto que es arrastrado por una fuerza F 0 (ver figura 4) horizontalmente, a lo largo de 12 metros por un camino rugoso y con una velocidad constante de m/s. Si se repite el experimento bajo las mismas condiciones, pero el objeto ahora viaja a 20 m/s, entonces se puede afirmar que, en ambos casos el trabajo hecho por la fuerza F 0 es el mismo, pero la potencia desarrollada en el segundo fue mayor, ya que el tiempo empleado fue menor. F 0 desplazamiento 12 m fig. 4 La potencia es una magnitud escalar que mide la rapidez con que se realiza un trabajo. Corresponde a la razón entre el trabajo realizado y el tiempo que toma en realizarlo. La unidad de potencia en el SI es el Watt. W P = t [Watt] 1 Watt = Joule 1 segundo La potencia también se expresa en Kilowatt (KW) o caballo de fuerza (HP) 1 KW = 00 W 1 HP = 746 W 3
4 Ejemplos 1. El trabajo realizado por la fuerza peso sobre un cuerpo, es siempre igual a cero si éste se mueve A) verticalmente hacia arriba. B) horizontalmente. C) verticalmente hacia abajo. D) descendiendo por un plano inclinado. E) verticalmente hacia arriba o hacia abajo. 2. Cuál de las siguientes afirmaciones es verdadera, con respecto a un cuerpo que sube por un plano inclinado rugoso con velocidad constante? A) El trabajo realizado por el peso del cuerpo es positivo. B) El trabajo hecho por la fuerza normal sobre el cuerpo es positivo. C) El trabajo hecho por el roce sobre el cuerpo es negativo. D) Todas las anteriores son verdaderas. E) Ninguna de las anteriores es verdadera 3. La figura 5, muestra la fuerza que actúa sobre un cuerpo paralelamente a su trayectoria, en función de la distancia x. Cuál es el trabajo realizado por la fuerza cuando el cuerpo va de x = 2m a x = 6m? A) 6 J B) J C) 32 J D) 50 J E) 64 J F(N) fig. 5 x(m) 4. Cuando una persona levanta un niño de kg hasta una altura de 1,2 m, ella realiza un trabajo de A) 1,2 º J B) 1,2 1 J C) 1,2 2 J D) 1,2 3 J E) 1,2 4 J 4
5 PROBLEMAS DE SELECCIÓN MÚLTIPLE 1. Si un vehículo se mueve en línea recta a través de una línea horizontal con rapidez constante, y luego sube en línea recta a través de una pendiente de 30º con respecto a la horizontal, también con rapidez constante, entonces se puede afirmar que los trabajos realizados por las fuerzas netas en ambos tramos A) nunca es nulo. B) siempre es nulo. C) es nulo en la horizontal, pero no en la pendiente. D) es nulo en la pendiente, pero no en la horizontal. E) Ninguna de las anteriores. 2. El gráfico de la figura 6 representa el módulo de la fuerza neta que actúa sobre un cuerpo en función de su rapidez. El área bajo la curva representa A) impulso. B) variación de momentum. C) trabajo mecánico. D) aceleración. E) potencia mecánica. F fig. 6 V 3. En cuál de los siguientes casos es mayor el trabajo realizado? A) F(N) B) F(N) C) F(N) 20 d(m) 20 d(m 20 d(m) D) F(N) E) F(N) 20 d(m) 20 d(m) 5
6 4. Cuando un hombre sube por una escalera de a metros de largo, hasta una terraza ubicada a b metros del suelo, con una caja de c kilogramos, considerando g = m/s 2, el trabajo realizado para subir la caja hasta la terraza es igual a A) b c B) a c C) a b D) a b c E) (a + b) 5. Un motor de potencia P = 50 KW acciona un vehículo durante 2h. Cuál es el trabajo realizado por el motor? A) 0,1 KWh B) 1,0 KWh C) KWh D) 0 KWh E) 0 KW 6. La potencia mecánica P de una máquina A que realiza su trabajo W en un tiempo t, comparado con la potencia P de una maquina B que realiza un trabajo 3 W en un tiempo 1, permite asegurar que P es 3 A) 9P B) 3P C) P D) P/3 E) P/9 7. Un bloque de 4 kg inicialmente en reposo, es empujado por una fuerza constante y horizontal a lo largo una distancia de 15 m sobre una superficie lisa y horizontal, durante 2 s. El trabajo realizado en Joules es A) 50 B) 150 C) 250 D) 350 E) 450 6
7 Las preguntas 8, 9, y 11 se refieren a la siguiente información: Un cuerpo de masa 5 kg inicialmente en reposo en una superficie rectilínea, sufre la acción de una fuerza de intensidad f 1 durante s. Luego de lo cual es retirada, transcurridos s se aplica una fuerza de intensidad f 2 en la dirección del movimiento pero en sentido contrario hasta anular la velocidad del cuerpo (ver figura 7). 8. El trabajo mecánico total realizado sobre el cuerpo entre los y 20 s, en Joules, es igual a A) 80 B) 30 C) 20 D) 16 E) 0 V(m/s) f 1 f fig. 7 t(s) 9. El valor de f 1 es A) 160 N B) 80 N C) 16 N D) 8 N E) Ninguna de las anteriores.. El valor de f 2 es A) 160 N B) 120 N C) 80 N D) 40 N E) Ninguna de las anteriores 11. El trabajo neto realizado sobre el cuerpo entre 0 y 40 s es: A) 0 J B) 40 J C) 80 J D) 160 J E) Ninguna de las anteriores 7
8 12. Una máquina P levanta un cuerpo de masa 1 kg hasta 2m de altura, en 1 s, con movimiento rectilíneo uniforme siguiendo la vertical. Otra máquina Q acelera uniformemente en un plano horizontal un cuerpo de peso 30 N, desde el reposo, hasta una velocidad de m/s en un minuto. Despreciando el roce con el plano horizontal y la resistencia del aire y además g = m/s 2 podemos asegurar que A) la fuerza ejercida por P es menor que la ejercida en Q. B) el trabajo realizado en P es mayor que el realizado en Q. C) la potencia desarrollada por P es menor que la realizada en Q. D) los trabajos y las potencias en P y Q son iguales. E) Ninguna de las anteriores. 13. Cuando un móvil viaja a C (m/s) en línea recta, la resistencia total que se opone a su movimiento es de D (N). La potencia necesaria para mantenerlo en movimiento a esa velocidad es: A) 0 Watt B) C D J C) D C Watt D) D C Watt E) C D J 14. Un cuerpo de masa 2 M es subido hasta una altura 3 h por un agente exterior en un tiempo 2 t. Si el movimiento es uniforme. La rapidez con que se realizó el trabajo es A) 6 Mg h/t B) 3 Mg h/t C) 3 Mg h/2 t D) Mg h/2 t E) Mg h/6 t 8
9 Las preguntas 15, 16, 17, 18, 19 y 20 se refieren a la siguiente información: Una caja de 20 kg esta en reposo en un plano horizontal, sobre ella actúan durante 4 s dos fuerzas constantes F 1 y F 2 perpendiculares entre sí, de módulos 6 N y 8 N. En la figura 8 se muestra una vista superior de la situación. 6N 8N 15. La magnitud de la fuerza resultante R es fig. 8 A) 2 N B) 6 N C) 8 N D) N E) 12 N 16. El módulo de la aceleración en m/s 2 es A) 0,5 B) 5 C) D) 20 E) El módulo del desplazamiento a los 4 s es A) 0,5 m B) 2 m C) 4 m D) 24 m E) 40 m 18. El trabajo realizado por la fuerza F 1 es A) 0,6 J B) 4 J C) 6 J D) 14,4 J E) 25,6 J 9
10 19. El trabajo realizado por la fuerza F 2 es A) 0,8 J B) 4 J C) 8 J D) 14,4 J E) 25,6 J 20. El trabajo realizado por la fuerza resultante R es A) 40 J B) 25,6 J C) 24 J D) 14,4 J E) 0 J
11 Solución ejemplo 1 El trabajo realizado por una fuerza es nulo, cuando es perpendicular al desplazamiento. En el caso de la fuerza peso, esta situación se produce cuando el cuerpo se mueve horizontalmente. La alternativa correcta es B Solución ejemplo 2 Que el cuerpo suba con velocidad constante implica que el trabajo realizado por la fuerza neta es nulo. Analicemos el trabajo realizado por cada una de las fuerzas que están actuando sobre el cuerpo: V = cte N f r P El trabajo que realiza la fuerza normal es nulo, ya que es perpendicular al desplazamiento. El trabajo que realiza la fuerza peso es negativo, ya que la componente paralela al desplazamiento esta en sentido contrario a éste. El trabajo realizado por la fuerza de roce es siempre negativo, ya que se opone al desplazamiento. La alternativa correcta es C Solución ejemplo 3 Para calcular el trabajo, debemos encontrar el área entre x = 2 m y x = 6 m. F(N) J 16J 2 6 x(m) La alternativa correcta es C 11
12 Solución ejemplo 4 El trabajo realizado para subir un cuerpo, se calcula como: W = m g h = 120 J La alternativa correcta es C 12
TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.
C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista
Trabajo, fuerzas conservativas. Energia.
Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta
1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE
Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.
Trabajo, energía y potencia
Empecemos! Si bien en semanas anteriores hemos descrito las formas en las que se puede presentar la energía y algunas transformaciones que pueden darse en el proceso de producción, distribución y uso de
TRABAJO Y ENERGÍA - EJERCICIOS
TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía
Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética
Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de
Energía. Preguntas de Opción Múltiple.
Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto
Tema 3. Trabajo y Energía
Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía
FRICCIÓN TRABAJO Y POTENCIA.
INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.
1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.
A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos
El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d
El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento
Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración
Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre
Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd
1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d
14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N
Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo
INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.
GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros
1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.
El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F
TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.
TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes
LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO
LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo
E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA
Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1
GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA
Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde
Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004
Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por
INTRODUCCIÓN A VECTORES Y MAGNITUDES
C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.
Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.
Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema
W = Fx. Trabajo Mecánico y Energía
El Trabajo W inver4do sobre un sistema por un agente que ejerce una fuerza constante sobre el sistema es el producto de la magnitud F de la fuerza, la magnitud X del desplazamiento del punto de aplicación
2.3. ASPECTOS ENERGÉTICOS
.3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)
EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?
8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las
GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO
LICEO LUIS CRUZ MARTINEZ DEPARTAMENTO DE FÍSICA RODRIGO VEJAR ANCATÉN GUÍA MAGNITUDES FÍSICAS SEGUNDO AÑO Contenido: Aprendizaje esperado: Magnitudes Físicas Comprender la naturaleza y tipos de magnitudes
5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010
UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten
Conservación de la Energía Mecánica NOMBRE: CURSO:
NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación
Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica
Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas
FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA.
FÍSICA 0 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. Se puede definir informalmente la energía que posee un cuerpo como una medida de su capacidad para realizar trabajo Julio (J): es la unidad de energía
Relación de energía cinética y potencial con el trabajo
Relación de energía cinética y potencial con el trabajo La energía se encuentra presente en toda la materia, en seres vivos y objetos inertes. Se puede afirmar el viento, la electricidad, el agua de un
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.
Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2008 AÑO 2008 1).. a) Principio de conservación de la energía mecánica b) Desde el borde de un acantilado de altura h se deja caer libremente
1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.
Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-
Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba
Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
MÓDULO DE APRENDIZAJE III
MÓDULO DE APRENDIZAJE III ENERGÍA FÍSICA MENCIÓN MATERIAL: FM-14 En la foto se aprecian molinos llamados aerogeneradores. Estos aparatos aprovechan los vientos para producir la energía eólica, que es la
TRABAJO Y ENERGÍA Página 1 de 13
TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria
Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones
Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.
APUNTES DE FÍSICA Y QUÍMICA
Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA
FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA
PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida
PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.
PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal
DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I
DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
PRIMERA EVALUACIÓN. Física del Nivel Cero A
PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple
6 Energía mecánica y trabajo
6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que
2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS
COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,
TRABAJO Y ENERGÍA. Campos de fuerzas
TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012
Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de
Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento
De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual
TRABAJO Y POTENCIA. LA ENERGÍA
Tema 5 TRABAJO Y POTENCIA. LA ENERGÍA 1 - CONCEPTO DE TRABAJO Generalmente suele asociarse la idea del trabajo con la del esfuerzo. En ciertos casos es verdad, como cuando una persona arrastra un objeto,
FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.
1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;
El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad
3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad
d s = 2 Experimento 3
Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición
Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.
INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.
TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA
TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en
Capítulo 4 Trabajo y energía
Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección
Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i
Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K
EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.
EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.
Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable
Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas
PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway
PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos
Capítulo 2 Energía 1
Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre
Guía para el examen de 4ª y 6ª oportunidad de FÍsica1
4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
a. Dibujar los paralelogramos completos, señalar los vértices con letras.
PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma
LANZAMIENTOS VERTICALES soluciones
LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de
TEMA 7: TRABAJO Y ENERGÍA.
Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
ACTIVIDADES DE RECUPERACIÓN ALUMNOS/AS CON CIENCIAS NATURALES DE 2º E.S.O. PENDIENTE. Primer Bloque de Unidades:
ACTIVIDADES DE RECUPERACIÓN ALUMNOS/AS CON CIENCIAS NATURALES DE 2º E.S.O. PENDIENTE Primer Bloque de Unidades: Unidad 1 Materia y energía Unidad 2 Las fuerzas y sus efectos Unidad 3 El calor y la temperatura
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
Módulo 1: Mecánica Energía
Módulo 1: Mecánica Energía Por qué ayuda la energía? El movimiento, en general, es difícil de calcular Y si usamos fuerzas, aceleración, etc. se complica porque son todo vectores (tienen módulo y dirección).
IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO
UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.
Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton
Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento
FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I
FS-2 Ciencias Plan Común Física 2009 Descripción del movimiento I Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.
Energía mecánica. Segundo medio Profesora Graciela Lobos G.
Energía mecánica Segundo medio Profesora Graciela Lobos G. Energía cinética (K) Un cuerpo posee energía cuando tiene la capacidad de realizar un trabajo, es decir, cuando es capaz de aplicar una fuerza
Bolilla 5: Trabajo. Energía. Potencia
Bolilla 5: Trabajo. Energía. Potencia 1 Bolilla 5: Trabajo. Energía. Potencia 5.1 Trabajo Sean r i y r f, respectivamente, las posiciones inicial y final de un cuerpo, s la trayectoria seguida por el mismo
TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es
TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de
CUESTIONARIOS FÍSICA 4º ESO
DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 5 Trabajo, potencia y energía Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página PRIMER CUESTIONARIO.
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
Bloque II: Principios de máquinas
Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto
FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011
FÍSIC º DE BCHILLER Problemas: CMP ELÉCRIC NVIEMBRE.0. Dos cargas puntuales iguales, de, 0 6 C cada una, están situadas en los puntos (0,8) m y B (6,0) m. Una tercera carga, de, 0 6 C, se sitúa en el punto
JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica
Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
2 )d = 5 kg x (9,8 m/s 2 + ( ) 2
Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos
INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA
INTRO.ENERGÍA MECÁNICA Y TRABAJO La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico o biológico sería
ENERGÍA (II) FUERZAS CONSERVATIVAS
NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la
TRABAJO Y ENERGÍA. r r = [Joule]
U R S O: FÍSIA OMÚN MATERIAL: F-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).
FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga
El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5
-Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:
Contenidos Didácticos
INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7
Trabajo y energía: ejercicios resueltos
Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la
Nivelación de Matemática MTHA UNLP 1. Vectores
Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:
PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010
PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com