(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1)."

Transcripción

1 INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: 1 : : 3 : { x t y ( t 1); { x 1 t y t ( t 1); { x y 1 t ( t 1). alculamos en cada tramo el módulo del vector velocidad: 1 (t) (t, ) 1(t) (1, ) 1(t) 1; (t) (1 t, t) (t) ( 1, 1) (t) ; 3 (t) (, 1 t) 3(t) (, 1) 3(t) 1. on estos datos, la integral de línea se calcula como sigue: (x + y) ds (x + y) ds + 1 (x + y) ds + (x + y) ds 3 1 t dt dt + (1 t) dt + 1. (b) Si escribimos la circunferencia x + y ax de la forma (x a/) + y a /4, su parametrización viene dada por : { x (a/) + (a/) cos t y (a/) sen t ( t π). De este modo, (t) ( a sen t/, a cos t/) (t) a/. 1

2 Por tanto, π a x + y a ds (1 + cos t) dt π a a 1 + cos t dt a π π (1 cos t) 1/ d(1 cos t) a (1 cos π t)1/. 1 cos t 1 cos t dt 16. alcular (x 3 y + y 3 x/3) dx + ax dy, siendo el contorno de la región definida por x + y ay <, y > a (a > ). El contorno del semicírculo indicado se descompone en dos curvas (el diámetro inferior y la semicircunferencia superior), cuyas parametrizaciones son las siguientes: 1 : { x t { x a cos t y a ( a t a); : y a + a sen t ( t π). alculamos por separado la integral a lo largo de cada curva. En el caso de 1, como dx 1, dy, resulta: a (x 3 y + y 3 x/3) dx + ax dy (t 3 a + a 3 t/3) dt. 1 a En, dx a sen t dt, dy a cos t dt, de modo que: (x 3 y + y 3 x/3) dx + ax dy En definitiva, π a5 3 [a 3 cos 3 t(a + a sen t) + a cos t(a + a sen t) 3 /3] ( a sen t) dt + π π a a cos t a cos t dt (3 sen t cos 3 t + 3 sen t cos 3 t + sen t cos t + 3 sen t cos t π +3 sen 3 t cos t + sen 4 t cos t) dt + a 4 cos 3 t dt. (x 3 y + y 3 x/3) dx + ax dy.

3 17. Hallar x + y z + 1. (y + z ) dx + (z + x ) dy + (x + y ) dz a lo largo de la curva : x + y z, La curva dada es la intersección del paraboloide x + y z con el plano x + y z + 1. Si sustituimos el valor de z en la primera ecuación, la curva se puede expresar como: : { x + y x + y + z x + y + 1 o bien : { (x 1) + (y 1) 4 z x + y + 1, la cual puede parametrizarse como: x 1 + cos t : y 1 + sen t z 3 + cos t + sen t ( t π). Sustituyendo estos valores y sus derivadas en la integral, resulta: (y + z ) dx + (z + x ) dy + (x + y ) dz π π [(1 + sen t) + (3 + cos t + sen t) ] ( sen t) dt + + π π [(3 + cos t + sen t) + (1 + cos t) ] ( cos t) dt [(1 + cos t) + (1 + sen t) ] ( sen t + cos t) dt (4 cos t 4 sen t + 4 cos t 4 sen t + 4 cos 3 t 4 sen 3 t) dt. 18. Hallar las longitudes de los arcos de las siguientes curvas: (a) x 3t, y 3t, z t 3 entre los puntos (,, ) y (3, 3, ). (b) y a arc sen(x/a), z a 4 ln a x a + x entre los puntos (,, ) y (x, y, z ). Si la curva se parametriza por el vector de posición r (t), con t t t 1, la longitud viene dada por la fórmula l t1 t r (t) dt. (a) En este caso, r (t) (3t, 3t, t 3 ), de donde r (t) (3, 6t, 6t ) y r (t) 3(1 + t ). 3

4 Teniendo en cuenta además que (,, ) r () y (3, 3, ) r (1), resulta: l 1 3(1 + t ) dt 5. (b) Si llamamos x t, la curva se parametriza por De aquí obtenemos: (t) (t, a arc sen(t/a), a 4 ln a t ), t x. a + t ( a (t) 1, a t, a ) (a t (t) 3a t ) (a t ). Por tanto, l x 3a t (a t ) dt x x ( 1 x a 1 t a dt x a x a 4 ln x a. x + a a ) t a x dt ( 1/a t a 1/a ) dt t + a 19. Hallar la masa del arco de curva x at, y (a/)t, z (a/3)t 3 ( t 1) si la densidad en cada punto vale ρ y/a. La masa se calcula mediante la integral de línea m ρ ds, a lo largo de la curva. En este caso, la curva se parametriza por la función (t) (at, at /, at 3 /3), de donde (t) (a, at, at ) y (t) a 1 + t + t 4. omo la densidad en cada punto de vale ρ((t)) t, deducimos que m 1 at 1 + t + t 4 dt. alculamos en primer lugar la integral indefinida: I t (t 1 + t + t 4 dt t + 1 ) dt t (t + 1/ 3/ ) + 1 dt. 4

5 Haciendo el cambio de variable t + 1/ tg u, resulta 3/ En definitiva, I m a sec 3 u du 3 16 [ t + 1/ t4 + t + 1 3/ 3 1 [ sec u tg u + ln sec u + tg u ] + ln t + 1/ + 3/ ] t4 + t at 1 + t + t 4 dt 3a [ ln( ) ].. Hallar las coordenadas del centro de gravedad del contorno del triángulo esférico x + y + z a, x, y, z. Sean ( x, y, z) las coordenadas del centro de gravedad. Debido a la simetría de la figura, x y z y, si la densidad se supone constante, x 1 x ds. Descomponemos el l triángulo esférico en tres curvas que parametrizamos como sigue: 1 : : 3 : En los tres casos, r (t) a, de modo que: l x ds x a cos t y a sen t z x y a cos t z a sen t x a cos t y z a sen t, t π/,, t π/,, t π/, π/ π/ 1 ds a dt + a dt + x ds + x ds + x ds 1 3 π/ En definitiva, x y z 4a 3π. a cos t a dt + π/ π/ a cos t a dt a. a dt 3aπ ; 5

6 1. alcular las siguientes integrales de línea: x dy + y dx, x dy y dx donde O es el origen de coordenadas y A (1, ), a lo largo de las trayectorias: (a) segmento que une O con A. (b) parábola con eje OY. (c) poligonal que se compone de un segmento OB en el eje X y un segmento BA paralelo al eje Y. En la primera de las integrales, si llamamos P (x, y) y, Q(x, y) x, como P y 1 Q, entonces la integral es independiente de la trayectoria. Basta encontrar una función F : R R cuyo gradiente sea F (P, Q). Resulta en este caso F (x, y) xy, con lo que la integral vale x dy + y dx F (A) F (O). En la segunda integral, si llamamos P (x, y) y, Q(x, y) x, entonces P Q 1, y 1, de modo que el valor de la integral depende de la trayectoria descrita. En cada caso, para resolver la integral debemos parametrizar la curva correspondiente. (a) La recta que contiene el segmento que une O con A tiene por ecuación y x. Así pues, 1 1 x dy y dx x dx x dx dx. (b) La ecuación general de la parábola con eje OY es y ax. omo debe pasar por el punto A, entonces a. Así pues, x dy y dx x 4x dx x dx x dx 3. (c) La poligonal indicada está formada por el segmento OB, donde B (1, ) y el segmento BA. El primero de ellos se parametriza por x t, y ( t 1), y el segundo por x 1, y t ( t ). La integral vale: x dy y dx x dy y dx + x dy y dx OB 1 dt + BA 1 dt. 6

7 . Hallar la integral de línea z bt ( t π). y dx+z dy+x dz donde es la curva x a cos t, y a sen t, Sustituyendo en la integral los valores x a cos t, y a sen t, z bt, dx a sen t dt, dy a cos t dt, dz b dt, tenemos: I π a ( a sen t + abt cos t + ab cos t) dt π [ (1 cos t) dt + ab t sen t π π ] sen t dt πa. 3. alcular yz dx + xz dy + xy dz donde consta de los segmentos de rectas que unen (1,, ) con (, 1, ) y con (,, 1). Descomponemos la trayectoria en los dos segmentos de recta cuyas parametrizaciones respectivas son: { x 1 t x + y 1 1 : y t ( t 1), z z : { x y + z 1 Entonces la integral se calcula como sigue: F F + 1 F 1 x y 1 t z t dx + dy + t(1 t) + ( t 1). 1 t(1 t) + dy + dz. 4. Sea una trayectoria suave. (a) Probar que F si F es perpendicular a (t) a lo largo de la curva (t). (b) Probar que F F si F es paralelo a (t) a lo largo de (t). 7

8 Por definición, t1 F F ((t)) (t) dt. t (a) Si F es perpendicular a, entonces el producto escalar F ((t)) (t) es cero, de modo que la integral se anula. (b) Por definición de producto escalar, F ((t)) (t) F ((t)) (t) cos α. omo los vectores F y son paralelos, cos α 1, de modo que t1 F F ((t)) (t) dt t F. 5. Sea F (x, y, z) (z 3 + xy, x, 3xz ). Probar que F si es el perímetro de cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Si llamamos P (x, y, z) z 3 + xy, Q(x, y, z) x, R(x, y, z) 3xz, entonces P y Q P z R Q z R y x, 3z,. Esto indica que rot F y el campo vectorial F es conservativo. Deducimos entonces que F es independiente de la trayectoria. Al ser cerrada dicha trayectoria, F. 6. Observando que el integrando es un campo gradiente, calcular las siguientes integrales curvilíneas: (a) (b) (c) (d) (3, 4) (,1) (1,) (,1) (a,b) (,) (,3, 4) (1,1,1) x dx + y dy. y dx x dy x a lo largo de caminos que no se corten con el eje Y. e x (cos y dx sen y dy). x dx + y dy z 3 dz. 8

9 (a) Si F (x, y) (x, y), entonces F f, donde f(x, y) (x + y )/. Así pues, (3, 4) (,1) F (x, y) ds f(3, 4) f(, 1) 1. (b) En este caso, F (x, y) (y/x, 1/x), de modo que F (x, y) f, con f(x, y) y/x. Entonces, (1,) (,1) F (x, y) ds f(1, ) f(, 1) 3/. (c) El campo vectorial F (x, y) (e x cos y, e x sen y) es el gradiente de f(x, y) e x cos y. Así pues, (a,b) (,) F (x, y) ds f(a, b) f(, ) e a cos b 1. (d) Análogamente a los casos anteriores, F (x, y, z) (x, y, z 3 ) f, con f(x, y, z) x / + y 3 /3 z 4 /4. Por tanto, (,3, 4) (1,1,1) F (x, y, z) ds f(, 3, 4) f(1, 1, 1) Probar que P (x, y) dx + Q(x, y) dy máx P + Q a lo largo de. L M donde L es la longitud de y M Utilizando las propiedades de la integral, P (x, y) dx + Q(x, y) dy b (P, Q) ds (P, Q) (t) dt a b (P, Q) (t) dt (P, Q) ds a P + Q ds M 1 ds M L. 9

10 8. alcular la integral de línea (e x y 3x cos z) dx + e x dy + x 3 sen z dz a lo largo de la hélice x cos t, y sen t, z t, desde el punto (1,, ) hasta ( 1,, π). El campo vectorial F (P, Q, R), con P (x, y, z) e x y 3x cos z, Q(x, y, z) e x, R(x, y, z) x 3 sen z, es conservativo porque P y Q P z R Q z R y e x, 3x sen z,. Esto significa que existe un campo escalar f (1) (R 3 ) tal que f F. Para determinar la función f utilizamos las ecuaciones P f, Q f y, R f. Así pues, z P f Q f y R f z f(x, y, z) (e x y 3x cos z) dx e x y x 3 cos z + g(y, z); e x e x + g g(y, z) h(z) y f(x, y, z) e x y x 3 cos z + h(z); x 3 sen z x 3 sen z + h (z) h(z) k. Elegimos el valor k, con lo que f(x, y, z) e x y x 3 cos z. En definitiva, F ds f( 1,, π) f(1,, ). 9. Hallar el trabajo realizado por la fuerza F (x, y) (3y +, 16x) al mover una partícula desde ( 1, ) hasta (1, ) siguiendo la mitad superior de la elipse b x + y b. Qué elipse (es decir, qué valor de b) hace mínimo el trabajo? 1

11 Por definición W F ds (3y + ) dx + 16x dy. Si parametrizamos la elipse x + y /b 1 como x cos t, y b sen t, el trabajo realizado es: W π (3b sen t + ) sen t dt + 3b ( cos t cos3 t 3 ) + cos t π π π 16 cos t b cos t dt + 16b ( t + sen t ) 4b 8πb + 4. π Para determinar el valor de b que hace mínimo el trabajo, calculamos los puntos críticos de la función W (b): W 8b 8π b π. omo W 8 >, el valor b π hace mínimo el trabajo. 3. Hallar el trabajo realizado por el campo vectorial F (x, y, z) (y + z, + x, x + y) a lo largo del arco más corto de la circunferencia mayor de la esfera x +y +z 5 que une los puntos (3, 4, ) y (,, 5). Si llamamos a dicho arco, el trabajo se obtiene como: W F ds (y + z) dx + ( + x) dy + (x + y) dz. Para obtener una parametrización de, tengamos en cuenta que la curva es intersección de la esfera x + y + z 5 con el plano 4x 3y. Al sustituir y 4x/3 llegamos a la ecuación x /9 + z /5 1. Una parametrización de la curva es la siguiente: : x 3 cos t y 4 cos t z 5 sen t La integral que proporciona el trabajo es pues: W π π 4 sen t [(4 cos t + 5 sen t)( 3 sen t) dt + π ( t π/). ( + 3 cos t)( 4 sen t) dt + π (3 cos t + 4 cos t)(5 cos t)] dt ( 1 sen t cos t 15 sen t 8 sen t 1 sen t cos t + 35 cos t) dt π/ cos t π/ ( t sen t ) π/ + 35 ( sen t) π/ t + 5π. 11

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z TEOREMA E TOKE. 1. Usar el teorema de tokes para calcular la integral de línea ( ) d + ( ) d + ( ) d, donde es la curva intersección de la superficie del cubo a, a, a el plano + + 3a/, recorrida en sentido

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES . CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

Ampliación de Matemáticas. Integrales de línea

Ampliación de Matemáticas. Integrales de línea Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Campos conservativos. f(x) = f (x) = ( f x 1

Campos conservativos. f(x) = f (x) = ( f x 1 Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada.

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. 1. INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. Ejm: La función F x = x es una primitiva de f x

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES 1.1 Ecuación de onda. Las ecuaciones de Maxwell se publicaron en 1864, su principal función es predecir la propagación de la energía en formas de Onda.

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015

Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015 Olimpiada atemática Española RSE Soluciones a los problemas Olimpiada de atemáticas Fase local Extremadura Enero de 2015 1. lrededor de una mesa circular están sentadas seis personas. ada una lleva un

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles