(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1)."

Transcripción

1 INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: 1 : : 3 : { x t y ( t 1); { x 1 t y t ( t 1); { x y 1 t ( t 1). alculamos en cada tramo el módulo del vector velocidad: 1 (t) (t, ) 1(t) (1, ) 1(t) 1; (t) (1 t, t) (t) ( 1, 1) (t) ; 3 (t) (, 1 t) 3(t) (, 1) 3(t) 1. on estos datos, la integral de línea se calcula como sigue: (x + y) ds (x + y) ds + 1 (x + y) ds + (x + y) ds 3 1 t dt dt + (1 t) dt + 1. (b) Si escribimos la circunferencia x + y ax de la forma (x a/) + y a /4, su parametrización viene dada por : { x (a/) + (a/) cos t y (a/) sen t ( t π). De este modo, (t) ( a sen t/, a cos t/) (t) a/. 1

2 Por tanto, π a x + y a ds (1 + cos t) dt π a a 1 + cos t dt a π π (1 cos t) 1/ d(1 cos t) a (1 cos π t)1/. 1 cos t 1 cos t dt 16. alcular (x 3 y + y 3 x/3) dx + ax dy, siendo el contorno de la región definida por x + y ay <, y > a (a > ). El contorno del semicírculo indicado se descompone en dos curvas (el diámetro inferior y la semicircunferencia superior), cuyas parametrizaciones son las siguientes: 1 : { x t { x a cos t y a ( a t a); : y a + a sen t ( t π). alculamos por separado la integral a lo largo de cada curva. En el caso de 1, como dx 1, dy, resulta: a (x 3 y + y 3 x/3) dx + ax dy (t 3 a + a 3 t/3) dt. 1 a En, dx a sen t dt, dy a cos t dt, de modo que: (x 3 y + y 3 x/3) dx + ax dy En definitiva, π a5 3 [a 3 cos 3 t(a + a sen t) + a cos t(a + a sen t) 3 /3] ( a sen t) dt + π π a a cos t a cos t dt (3 sen t cos 3 t + 3 sen t cos 3 t + sen t cos t + 3 sen t cos t π +3 sen 3 t cos t + sen 4 t cos t) dt + a 4 cos 3 t dt. (x 3 y + y 3 x/3) dx + ax dy.

3 17. Hallar x + y z + 1. (y + z ) dx + (z + x ) dy + (x + y ) dz a lo largo de la curva : x + y z, La curva dada es la intersección del paraboloide x + y z con el plano x + y z + 1. Si sustituimos el valor de z en la primera ecuación, la curva se puede expresar como: : { x + y x + y + z x + y + 1 o bien : { (x 1) + (y 1) 4 z x + y + 1, la cual puede parametrizarse como: x 1 + cos t : y 1 + sen t z 3 + cos t + sen t ( t π). Sustituyendo estos valores y sus derivadas en la integral, resulta: (y + z ) dx + (z + x ) dy + (x + y ) dz π π [(1 + sen t) + (3 + cos t + sen t) ] ( sen t) dt + + π π [(3 + cos t + sen t) + (1 + cos t) ] ( cos t) dt [(1 + cos t) + (1 + sen t) ] ( sen t + cos t) dt (4 cos t 4 sen t + 4 cos t 4 sen t + 4 cos 3 t 4 sen 3 t) dt. 18. Hallar las longitudes de los arcos de las siguientes curvas: (a) x 3t, y 3t, z t 3 entre los puntos (,, ) y (3, 3, ). (b) y a arc sen(x/a), z a 4 ln a x a + x entre los puntos (,, ) y (x, y, z ). Si la curva se parametriza por el vector de posición r (t), con t t t 1, la longitud viene dada por la fórmula l t1 t r (t) dt. (a) En este caso, r (t) (3t, 3t, t 3 ), de donde r (t) (3, 6t, 6t ) y r (t) 3(1 + t ). 3

4 Teniendo en cuenta además que (,, ) r () y (3, 3, ) r (1), resulta: l 1 3(1 + t ) dt 5. (b) Si llamamos x t, la curva se parametriza por De aquí obtenemos: (t) (t, a arc sen(t/a), a 4 ln a t ), t x. a + t ( a (t) 1, a t, a ) (a t (t) 3a t ) (a t ). Por tanto, l x 3a t (a t ) dt x x ( 1 x a 1 t a dt x a x a 4 ln x a. x + a a ) t a x dt ( 1/a t a 1/a ) dt t + a 19. Hallar la masa del arco de curva x at, y (a/)t, z (a/3)t 3 ( t 1) si la densidad en cada punto vale ρ y/a. La masa se calcula mediante la integral de línea m ρ ds, a lo largo de la curva. En este caso, la curva se parametriza por la función (t) (at, at /, at 3 /3), de donde (t) (a, at, at ) y (t) a 1 + t + t 4. omo la densidad en cada punto de vale ρ((t)) t, deducimos que m 1 at 1 + t + t 4 dt. alculamos en primer lugar la integral indefinida: I t (t 1 + t + t 4 dt t + 1 ) dt t (t + 1/ 3/ ) + 1 dt. 4

5 Haciendo el cambio de variable t + 1/ tg u, resulta 3/ En definitiva, I m a sec 3 u du 3 16 [ t + 1/ t4 + t + 1 3/ 3 1 [ sec u tg u + ln sec u + tg u ] + ln t + 1/ + 3/ ] t4 + t at 1 + t + t 4 dt 3a [ ln( ) ].. Hallar las coordenadas del centro de gravedad del contorno del triángulo esférico x + y + z a, x, y, z. Sean ( x, y, z) las coordenadas del centro de gravedad. Debido a la simetría de la figura, x y z y, si la densidad se supone constante, x 1 x ds. Descomponemos el l triángulo esférico en tres curvas que parametrizamos como sigue: 1 : : 3 : En los tres casos, r (t) a, de modo que: l x ds x a cos t y a sen t z x y a cos t z a sen t x a cos t y z a sen t, t π/,, t π/,, t π/, π/ π/ 1 ds a dt + a dt + x ds + x ds + x ds 1 3 π/ En definitiva, x y z 4a 3π. a cos t a dt + π/ π/ a cos t a dt a. a dt 3aπ ; 5

6 1. alcular las siguientes integrales de línea: x dy + y dx, x dy y dx donde O es el origen de coordenadas y A (1, ), a lo largo de las trayectorias: (a) segmento que une O con A. (b) parábola con eje OY. (c) poligonal que se compone de un segmento OB en el eje X y un segmento BA paralelo al eje Y. En la primera de las integrales, si llamamos P (x, y) y, Q(x, y) x, como P y 1 Q, entonces la integral es independiente de la trayectoria. Basta encontrar una función F : R R cuyo gradiente sea F (P, Q). Resulta en este caso F (x, y) xy, con lo que la integral vale x dy + y dx F (A) F (O). En la segunda integral, si llamamos P (x, y) y, Q(x, y) x, entonces P Q 1, y 1, de modo que el valor de la integral depende de la trayectoria descrita. En cada caso, para resolver la integral debemos parametrizar la curva correspondiente. (a) La recta que contiene el segmento que une O con A tiene por ecuación y x. Así pues, 1 1 x dy y dx x dx x dx dx. (b) La ecuación general de la parábola con eje OY es y ax. omo debe pasar por el punto A, entonces a. Así pues, x dy y dx x 4x dx x dx x dx 3. (c) La poligonal indicada está formada por el segmento OB, donde B (1, ) y el segmento BA. El primero de ellos se parametriza por x t, y ( t 1), y el segundo por x 1, y t ( t ). La integral vale: x dy y dx x dy y dx + x dy y dx OB 1 dt + BA 1 dt. 6

7 . Hallar la integral de línea z bt ( t π). y dx+z dy+x dz donde es la curva x a cos t, y a sen t, Sustituyendo en la integral los valores x a cos t, y a sen t, z bt, dx a sen t dt, dy a cos t dt, dz b dt, tenemos: I π a ( a sen t + abt cos t + ab cos t) dt π [ (1 cos t) dt + ab t sen t π π ] sen t dt πa. 3. alcular yz dx + xz dy + xy dz donde consta de los segmentos de rectas que unen (1,, ) con (, 1, ) y con (,, 1). Descomponemos la trayectoria en los dos segmentos de recta cuyas parametrizaciones respectivas son: { x 1 t x + y 1 1 : y t ( t 1), z z : { x y + z 1 Entonces la integral se calcula como sigue: F F + 1 F 1 x y 1 t z t dx + dy + t(1 t) + ( t 1). 1 t(1 t) + dy + dz. 4. Sea una trayectoria suave. (a) Probar que F si F es perpendicular a (t) a lo largo de la curva (t). (b) Probar que F F si F es paralelo a (t) a lo largo de (t). 7

8 Por definición, t1 F F ((t)) (t) dt. t (a) Si F es perpendicular a, entonces el producto escalar F ((t)) (t) es cero, de modo que la integral se anula. (b) Por definición de producto escalar, F ((t)) (t) F ((t)) (t) cos α. omo los vectores F y son paralelos, cos α 1, de modo que t1 F F ((t)) (t) dt t F. 5. Sea F (x, y, z) (z 3 + xy, x, 3xz ). Probar que F si es el perímetro de cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Si llamamos P (x, y, z) z 3 + xy, Q(x, y, z) x, R(x, y, z) 3xz, entonces P y Q P z R Q z R y x, 3z,. Esto indica que rot F y el campo vectorial F es conservativo. Deducimos entonces que F es independiente de la trayectoria. Al ser cerrada dicha trayectoria, F. 6. Observando que el integrando es un campo gradiente, calcular las siguientes integrales curvilíneas: (a) (b) (c) (d) (3, 4) (,1) (1,) (,1) (a,b) (,) (,3, 4) (1,1,1) x dx + y dy. y dx x dy x a lo largo de caminos que no se corten con el eje Y. e x (cos y dx sen y dy). x dx + y dy z 3 dz. 8

9 (a) Si F (x, y) (x, y), entonces F f, donde f(x, y) (x + y )/. Así pues, (3, 4) (,1) F (x, y) ds f(3, 4) f(, 1) 1. (b) En este caso, F (x, y) (y/x, 1/x), de modo que F (x, y) f, con f(x, y) y/x. Entonces, (1,) (,1) F (x, y) ds f(1, ) f(, 1) 3/. (c) El campo vectorial F (x, y) (e x cos y, e x sen y) es el gradiente de f(x, y) e x cos y. Así pues, (a,b) (,) F (x, y) ds f(a, b) f(, ) e a cos b 1. (d) Análogamente a los casos anteriores, F (x, y, z) (x, y, z 3 ) f, con f(x, y, z) x / + y 3 /3 z 4 /4. Por tanto, (,3, 4) (1,1,1) F (x, y, z) ds f(, 3, 4) f(1, 1, 1) Probar que P (x, y) dx + Q(x, y) dy máx P + Q a lo largo de. L M donde L es la longitud de y M Utilizando las propiedades de la integral, P (x, y) dx + Q(x, y) dy b (P, Q) ds (P, Q) (t) dt a b (P, Q) (t) dt (P, Q) ds a P + Q ds M 1 ds M L. 9

10 8. alcular la integral de línea (e x y 3x cos z) dx + e x dy + x 3 sen z dz a lo largo de la hélice x cos t, y sen t, z t, desde el punto (1,, ) hasta ( 1,, π). El campo vectorial F (P, Q, R), con P (x, y, z) e x y 3x cos z, Q(x, y, z) e x, R(x, y, z) x 3 sen z, es conservativo porque P y Q P z R Q z R y e x, 3x sen z,. Esto significa que existe un campo escalar f (1) (R 3 ) tal que f F. Para determinar la función f utilizamos las ecuaciones P f, Q f y, R f. Así pues, z P f Q f y R f z f(x, y, z) (e x y 3x cos z) dx e x y x 3 cos z + g(y, z); e x e x + g g(y, z) h(z) y f(x, y, z) e x y x 3 cos z + h(z); x 3 sen z x 3 sen z + h (z) h(z) k. Elegimos el valor k, con lo que f(x, y, z) e x y x 3 cos z. En definitiva, F ds f( 1,, π) f(1,, ). 9. Hallar el trabajo realizado por la fuerza F (x, y) (3y +, 16x) al mover una partícula desde ( 1, ) hasta (1, ) siguiendo la mitad superior de la elipse b x + y b. Qué elipse (es decir, qué valor de b) hace mínimo el trabajo? 1

11 Por definición W F ds (3y + ) dx + 16x dy. Si parametrizamos la elipse x + y /b 1 como x cos t, y b sen t, el trabajo realizado es: W π (3b sen t + ) sen t dt + 3b ( cos t cos3 t 3 ) + cos t π π π 16 cos t b cos t dt + 16b ( t + sen t ) 4b 8πb + 4. π Para determinar el valor de b que hace mínimo el trabajo, calculamos los puntos críticos de la función W (b): W 8b 8π b π. omo W 8 >, el valor b π hace mínimo el trabajo. 3. Hallar el trabajo realizado por el campo vectorial F (x, y, z) (y + z, + x, x + y) a lo largo del arco más corto de la circunferencia mayor de la esfera x +y +z 5 que une los puntos (3, 4, ) y (,, 5). Si llamamos a dicho arco, el trabajo se obtiene como: W F ds (y + z) dx + ( + x) dy + (x + y) dz. Para obtener una parametrización de, tengamos en cuenta que la curva es intersección de la esfera x + y + z 5 con el plano 4x 3y. Al sustituir y 4x/3 llegamos a la ecuación x /9 + z /5 1. Una parametrización de la curva es la siguiente: : x 3 cos t y 4 cos t z 5 sen t La integral que proporciona el trabajo es pues: W π π 4 sen t [(4 cos t + 5 sen t)( 3 sen t) dt + π ( t π/). ( + 3 cos t)( 4 sen t) dt + π (3 cos t + 4 cos t)(5 cos t)] dt ( 1 sen t cos t 15 sen t 8 sen t 1 sen t cos t + 35 cos t) dt π/ cos t π/ ( t sen t ) π/ + 35 ( sen t) π/ t + 5π. 11

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z TEOREMA E TOKE. 1. Usar el teorema de tokes para calcular la integral de línea ( ) d + ( ) d + ( ) d, donde es la curva intersección de la superficie del cubo a, a, a el plano + + 3a/, recorrida en sentido

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES . CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

Análisis II - Primer Parcial Coloquio- Tema 1

Análisis II - Primer Parcial Coloquio- Tema 1 .5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

1 El plano y el espacio Euclídeos. Operaciones

1 El plano y el espacio Euclídeos. Operaciones Fundamentos Matemáticos de la Ingeniería. (Tema 8 Hoja 1 Escuela Técnica Superior de Ingeniería Civil e Industrial (Esp. en Hidrología Fundamentos Matemáticos de la Ingeniería. Tema 8: Cálculo diferencial

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende

Más detalles

1. Definición y representaciones gráficas

1. Definición y representaciones gráficas Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 3: FUNCIONES ESCALARES DE VARIAS VARIABLES 1. Definición y representaciones

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Ampliación de Matemáticas. Integrales de línea

Ampliación de Matemáticas. Integrales de línea Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es

Más detalles

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ).

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ). apítulo 11 El teorema de Green El teorema de Green relaciona la integral de línea de un campo vectorial sobre una curva plana con una integral doble sobre el recinto que encierra la curva. Este tipo de

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 30 de septiembre de 014 Índice general 1. Año 000 7 1.1. Modelo 000 - Opción A.................... 7 1..

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA CAPÍTULO VII. INTEGRACIÓN INDEFINIDA SECCIONES A. Integrales inmediatas. B. Integración por sustitución. C. Integración por partes. D. Integración por fracciones simples. E. Aplicaciones de la integral

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Los teoremas de Stokes y Gauss

Los teoremas de Stokes y Gauss Capítulo 13 Los teoremas de tokes y Gauss En este último capítulo estudiaremos el teorema de tokes, que es una generalización del teorema de Green en cuanto que relaciona la integral de un campo vectorial

Más detalles

CINEMATICA DE MAQUINAS

CINEMATICA DE MAQUINAS CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO

Más detalles

CAPÍTULO 6 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

CAPÍTULO 6 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES CAPÍTULO 6 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES 1. INTERROGANTES CENTRALES DEL CAPÍTULO Calcular derivadas parciales de orden superior de funciones de varias variables. Entender la significación geométrica

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Introducción a la geometría. del plano y del espacio. Curvas.

Introducción a la geometría. del plano y del espacio. Curvas. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción a la geometría del plano y del espacio. Curvas. Ramón Bruzual Marisela Domínguez

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Las anteriores fórmulas suelen expresarse matricialmente como

Las anteriores fórmulas suelen expresarse matricialmente como Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1 Teorema de Green ISABEL MAEO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Teorema de Green en regiones simplemente conexas 1 2.1. urvas de Jordan.........................................

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real).

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real). Tema 5 Integral Indefinida 5.1 Introducción Dedicaremos este tema a estudiar el concepto de Integral Indefinida y los métodos más habituales para calcular las integrales indefinidas. De una manera intuitiva

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero.

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero. Vectores. Dados los vectores a y b del espacio. Siempre es posible encontrar otro vector c tal que multiplicado vectorialmente por a nos de el vector b?. Por que?. No siempre será posible. El vector a

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie Tema 9. ampos escalares y campos vectoriales. Integrales de línea e integrales de supercie Índice de contenidos del tema 9 1. ampos escalares y campos vectoriales 2. Gradiente, laplaciano, divergencia

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 1. Cinemática Índice 1. Introducción 3 2.

Más detalles

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos.

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. CAPÍTULO XVI. NÚMEROS COMPLEJOS SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. 73 A. DEFINICIÓN. PRIMERAS PROPIEDADES. Un número complejo

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sean f : R R y g : R R las funciones definidas por f(x) = x 2 + ax + b y g(x) = c e (x+1) Se sabe que las gráficas de f y g se cortan en el punto ( 1, 2) y tienen en ese punto la

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles