Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "9.0 10.5 11.0 9.7 8.7 11.6 10.3 10.1 8.0 8.5 9.8"

Transcripción

1 APLICACIONES ESTADÍSTICAS AL MERCADEO PRUEBAS DE HIPÓTESIS. EJERCICIOS Pruebas t para la meia. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ = 00, Ha: µ 00 muestra aleatoria e seis elementos io omo resultao los siguientes valores: 98, 05,, 06, 96, 5. Se puee onluir que la meia poblaional es iferente e 00 on un nivel e signifiaión e α = 0.05?. Un granjero puso a prueba un nuevo alimento para sus pavos navieños e una misma ea. La ieta espeial garantizaba que al abo e 5 semanas los pavos tenrían un peso promeio e 0 libras. Al final e las 5 semanas los pesos en libras resultantes e una muestra e pavos fueron los siguientes: Con relaión al peso meio e los pavos, qué se puee argumentar y onluir sobre la efetivia el nuevo alimento? Utilie α = Un proeso e fabriaión e jabón e toaor ebe prouir un promeio e 0 barras por lote. Una muestra e 0 lotes io omo resultao las siguientes ifras: Suponieno que la poblaión es normal, pruebe si los resultaos e la muestra inian que el proeso e manufatura está trabajano en forma orreta. (use α =0.05 ). 4 muestra aleatoria e 0 personas que partiiparon en un reiente programa e aelgazamiento reogió las siguientes périas e peso en kilos al ompletar el programa. Por experienia on programas anteriores se tienen registros e que el promeio e péria e peso es e 8 kilos. Se puee onsierar que el grupo e la muestra ha tenio un promeio iferente? 5. La via meia e una batería en un reloj igital es e 305 ías. Se moifió la batería para que tuviera mayor uraión y, e una muestra e 0 baterías moifiaas, se obtuvo una via meia e 3 ías on esviaión estánar e ías. La moifiaión inrementó la via meia e las baterías? Respuestas. ) t =.75 ( α, v) =.57, se aepta Ho, ) Ha: µ 0( α, v) = ±.8, t = , es efetivo, 3) Ha: µ 0 α = ±.6 = rabaja orretamente. 4) Ha: µ 8 t = 0.6, p-valor 0.40, se aepta Ho. 5) t =.36, 0.0 < p-valor < Pruebas z para una proporión 6. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: P 0.70, Ha: P>0.70 muestra e 00 observaiones reveló que pˆ = Se puee rehazar la hipótesis nula en el nivel e signifiaión e 0.05? 7 ompañía e televisión afirma que el 65% e la tele-auienia mira su telenovela Barreras e amor y oio, entre las 8:00 y 9:00 p.m enuesta telefónia realizaa urante ese períoo en 340 hogares, etermino que 0 miraban la menionaa telenovela. Poría afirmarse que la auienia ha isminuio?(use α = 0.05).

2 8 tiena importante e eletrooméstios onsiera la posibilia e introuir un serviio e ompras por Internet. El serviio se implementará si más el 40% e los usuarios e Internet ompran a través e este meio. Se entrevistó a 300 usuarios y 70 iniaron que utilizan Internet para haer ompras. Señalan los atos que se ebe implementar el serviio?. Esriba las hipótesis aeuaas al aso y eia meiante el álulo e un p- valor. 9. De una muestra e 364 propietarios e pequeños omerios que quebraron, 0 no tuvieron asesoramiento profesional antes e abrir el negoio. Probar la hipótesis e que no más el 5% e esta poblaión tuvo asesoramiento profesional antes e abrir el negoio. 0. La polítia e una omisión e tránsito onsiste en agregar una ruta más e autobuses, si más el 55% e los viajeros poteniales inian que la utilizarían muestra e 470 usuarios reveló que 67 tomarían una vía norte sin pasar por el entro e la iua. Cumple ésta vía on los riterios e la omisión e tránsito?. Utilie un nivel e signifiaión el %.. La empresa Pollo Deliioso afirma que 90% e sus peios se entrega en 0 minutos ese que se hae el peio muestra e 00 peios mostró que 83 se entregaron en el tiempo prometio. Con un nivel e signifiaión e 0.0, se puee onluir que menos el 90% e los peios se entregó en menos e 0 minutos? Respuestas: 6) z =.09, zε =.64. 7) Ha: P < 0.65, z = -.5, zε = ) Ha: P > =.40,P( z > 5.89) = , si. 9) Ha: P > 0.5, P( z >.33) = 0.098, 0) Ha: P > 0.55, z = 0.79, z =.3, no. 0) Ha: P < 0.90, P(z < -.33) = , si. ε Pruebas para iferenia e promeios (muestras inepenientes) Conoias σ. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ muestra e 40 observaiones e una poblaión on esviaión estánar poblaional e 5 proujo una meia muestral e 0. Otra muestra e 50 observaiones e una seguna poblaión, on esviaión poblaional e 6, arrojó una meia e 99. Deia sobre las hipótesis empleano un nivel e signifiaión e Los niveles e proutivia e senas muestras e 0 trabajaores en os plantas e una misma empresa proutora se an en el uaro. Consiere que las varianzas poblaionales son 9 y 6 para la planta y la planta respetivamente. Planta Planta Empleano un nivel e signifiaión e 0.05, argumente si existen iferenias entre los niveles meios e proutivia e los empleaos entre las os plantas.. 4 empresa estuia los tiempos e entrega e os proveeores e materia prima. Los resultaos e os muestras inepenientes e los tiempos e resurtio ( en ías) en los peios hehos a ambos proveeores se an en el siguiente uaro Proveeor A Proveeor B Número e peios Meia aritmétia 4.5 Varianzas poblaionales 9 4

3 Comprobar para α =0.05 si los tiempos e entrega son iguales ontra la alternativa e que el proveeor A se tara, en promeio, más tiempo que el proveeor B. Respuestas. ) Ha : µ, z α =. 05, z =.59, 3) Ha : µ, z α =. 96, z = -.4, 4) Ha : µ a > µ b, z =.68, zε =.64, se rehaza Ho. Desonoias σ ( suponieno que son iguales) 5. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ muestra aleatoria e 0 observaiones proujo una meia muestral e 3 y esviaión estánar e 4. Una muestra aleatoria e 8 observaiones e otra poblaión reveló una meia muestral e 6 y una esviaión estánar e la muestra e 5. Hay alguna iferenia entre las meias poblaionales? Use α = Los resultaos e una prueba e onoimientos básios informátios, apliaa a 6 profesores e instituiones euativas privaas y a 0 profesores e instituiones públias, arrojó los siguientes atos: Privaas Públias Número e profesores 6 0 Meia aritmétia Desviaiones muestrales Existe alguna iferenia entre los onoimientos promeios e ambos grupos? Use α = La iretora e presupuestos e una ompañía quiere omparar los gastos iarios en viátios el personal e ventas on los gastos el personal e Auitoría; para lo ual reopiló la siguiente informaión: Ventas($) Autoría($) Puee onluir la iretora que los gastos iarios meios en viátios son mayores para el personal e ventas que para el personal e Auitoría? Utilie un p-valor para su onlusión. 8. El fabriante e un reproutor MP3 esea saber si una reuión e 0% en el preio es sufiiente para aumentar las ventas e su prouto. Para investigar esto, seleiona al azar 8 tienas y vene el prouto a preio reuio, luego seleiona otras 7 tienas al azar y lo vene a preio normal. Los números e uniaes venias urante el mes anterior en las tienas seleionaas se an en el uaro: Preio normal Preio reuio Puee onluir el fabriante que la reuión en el preio generó un aumento en las ventas? Probar para α =0.0. Respuestas: 5) (Sp = 4.465) t =.46 ( α, v) =., 6) Ha : µ =.455, t( α, v) =.69, no. 7) x = 4.5, x = 30.9, s =.434, s = , 8) Ha : µ < µ t = α = -.65

4 Desonoias σ (suponieno que son iferentes) 9. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ muestra aleatoria e 5 elementos e la primera poblaión proujo una meia e 50 y una esviaión estánar e 5 muestra aleatoria e elementos para la seguna poblaión reveló una meia e 46 y una esviaión estánar e 5. Hay alguna iferenia entre las meias poblaionales? Use α = Dos grupos e empleaos e una fábria fueron seleionaos e manera aleatoria para reibir entrenamiento en ierta operaión. Caa grupo fue entrenao por un métoo iferente y, al final el entrenamiento, se registró el tiempo en minutos que aa uno taró en realizar la operaión. El resumen e resultaos muestrales es el siguiente: Métoo Métoo tamaño 4 8 Meia varianza Compruebe si existen iferenias signifiativas en los promeios poblaionales, al entrenar al personal, empleano esos os métoos. (use α= 0.05). Respuestas. 9) Ha : µ = ( α, v) =.6. Aepta Ho. 0) Ha : µ = (0.05,35) = Pruebas para iferenia e promeios (muestras apareaas). Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ 0 > 0. En la informaión muestral siguiente se a el número e uniaes efetuosas prouias en los turnos matutino y vespertino en una muestra e 5 ías urante el mes pasao. ías matutino vespertino Con un nivel e signifiaión e 0.05, se puee onluir que se prouen más efetos en el turno vespertino? empresa manufaturera tiene os métoos on los que sus obreros pueen realizar una tarea e prouión. Los tiempos e terminaión (en minutos), por ambos métoos, e un mismo grupo e 6 obreros se an en el siguiente uaro: Trabajaor Métoo Métoo Compruebe si existen iferenias entre las meias e los tiempos e terminaión por ambos métoos. Utilie p-valor.

5 3. Se realizó un estuio on el objeto e onoer si la hipnosis es efetiva para reuir el olor. Los graos e olor (meios en una esala para tal propósito) experimentaos por 8 personas antes y espués e la hipnosis se presentan en el siguiente uaro: Antes Después A un nivel e signifiaión e %, qué se puee onluir? 4. El Bano CONSTRUCCIÖN esea omparar a las os agenias que utiliza para realizar avalúos e asas. Para ello seleionó una muestra e iez propieaes resieniales y programó un avalúo por aa agenia. Los resultaos reportaos en miles e ólares son: Casa Agenia Agenia Empleano un nivel e onfianza el 95%, argumente si existen iferenias entre los avalúos meios poblaionales e las os agenias. Respuestas. ) Ha : µ > 0 = α =.03. ) Ha : µ 0 t = < p-valor < 0.0, aepta Ho. 3) Ha : µ > 0 = 3.906, =.998, si. t( α, v) 4) Ha : µ 0 t = (0.05, 9) =.6, hay iferenias. Prueba F para omparaión e varianzas 5. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: σ = σ y Ha: σ σ muestra aleatoria e 8 observaiones e la primera poblaión proujo una esviaión estánar e muestra aleatoria e 6 observaiones e otra poblaión reveló una esviaión estánar e 7. Hay más variaión en la primera poblaión? Use α = Un test sobre onoimientos básios en Meraeo fue apliao a os grupos e veneores on sees en os zonas iferentes A y B. Los resultaos fueron los siguientes: See A: See B: Existe iferenia en la variabilia e los puntajes obtenios por ambos grupos? Use α = En los ejeriios 5, 6 y 7, que se refieren a iferenia e promeios, ompruebe si se umple el supuesto e varianzas iguales on el ual han sio resueltos. Utilie α = 0.05, en toos los asos. 8. En los ejeriios 9, y 0, que se refieren a iferenia e promeios, ompruebe si se umple el supuesto e varianzas iferentes on el ual han sio resueltos. Utilie α = 0.05, en toos los asos.

PRUEBAS DE HIPÓTESIS. EJERCICIOS Pruebas t para la meia. Se quiere eiir sobre el siguiente sistema e hipótesis: Ho: µ = 00, Ha: µ 00 muestra aleatoria e seis elementos io omo resultao los siguientes valores:

Más detalles

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES HORMIGÓN ARMADO Y PRETENSADO (HAP1) CURSO 010/011 EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES Dimensionar ó omprobar la seión e la figura en aa uno e los supuestos que se menionan

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA DECISIÓN ESTADÍSTICA. CONTRASTE DE HIPÓTESIS. Introduión 1 La Inferenia Estadístia persigue la obtenión de onlusiones sobre un gran número de datos, en base a la observaión de una

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

Tema 2: Elección bajo incertidumbre

Tema 2: Elección bajo incertidumbre Tema : Eleión bajo inertidumbre Ref: Capítulo Varian Autor: Joel Sandonís Versión:..0 Javier López Departamento de Fundamentos del Análisis Eonómio Universidad de Aliante Miroeonomía Intermedia Introduión

Más detalles

UN TERCER METODO EXPERIMENTAL PARA LA DETERMINACIÓN DE LA CONSTANTE DE ELASTICIDAD DE UN RESORTE

UN TERCER METODO EXPERIMENTAL PARA LA DETERMINACIÓN DE LA CONSTANTE DE ELASTICIDAD DE UN RESORTE REVISTA COLOMBIANA DE FÍSICA, VOL. 6, No. 1. 004 UN TERCER METODO EXPERIMENTAL PARA LA DETERMINACIÓN DE LA CONSTANTE DE ELASTICIDAD DE UN RESORTE Francisco Ernesto Cortés Sánchez Funación Interamericana

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1

Biometría Clase 8 Pruebas de hipótesis para una muestra. Adriana Pérez 1 Biometría Clase 8 Pruebas de hipótesis para una muestra Adriana Pérez 1 Qué es una prueba de hipótesis? Es un proceso para determinar la validez de una aseveración hecha sobre la población basándose en

Más detalles

INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA: CONTRASTE DE HIPÓTESIS Página 311 REFLEXIONA Y RESUELVE Máuina empauetadora El fabricante de una máuina empauetadora afirma ue, si se regula para ue empauete palés con 100 kg, los

Más detalles

Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por

Un individuo vive a lo largo de dos periodos, t=0,1. En t=0 su ingreso es cierto, m 0 ; en t=1 es incierto (por Consmo ahorro e inertidmbre Un individo vive a lo largo de dos periodos t=. En t= s ingreso es ierto m ; en t= es inierto por ej. si mantiene el trabajo s ingreso es qe si va al paro. Lo qe pede haer el

Más detalles

4. Mecanizado con máquinas de control numérico computacional

4. Mecanizado con máquinas de control numérico computacional Meanizado on máquinas de ontrol numério omputaional INTRODUCCIÓN Este módulo onsta de 228 horas pedagógias y tiene omo propósito que los y las estudiantes de uarto medio de la espeialidad de Meánia Industrial

Más detalles

Análisis de la Varianza (ANOVA) de un factor y test a posteriori.

Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Ejercicios Temas 8 y 9 (Resuelto) 1. Problema 5 Se quiere estudiar el efecto de distintas dosis de un medicamento para combatir a los parásitos

Más detalles

Contextos Civiles para el desarrollo de la Economía de Comunión Presentación Instrumento de Medición de Valores

Contextos Civiles para el desarrollo de la Economía de Comunión Presentación Instrumento de Medición de Valores Contextos Civiles para el esarrollo e la Eonomía e Comunión Presentaión Instrumento e Meiión e Valores Poer ontar on informaión suministraa iretamente por los atores involuraos en un proeso es siempre

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad UNIVESIDAD NACIONAL MAYO DE SAN MACOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE ESTADÍSTICA Métoos multivariantes en control estaístico e la calia Capítulo I. Gráficos e control estaístico univariaa TABAJO

Más detalles

C7 MODELADO Y SIMULACIÓN DE PROCESOS DISTRIBUIDOS: DIFUSORES DE LA INDUSTRIA AZUCARERA

C7 MODELADO Y SIMULACIÓN DE PROCESOS DISTRIBUIDOS: DIFUSORES DE LA INDUSTRIA AZUCARERA C7 MODELADO Y SIMULACIÓN DE PROCESOS DISTRIBUIDOS: DIFUSORES DE LA INDUSTRIA AZUCARERA Merino Gómez, Alejanro Centro e Tenología Azuarera. Universia e Vallaoli C/ Real e Burgos. Eifiio Alfonso VIII. Planta

Más detalles

Tabla 26.15. Criterios de diseño para digestores aerobios

Tabla 26.15. Criterios de diseño para digestores aerobios Tabla 26.15. Criterios e iseño para igestores aerobios Parámetro Tiempo e retención hiráulico a 2ºC, Loo primario Loo activao Loo activao sin tratamiento primario Loo activao + loo primario Loo primario+loo

Más detalles

IES SALVADOR SERRANO: Dto. de Matemáticas. Curso 2 009 / 10 Relación de Ejercicios: Cálculo de Probabilidades Modelos 2 008 y 2 009

IES SALVADOR SERRANO: Dto. de Matemáticas. Curso 2 009 / 10 Relación de Ejercicios: Cálculo de Probabilidades Modelos 2 008 y 2 009 IES SALVADOR SERRANO: Dto. de Matemátias. Relaión de Ejeriios: Cálulo de Probabilidades Modelos 2 008 y 2 009 EJERCICIO 1: Lena y Adrián son afiionados al tiro on aro. Lena da en el blano on probabilidad

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles

INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL SECCIÓN DE EPIDEMIOLOGÍA-BIOESTADÍSTICA INFERENCIA ESTADISTICA: CONTRASTE DE HIPÓTESIS Objetivo:

Más detalles

6 Principios Generales del Diseño por Resistencia

6 Principios Generales del Diseño por Resistencia 6 Prinipios Generales el Diseño por Resistenia ACTUALIZACIÓN PARA EL CÓDIGO 00 Los Requisitos e Diseño Unifiao, anteriormente inluios en el Apénie B, ahora se han inorporao al uerpo prinipal el óigo. Estos

Más detalles

Boletín audioprotésico número 35

Boletín audioprotésico número 35 Boletín auioprotésico número 35 Cómo asegurar la ganancia in-situ correcta Noveaes el epartamento e Investigación auioprotésica y comunicación 9 502 1041 004 / 06-07 Introucción Normalmente, los auífonos

Más detalles

SOLUCION DE UN ERROR CON OTRO ERROR

SOLUCION DE UN ERROR CON OTRO ERROR SOLUCION DE UN ERROR CON OTRO ERROR El matemático, al igual que too ser humano, puee incurrir en errores; en algunos casos sucee que el error no ha sio cometio por el creaor e la obra sino por los encargaos

Más detalles

Dimensionado a pandeo de soportes de acero secciones abiertas clase 1 y 2 solicitados a flexocompresión con un My,Ed.

Dimensionado a pandeo de soportes de acero secciones abiertas clase 1 y 2 solicitados a flexocompresión con un My,Ed. Soportes e aero seiones abiertas lase 1 a flexoompresión on un M, Dimensionao a paneo e soportes e aero seiones abiertas lase 1 soliitaos a flexoompresión on un M,. Apellios, nombre Arianna Guariola Víllora

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2010

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2010 PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 00 ) Anrea abre un libro y observa que la suma e los números e las os páginas que tiene elante es 99. Cuáles son esos números? Las os páginas tienen

Más detalles

ESTADÍSTICA. Tema 3 Contrastes de hipótesis

ESTADÍSTICA. Tema 3 Contrastes de hipótesis ESTADÍSTICA Grado en CC. de la Alimentación Tema 3 Contrastes de hipótesis Estadística (Alimentación). Profesora: Amparo Baíllo Tema 3: Contrastes de hipótesis 1 Estructura de este tema Qué es un contraste

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

OPCIONES. c.- Titular o Comprador de la Opción: inversionista que adquiere el derecho a comprar/vender el activo subyacente.

OPCIONES. c.- Titular o Comprador de la Opción: inversionista que adquiere el derecho a comprar/vender el activo subyacente. arlos A. Díaz ontreras 1 OPIONES La opción es "un contrato que a erecho a su poseeor o titular (el que compró la opción), a comprar o vener un activo eterminao y a un precio eterminao, urante un perioo

Más detalles

Inferencia Estadística

Inferencia Estadística Universidad Nacional de San Cristóbal de Huamanga Facultad de Ingeniería de Minas, Geología y Civil Departamento Académico de Matemática y Física Área de Estadística Inferencia Estadística Alejandro Guillermo

Más detalles

9. Mantenimiento de redes de acceso y banda ancha

9. Mantenimiento de redes de acceso y banda ancha 9. Mantenimiento de redes de aeso y banda anha INTRODUCCIÓN Este módulo de 190 horas pedagógias tiene omo propósito promover en los y las estudiantes un onjunto de onoimientos y habilidades para realizar

Más detalles

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans

CRECIMIENTO ECONÓMICO. NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Universidad de Buenos Aires - Faultad de Cienias Eonómias CRECIMIENTO ECONÓMICO NOTAS DE CLASE: El modelo de Ramsey, Cass- Koopmans Por: los integrantes del urso 1 Año 2012 1 Las presentes notas de lase

Más detalles

Estrategias De Ventas

Estrategias De Ventas Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas

Más detalles

Tren de rodaje. GuÍa para el desgaste y el cuidado

Tren de rodaje. GuÍa para el desgaste y el cuidado Tren e roaje GuÍa para el esgaste y el uiao El iseño e Deere Aproximaamente el 20 por iento el preio e ompra e su oruga se estina al tren e roaje. Lo que resulta más importante es que alreeor el 50 por

Más detalles

Problemas de bioestadística. Página 17

Problemas de bioestadística. Página 17 Problemas de bioestadístia Página 7 2.- En la poblaión adulta de Telde (edad Y 30 años) y de auerdo on los riterios de la organizaión mundial de la salud (OMS), el 2.5% de las personas son diabétias, el

Más detalles

HIDROSTÁTICA - EJERCICIOS

HIDROSTÁTICA - EJERCICIOS I.E. BEATRIZ DE UABIA Dpto. ísia y Quíia HIDROTÁTICA - EJERCICIO Qué presión ebia a su peso ejere sobre el suelo una esa e 0 kg si se apoya sobre una pata entral e 000 e superfiie?. or lo tanto, la presión

Más detalles

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS

Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMAS RESUELTOS DE CONTRASTE DE HIPÓTESIS Métodos estadísticos y numéricos Contraste de hipótesis pag. 1 PROBLEMA REUELTO DE CONTRATE DE HIPÓTEI 1 Un investigador quiere contrastar si el peso medio de ciertas hortalizas está en los 1,9 Kg. que

Más detalles

UN PRODUCTO NOVIEMBRE 2015 EDICIÓN ESPECIAL ELECCIONES PARLAMENTARIAS NOVIEMBRE 2015

UN PRODUCTO NOVIEMBRE 2015 EDICIÓN ESPECIAL ELECCIONES PARLAMENTARIAS NOVIEMBRE 2015 UN PROUTO EIIÓN ESPEIAL ELEIONES PARLAMENTARIAS FIHA TÉNIA OBERTURA UNIVERSO TAMAÑO E LA MUESTRA Urbana-Rural de todo el País Población mayor de 18 años, de ambos sexos y todos los estratos socioeconómicos

Más detalles

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS UN ESTUDIO SOBRE CARBOXIHEMOGLOBINA EN SANGRE En el estudio experimental que aquí presentamos se seleccionó al azar una muestra de 37 estudiantes de una

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las tenologías de la Informaión y Comuniaión apliadas a la enseñanza de las Matemátias Parte III Patriia Cabrera M. Para dar ontinuidad a esta serie de artíulos, que tienen

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

3 Trabajo con agricultores y comerciantes

3 Trabajo con agricultores y comerciantes 3 Trabajo con agricultores y comerciantes 26 Los posibles usuarios el mercao eben tomar parte en su planificación. El propósito e la Etapa 3 es iniciar un proceso e iálogo con los usuarios el mercao para

Más detalles

UN POCO DE HISTORIA Prof. Teuvo Kohonen UN POCO DE HISTORIA

UN POCO DE HISTORIA Prof. Teuvo Kohonen UN POCO DE HISTORIA Self-Organzng Maps 1. Defnón.. Un poo de hstora. CONTENIDO 3. Desrpón del algortmo. L. Pablo Sergo Garía 4. Ejemplos en ejeuón. 5. Problemas 6. Aplaones. DEFINICIÓN El SOM es un algortmo para vsualzar

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES

SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES 8SUBPROCESO TAQUICARDIAS SUPRAVENTRICULARES Definiión global Designaión: Proeso de atenión al paiente que ha presentado uno o más episodios de taquiardia supraventriular (TSV) doumentada eletroardiográfiamente.

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

GUATEMALA. Encuesta Nacional de Empleo e Ingresos ENEI. Metodología y Cuestionario. Octubre y Noviembre de 2004

GUATEMALA. Encuesta Nacional de Empleo e Ingresos ENEI. Metodología y Cuestionario. Octubre y Noviembre de 2004 COMISION ECONOMICA PARA AMERICA LATINA Y EL CARIBE CEPAL División e Estaística y Proyecciones Económicas BANCO DE DATOS DE ENCUESTAS DE HOGARES GUATEMALA Encuesta Nacional e Empleo e Ingresos ENEI Octubre

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

8.2.2. Intervalo para la media (caso general)

8.2.2. Intervalo para la media (caso general) 182 Bioestadística: Métodos y Aplicaciones 100 de ellos se obtiene una media muestral de 3 kg, y una desviación típica de 0,5 kg, calcular un intervalo de confianza para la media poblacional que presente

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

Ciudad de Guatemala, 2013

Ciudad de Guatemala, 2013 Ciudad de Guatemala, 2013 1 Clase 5 Muestreo y tamaño de muestra D i e g o A y c i n e n a diegoaa@ufm.edu Universidad Francisco Marroquín 2 Clases (Profesores) H o r a r i o Actividades en Grupo (Todos)

Más detalles

GESIM Juego Gerencial Propiedad Intelectual Pontificia Universidad Javeriana

GESIM Juego Gerencial Propiedad Intelectual Pontificia Universidad Javeriana GESIM Juego Gerencial Propiea Intelectual Pontificia Universia Javeriana Profesor Asociao Departamento e Aministración e Empresas Universia Javeriana jsrosill@javeriana.eu.co Bogotá, D.C., enero 009 PRESENTACION

Más detalles

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER 17 MOMENOS DE INERCIA Y EOREMA DE SEINER OBJEIVOS Determnacón e la constante recuperaora e un muelle espral. Comprobacón el teorema e Stener. Determnacón expermental el momento e nerca e ferentes cuerpos

Más detalles

Fracciones: términos, lectura y escritura

Fracciones: términos, lectura y escritura Fraiones: términos, letura y esritura Feha Reuerda Los términos de una fraión son el numerador y el denominador: El denominador india el número de partes iguales en que se divide la unidad. El numerador

Más detalles

6. PROBLEMAS DE MARKETING

6. PROBLEMAS DE MARKETING 6. PROBLEMAS DE MARKETING PROBLEMA 1 (POSICIONAMIENTO DEL PRODUCTO) Se ha realizao una encuesta sobre un grupo e consumiores e vino tinto e mesa para que, sobre una escala e 0 a 10, califiquen a las iferentes

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación de Septiempbre, 00 Cuestiones 1h C1. El tiempo que un ordenador tarda en ejecutar una tarea es una v.a. Y Expλ). Para hacer un estudio

Más detalles

CONOCIMIENTO Y DISPOSICIÓN DE LA POBLACIÓN DE SANTIAGO SOBRE DONACIÓN DE ÓRGANOS PARA TRASPLANTES.

CONOCIMIENTO Y DISPOSICIÓN DE LA POBLACIÓN DE SANTIAGO SOBRE DONACIÓN DE ÓRGANOS PARA TRASPLANTES. CONOCIMIENTO Y DISPOSICIÓN DE LA POBLACIÓN DE SANTIAGO SOBRE DONACIÓN DE ÓRGANOS PARA TRASPLANTES. M Muñoz 1, P Acevedo 2, C Hube 2, N Alvarado 1, P Muñoz 1, SP Salas 1 1 Fac. de Medicina y 2 Fac. de Economía

Más detalles

TIPO TEST SESION 2 TEMA 5: TEORIA DE LA DEMANDA: EL COMPORTAMIENTO DEL CONSUMIDOR DEMANDANTE DE TURISMO

TIPO TEST SESION 2 TEMA 5: TEORIA DE LA DEMANDA: EL COMPORTAMIENTO DEL CONSUMIDOR DEMANDANTE DE TURISMO TIPO TEST SESION 2 TEMA 5: TEORIA E LA EMANA: EL OMPORTAMIENTO EL ONSUMIOR EMANANTE E TURISMO 1. Un consumidor se encuentra en equilibrio si la consumir helado y limonada se cumple la siguiente relación

Más detalles

IMPLEMENTACIÓN DE SENSORES VIRTUALES EN FOUNDATION FIELDBUS

IMPLEMENTACIÓN DE SENSORES VIRTUALES EN FOUNDATION FIELDBUS IMPLEMENACIÓN DE SENSORES VIRUALES EN FOUNDAION FIELDBUS Anrés J. Piñón Pazos Dpto. Ingeniería Inustrial, Universiae e A Coruña. E.U.P. Ferrol, Ava. 19 e Febrero, s/n, 15405 A Coruña, anrespp@cf.uc.es

Más detalles

e REVISTA/No. 04/diciembre 04

e REVISTA/No. 04/diciembre 04 e REVISTA/No. 04/diiembre 04 Las plataformas en la eduaión en línea Alberto Domingo Robles Peñaloza La Eduaión a Distania se ha visto en gran manera benefiiada del desarrollo de las Tenologías de Informaión

Más detalles

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN

INCOTERMS 2010 DEFINICIÓN FUNCIONES CLASIFICACIÓN INOTERMS 2010 DEFINIIÓN Las operaiones omeriales internaionales tienen su origen en un ontrato de ompraventa realizado entre importador y exportador, en el ual se estipulan las láusulas por las que se

Más detalles

Tema 1. Inferencia estadística para una población

Tema 1. Inferencia estadística para una población Tema 1. Inferencia estadística para una población Contenidos Inferencia estadística Estimadores puntuales Estimación de la media y la varianza de una población Estimación de la media de la población mediante

Más detalles

Reflexiones sobre los conceptos velocidad y rapidez de una partícula en física

Reflexiones sobre los conceptos velocidad y rapidez de una partícula en física ENSEÑANZA REVISTA MEXICANA DE FÍSICA E 56 () 181 189 DICIEMBRE 1 Reflexiones sobre los conceptos velocia y rapiez e una partícula en física S. Díaz-Solórzano y L. González-Díaz Centro e Investigaciones

Más detalles

RECOMENDACIÓN 326-6. (Cuestión 59/1)

RECOMENDACIÓN 326-6. (Cuestión 59/1) Rc. 326-6 RECOMENDACIÓN 326-6 DETERMINACIÓN Y MEDICIÓN DE LA POTENCIA DE LOS TRANSMISORES RADIOELÉCTRICOS (Cuestión 59/) Rc. 326-6 (95-959-963-966-974-978-982-986-990) El CCIR, CONSIDERANDO a) que el artículo

Más detalles

UNIDAD 6: PROBABILIDAD

UNIDAD 6: PROBABILIDAD UNIDAD 6: PROBABILIDAD ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL... 1 3.- SUCESOS ALEATORIOS. OPERACIONES... 2 4.- PROBABILIDAD. REGLA DE LAPLACE... 4 5.-

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE SOLUIONES IGITALES PARA ANUNIANTES MIEMBRO E El Intertive Avertising Bureu (IAB), funo nivel internionl en 996, es el prinipl orgnismo representtivo e l inustri puliitri online en el muno. omo soiión internionl

Más detalles

PROBLEMAS RESUELTOS DEL TEMA 1

PROBLEMAS RESUELTOS DEL TEMA 1 PROBLEMAS RESUELTOS DEL TEMA Problema nº Dibuje la forma extensiva del laberinto de la figura y a continuación resuélvalo para uno y para dos jugadores. Entrada a b Caldero de oro Para un jugador der D

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

CAPITULO III METODOLOGÍA. La información necesaria para conocer las preferencias en el consumo del vino

CAPITULO III METODOLOGÍA. La información necesaria para conocer las preferencias en el consumo del vino CAPITULO III METODOLOGÍA La información necesaria para conocer las preferencias en el consumo del vino mexicano en base a la muestra seleccionada dentro de la ciudad de Puebla se obtuvo a través del método

Más detalles

Cálculos de instalaciones de fontanería, gas y calefacción. Volumen 2: métodos de cálculos de calefacción y gas. Santiago Durán Montejano

Cálculos de instalaciones de fontanería, gas y calefacción. Volumen 2: métodos de cálculos de calefacción y gas. Santiago Durán Montejano Cálculos e instalaciones e fontanería, gas y calefacción. Volumen 2: métoos e cálculos e calefacción y gas. Santiago Durán Montejano 1ª eición: febrero 2008 Santiago Durán Montejano Tornapunta Eiciones,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

4. CÁLCULO INTEGRAL...71

4. CÁLCULO INTEGRAL...71 Inice. FUNCIONES..... NATURALEZA Y DEFINICIÓN DE FUNCIÓN MATEMÀTICA..... PRINCIPALES TIPOS DE FUNCIONES...9.. APLICACIONES DE LAS FUNCIONES.... LÍMITES..... LÌMITE DE UNA FUNCIÒN..... PROPIEDADES DE LOS

Más detalles

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES DE BÁSICA PRIMARIA EN LA CIUDAD DE PEREIRA José R. Bedoya Universidad Tecnológica de Pereira Pereira, Colombia La formación estadística en la ciudadanía,

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

Indicadores de riesgo de crédito derivado de los depósitos bancarios constituidos en el exterior

Indicadores de riesgo de crédito derivado de los depósitos bancarios constituidos en el exterior Inicaores e riesgo e créito erivao e los epósitos bancarios constituios en el eterior Verónica Roríguez Bruné 1 setiembre e 2010 Resumen: En este trabajo se presenta un conjunto e inicaores esarrollaos

Más detalles

PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS. Juan José Hernández Ocaña

PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS. Juan José Hernández Ocaña PRUEBAS PARAMETRICAS Los métodos paramétricos se basan en el muestreo de una población con parámetros específicos, como la media poblacional, la desviación estándar o la proporción p. Además deben de reunir

Más detalles

Tema 3. Comparaciones de dos poblaciones

Tema 3. Comparaciones de dos poblaciones Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:

Más detalles

CAPITULO IV METODOLOGIA DE LA INVESTIGACION

CAPITULO IV METODOLOGIA DE LA INVESTIGACION 109 CAPITULO IV METODOLOGIA DE LA INVESTIGACION 4.1. Tipo de investigación El tipo de investigación que se utiliza es el descriptivo, con el cual se ha pretenderá especificar la incidencia del maltrato

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Evolución del margen de intermediación en España: Tipos de interés, riesgo, costes o competencia?*

Evolución del margen de intermediación en España: Tipos de interés, riesgo, costes o competencia?* Evolución el margen e intermeiación en España: Tipos e interés, riesgo, costes o competencia?* Juan Fernánez e Guevara Ivie Recibio: Enero, 003; Aceptao: Octubre, 003 Resumen: Este trabajo analiza los

Más detalles

REPÚBLICA DE COLOMBIA CONSEJO PROFESIONAL NACIONAL DE INGENIERÍA - COPNIA ACTA DE APERTURA DE OFERTAS Y DE VERIFICACIÓN DE REQUISITOS HABILITANTES

REPÚBLICA DE COLOMBIA CONSEJO PROFESIONAL NACIONAL DE INGENIERÍA - COPNIA ACTA DE APERTURA DE OFERTAS Y DE VERIFICACIÓN DE REQUISITOS HABILITANTES REPÚBLIA DE OLOMBIA ONSEJO PROFESIONAL NAIONAL DE INGENIERÍA - OPNIA ATA DE APERTURA DE OFERTAS Y DE VERIFIAIÓN DE REQUISITOS HABILITANTES INFORME DE ONFORMAIÓN DE LISTA ORTA M-IS-02-2009 - PROESO DE SELEIÓN

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

Comparación de medias

Comparación de medias 12 Comparación de medias Irene Moral Peláez 12.1. Introducción Cuando se desea comprobar si los valores de una característica que es posible cuantificar (como podría ser la edad o la cifra de tensión arterial,

Más detalles

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión.

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Población Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Muestra: Identificación y Reclutamiento. Nomenclatura En esta aproximación conceptual consideraremos a Población como sinónimo

Más detalles

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos c Solución óptima (1.5,0.5 Valor 3.5. 0.5 puntos. Para recaudar dinero para el viaje de fin de curso, unos estudiantes han vendido camisetas, bufandas y gorras a 10, 5 y 7 euros respectivamente. Han recaudado

Más detalles

Viga sobre Base Elastica

Viga sobre Base Elastica ees namentales e la mecánica el meio contino Viga sobre Base Elastica PRINCIPIO DE VAOR ESTACIONARIO DE A ENERGÍA POTENCIA TOTA a energía potencial total Π e n sistema elástico viene compesto por os partes:

Más detalles

CINETICA DE REDUCCION DEL COBRE MEDIANTE GAS NATURAL

CINETICA DE REDUCCION DEL COBRE MEDIANTE GAS NATURAL CONAMET/SAM-SIMPOSIO MATERIA Resumen CINETICA DE REDUCCION DEL COBRE MEDIANTE GAS NATURAL Leanro Voisin, Anrzej Warczo y Gabriel Riveros Universia e Chile, Faculta e Ciencias Físicas y Matemáticas, Casilla

Más detalles

CAPÍTULO III METODOLOGÍA

CAPÍTULO III METODOLOGÍA CAPÍTULO III METODOLOGÍA 3.1 Población y Muestra Como el criterio de selección para la muestra fue la inteligencia promedio y el nivel socioeconómico medio y bajo, debido a ciertas limitaciones de la muestra

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles