Aprendizaje Supervisado Análisis Discriminante (Lineal y Cuadrático)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aprendizaje Supervisado Análisis Discriminante (Lineal y Cuadrático)"

Transcripción

1 Aprendizaje Supervisado Análisis Discriminante (Lineal y Cuadrático)

2 10 10 Modelo general de los métodos de Clasificación Id Reembolso Estado Civil Ingresos Anuales 1 Sí Soltero 125K No 2 No Casado 100K No 3 No Soltero 70K No 4 Sí Casado 120K No 5 No Divorcia do 95K Fraude Sí 6 No Casado 60K No Tabla de Aprendizaje Id Reembolso Estado Civil Ingresos Anuales 7 No Soltero 80K No 8 Si Casado 100K No 9 No Soltero 70K No Tabla de Testing Fraude Evaluar Generar el Modelo Aplicar el Modelo Algoritmo de Aprendizaje Modelo Nuevos Individuos

3 Definición de Clasificación Dada una base de datos D = {t 1, t 2,, t n } de tuplas o registros (individuos) y un conjunto de clases C = {C 1, C 2,, C m }, el problema de la clasificación es encontrar una función f: D C tal que cada t i es asignada una clase C j. f: D C podría ser una Red Neuronal, un Árbol de Decisión, un modelo basado en Análisis Discriminante, o una Red Beyesiana.

4 Ejemplo: Créditos en un Banco Tabla de Aprendizaje Variable Discriminante Con la Tabla de Aprendizaje se entrena (aprende) el modelo matemático de predicción, es decir, a partir de esta tabla se calcula la función f de la definición anterior.

5 Ejemplo: Créditos en un Banco Tabla de Testing Variable Discriminante Con la Tabla de Testing se valida el modelo matemático de predicción, es decir, se verifica que los resultados en individuos que no participaron en la construcción del modelo es bueno o aceptable. Algunas veces, sobre todo cuando hay pocos datos, se utiliza la Tabla de Aprendizaje también como de Tabla Testing.

6 Ejemplo: Créditos en un Banco Nuevos Individuos Variable Discriminante Con la Tabla de Nuevos Individuos se predice si estos serán o no buenos pagadores.

7 Idea: Se proyecta el nuevo individuo en suplementario y se asigna a la clase más cercana, pero qué significa clase más cercana? Supongamos que la matriz de datos (tabla de aprendizaje) está etiquetada separando por bloques las k distintas clases que se quieren clasificar con (X j ) 1 j k y el tamaño de cada clase es el número de filas de dicha clase, en R, nrow(x j ) = n j. La regla de Clasificación: Asigne cada nuevo individuo con valores en las variables x como sigue:

8 Idea: Se proyecta el nuevo individuo en suplementario y se asigna a la clase más cercana v3 v5 v8 v1 v2 v4 v6

9 Qué significa la distancia en este contexto? Definimos el Centro de Gravedad de la Clase o Centroide como sigue: Entonces la distancia al clase significa la distancia al Centro de Gravedad de la Clase o Centroide como sigue:

10 Escogiendo la Fórmula para distancia Fisher propuso usar lo siguiente, primero se descompone la tabla de aprendizaje como sigue: Luego calcular: Luego el Centro de Gravedad es el centro de gravedad de la proyección:

11 Análisis Discriminante Lineal Consiste en asignar el nuevo individuo x a la clase con centro de gravedad proyectado más cercano: Centroide más cercano Línea de separación dada por el ADL

12 El paquete MASS contiene la función lda para realizar Análisis Discriminante Lineal Instalando y usando el paquete MASS : install.packages( MASS,dependencies=TRUE) library(mass)

13 Ejemplo con IRIS.CSV Ejemplo con la tabla de datos IRIS IRIS Información de variables: 1.sepal largo en cm 2.sepal ancho en cm 3.petal largo en cm 4.petal ancho en cm 5.clase: Iris Setosa Iris Versicolor Iris Virginica

14 > library(scatterplot3d) > scatterplot3d(datos$p.ancho,datos$s.largo,datos$s.ancho)

15 Ejemplo 1: iris.csv

16 Ejemplo 2: Credit-Scoring MuestraAprendizajeCredito2500.csv MuestraTestCredito2500.csv

17 Descripción de Variables MontoCredito MontoCuota 1= Muy Bajo 1 =Muy Bajo 2= Bajo 2 =Bajo 3= Medio 3 =Medio 4= Alto 4 =Alto IngresoNeto GradoAcademico 1= Muy Bajo 1 =Bachiller 2= Bajo 2 =Licenciatura 3= Medio 3 =Maestría 4= Alto 4 =Doctorado CoeficienteCreditoAvaluo BuenPagador 1= Muy Bajo 1 =NO 2= Bajo 2 =Si 3= Medio 4= Alto

18 Análisis Discriminante Cuadrático ADC ADL

19 Análisis Discriminante Cuadrático

20 Datos IRIS con separación Lineal y Cuadrática Lineal Cuadrática

21 Ejemplo con IRIS.CSV Ejemplo con la tabla de datos IRIS IRIS Información de variables: 1.sepal largo en cm 2.sepal ancho en cm 3.petal largo en cm 4.petal ancho en cm 5.clase: Iris Setosa Iris Versicolor Iris Virginica

22 Ejemplo 2: Credit-Scoring MuestraAprendizajeCredito2500.csv MuestraTestCredito2500.csv

23 Gracias.

EPB 603 Sistemas del Conocimiento

EPB 603 Sistemas del Conocimiento EPB 603 Sistemas del Conocimiento Dr. Oldemar Rodríguez R. Maestría en Administración de la Tecnología de la Información Escuela de Informática EIA411 EPB 603 - Minería Sistemas de del Datos Conocimiento

Más detalles

Aprendizaje Supervisado K - Vecinos más cercanos Knn-Method

Aprendizaje Supervisado K - Vecinos más cercanos Knn-Method Aprendizaje Supervisado K - Vecinos más cercanos Knn-Method 10 10 Modelo general de los métodos de Clasificación Id Reembolso Estado Civil Ingresos Anuales 1 Sí Soltero 125K No 2 No Casado 100K No 3 No

Más detalles

Aprendizaje Supervisado Árboles de Decisión

Aprendizaje Supervisado Árboles de Decisión Aprendizaje Supervisado Árboles de Decisión 10 10 Modelo general de los métodos de Clasificación Id Reembolso Estado Civil Ingresos Anuales 1 Sí Soltero 125K No 2 No Casado 100K No 3 No Soltero 70K No

Más detalles

Tema 7. Introducción al reconocimiento de objetos

Tema 7. Introducción al reconocimiento de objetos Tema 7. Introducción al reconocimiento de objetos En resumen, un sistema de reconocimiento de patrones completo consiste en: Un sensor que recoge las observaciones a clasificar. Un sistema de extracción

Más detalles

Análisis Exploratorio de Datos

Análisis Exploratorio de Datos Análisis Exploratorio de Datos 10 Qué son los Datos? Una variable es una propiedad o característica de un Individuo Ejemplos: color de ojos de un persona, temperatura, estado civil Una colección de variables

Más detalles

Los mapas auto-organizados de Kohonen (SOM )

Los mapas auto-organizados de Kohonen (SOM ) Los mapas auto-organizados de Kohonen (SOM ) Introducción En 1982 T. Kohonen presentó un modelo de red denominado mapas auto-organizados o SOM (Self-Organizing Maps), basado en ciertas evidencias descubiertas

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

Aplicación de mapas autoorganizados (SOM) a la visualización de datos. Modelos Computacionales Fernando José Serrano García

Aplicación de mapas autoorganizados (SOM) a la visualización de datos. Modelos Computacionales Fernando José Serrano García Aplicación de mapas autoorganizados (SOM) a la visualización de datos Modelos Computacionales Fernando José Serrano García 2 Contenido Introducción... 3 Estructura... 3 Entrenamiento... 3 Aplicación de

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

Aprendizaje automático mediante árboles de decisión

Aprendizaje automático mediante árboles de decisión Aprendizaje automático mediante árboles de decisión Aprendizaje por inducción Los árboles de decisión son uno de los métodos de aprendizaje inductivo más usado. Hipótesis de aprendizaje inductivo: cualquier

Más detalles

MÁQUINAS DE VECTORES DE SOPORTE

MÁQUINAS DE VECTORES DE SOPORTE MÁQUINAS DE VECTORES DE SOPORTE Introducción Se tiene información de N individuos codificada de la forma Las variables X son vectores que reúnen información numérica del individuo, las variables Y indican

Más detalles

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Clasificación de métricas.

Clasificación de métricas. Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye

Más detalles

ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING

ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING RESUMEN JUAN MANUEL RIVAS CASTILLO En este documento se emplea el análisis discriminante, que es una técnica del análisis multivariado utilizada

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Dualidad y Análisis de Sensibilidad

Dualidad y Análisis de Sensibilidad Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Dualidad y Análisis de Sensibilidad Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0 FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables

Más detalles

Análisis Exploratorio de Datos en R

Análisis Exploratorio de Datos en R Felipe José Bravo Márquez 13 de noviembre de 2013 Análisis Exploratorio de Datos El análisis exploratorio de datos o (EDA) engloba un conjunto de técnicas para poder comprender de manera rápida la naturaleza

Más detalles

Área Académica: ICBI, Sistemas Computacionales. Profesor: M.C.C Víctor Tomás Tomás Mariano

Área Académica: ICBI, Sistemas Computacionales. Profesor: M.C.C Víctor Tomás Tomás Mariano Área Académica: ICBI, Sistemas Computacionales Tema: Mapas auto organizados Profesor: M.C.C Víctor Tomás Tomás Mariano Alumnos: Leticia Hernandez Hernandez. Agustin Escamilla Hernández Periodo: Julio-Diciembre

Más detalles

Técnicas de análisis multivariante para agrupación

Técnicas de análisis multivariante para agrupación TEMA 2: TÉCNICAS DE ANÁLISIS MULTIVARIANTE PARA AGRUPACIÓN Métodos cluster Técnicas de segmentación Clasificación no supervisada Ana Justel 1 Técnicas de análisis multivariante para agrupación Motivación

Más detalles

1 Instrucciones generales para ambas plantillas. 2 Instrucciones para la plantilla «total de activos» Febrero de 2015. Convención de signos

1 Instrucciones generales para ambas plantillas. 2 Instrucciones para la plantilla «total de activos» Febrero de 2015. Convención de signos Instrucciones para cumplimentar las plantillas de total de activos y de exposición total al riesgo a fines de recopilación de factores de la tasa de supervisión Febrero de 2015 1 Instrucciones generales

Más detalles

Métodos de agregación de modelos y aplicaciones

Métodos de agregación de modelos y aplicaciones Métodos de agregación de modelos y aplicaciones Model aggregation methods and applications Mathias Bourel 1 Recibido: Mayo 2012 Aprobado: Agosto 2012 Resumen.- Los métodos de agregación de modelos en aprendizaje

Más detalles

3. Selección y Extracción de características. Selección: Extracción: -PCA -NMF

3. Selección y Extracción de características. Selección: Extracción: -PCA -NMF 3. Selección y Extracción de características Selección: - óptimos y subóptimos Extracción: -PCA - LDA - ICA -NMF 1 Selección de Características Objetivo: Seleccionar un conjunto de p variables a partir

Más detalles

ESTRUCTURA DE DATOS: ARREGLOS

ESTRUCTURA DE DATOS: ARREGLOS ESTRUCTURA DE DATOS: ARREGLOS 1. Introduccion 2. Arreglos - Concepto - Caracteristicas 3. Arreglos Unidimensionales 4. Arreglos Bidimensionales 5. Ventajas del uso de arreglos 6. Ejemplo 1. Introducción

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Ejemplo de Aplicación con Neural Connection

Ejemplo de Aplicación con Neural Connection Ejemplo de Aplicación con Neural Connection El marketing directo es un área donde las redes neuronales han tenido un considerable éxito. En este tipo de marketing, se vende un producto o un servicio, enviando

Más detalles

REDES AUTOORGANIZATIVAS II

REDES AUTOORGANIZATIVAS II Tema 5: Redes Autoorganizativas Sistemas Conexionistas 1 REDES AUTOORGANIZATIVAS II 1. Leyes de Grossberg. 1.1. Red de Contrapropagación. - Estructura. - Funcionamiento. - Limitaciones y Ventajas. 2. Teoría

Más detalles

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización Minería de Datos Preprocesamiento: Reducción de Datos - Discretización Dr. Edgar Acuña Departamento de Ciencias Matemáticas Universidad de Puerto Rico-Mayaguez E-mail: edgar.acuna@upr.edu, eacunaf@gmail.com

Más detalles

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source Inteligencia Artificial y Seguridad Informática en plataformas Open Source Jornadas de Software Libre y Seguridad Informática Santa Rosa La Pampa 4 y 5 de Diciembre de 2009 AGENDA Primera Parte Definiciones

Más detalles

José Ignacio Latorre Universidad de Barcelona

José Ignacio Latorre Universidad de Barcelona INTELIGENCIA ARTIFICIAL José Ignacio Latorre Universidad de Barcelona A qué llamamos inteligencia artificial? Es un campo de estudio que intenta conseguir que un ordenador realice funciones similares a

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Curso de Inteligencia Artificial

Curso de Inteligencia Artificial Curso de Inteligencia Artificial Introducción al Aprendizaje Automático Gibran Fuentes Pineda IIMAS, UNAM Definición El aprendizaje automático es el estudio de los metodos para programar las computadoras

Más detalles

Credit scoring. por Dr. Marcelo Dabós, Ph.D. (marcelo.dabos@comunidad.ub.edu.ar)

Credit scoring. por Dr. Marcelo Dabós, Ph.D. (marcelo.dabos@comunidad.ub.edu.ar) Credit scoring por Dr. Marcelo Dabós, Ph.D. (marcelo.dabos@comunidad.ub.edu.ar) En base a que los bancos modernos otorgan tarjetas de crédito y créditos personales o los niegan? Qué límite de crédito le

Más detalles

Construyendo gráficos estadísticos con ayuda de Microsoft Excel

Construyendo gráficos estadísticos con ayuda de Microsoft Excel Construyendo gráficos estadísticos con ayuda de Microsoft Excel Eduardo Aguilar Fernández Universidad Nacional Heredia, Costa Rica eaguilar2@gmail.com Andrey Zamora Araya Universidad Nacional Heredia,

Más detalles

UNIDAD 6. Programación no lineal

UNIDAD 6. Programación no lineal UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto

Más detalles

Iniciándose en la Programación con la ClassPad

Iniciándose en la Programación con la ClassPad DP. - AS - 5119-2007 AULA MATEMÁTICA DIGITAL ISSN: 1988-379X Iniciándose en la Programación con la ClassPad Gualberto Soto Sivila (Ingeniería Industrial) INTRODUCCIÓN Universidad Técnica de Oruro Facultad

Más detalles

Visualización de datos

Visualización de datos Visualización de datos 2 Outline Buenos gráficos el lie factor Representar datos en 1,2, y 3-D Representar datos en 4+ dimensiones Parallel coordinates Scatterplots Stick figures 3 Rol de la visualización

Más detalles

TEMA 5 Variables ficticias

TEMA 5 Variables ficticias TEMA 5 Variables ficticias Cómo describir información cualitativa Muchas veces en el modelo de regresión aparecen factores cualitativos (sexo, raza, estado civil,.). En estos casos la información relevante

Más detalles

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3

Más detalles

Aprendizaje Computacional y Extracción de Información

Aprendizaje Computacional y Extracción de Información Aprendizaje Computacional y Extracción de Información Introducción Jose Oncina oncina@dlsi.ua.es Dep. Lenguajes y Sistemas Informáticos Universidad de Alicante 17 de octubre de 2005 J. Oncina (Universidad

Más detalles

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado

Tablas. Estas serán las tablas que usaremos en la mayoría de ejemplos. Empleado Álgebra Relacional Un álgebra es un sistema matemático constituido por Operandos: objetos (valores o variables) desde los cuales nuevos objetos pueden ser construidos. Operadores: símbolos que denotan

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo Minería de Datos Óscar Palomo Miñambres Universidad Carlos III de Madrid Avda. De la Universidad, 30 28911, Leganés (Madrid-España) 100049074@alumnos.uc3m.es Abstract En este artículo analizaremos las

Más detalles

UNIVERSIDAD SAN FRANCISCO DE QUITO. Minería de Datos Aplicada a Credit Scoring. Mauricio Figueroa

UNIVERSIDAD SAN FRANCISCO DE QUITO. Minería de Datos Aplicada a Credit Scoring. Mauricio Figueroa UNIVERSIDAD SAN FRANCISCO DE QUITO Minería de Datos Aplicada a Credit Scoring Mauricio Figueroa Tesis de grado presentada como requisito para la obtención del título de Maestría en Matemáticas Aplicadas

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Tópicos Selectos en Aprendizaje Maquinal. Algoritmos para Reconocimiento de Patrones

Tópicos Selectos en Aprendizaje Maquinal. Algoritmos para Reconocimiento de Patrones Tópicos Selectos en Aprendizaje Maquinal Guía de Trabajos Prácticos N 1 (2da. parte) Algoritmos para Reconocimiento de Patrones 20 de Octubre de 2010 1. Objetivos Introducir conceptos básicos de aprendizaje

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

1. DATOS DE LA ASIGNATURA

1. DATOS DE LA ASIGNATURA 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Curso Avanzado de Estadística Titulación: Máster en Matemáticas y aplicaciones Código Breve Descripción: El curso está centrado en dos temas relativamente

Más detalles

Introducción a la Computación TFA

Introducción a la Computación TFA Introducción a la Computación TFA Departamento de Informática Facultad de Ciencias Físico, Matemáticas y Naturales- UNSL Lenguaje de Diseño de Algoritmos Estructura de Control Condicional Simple y Múltiple

Más detalles

Repaso de conceptos. Tipos de RNA más utilizados. Técnicas de Clasificación con RNA. Contenido

Repaso de conceptos. Tipos de RNA más utilizados. Técnicas de Clasificación con RNA. Contenido Contenido Introducción al Diseño de Experimentos para el Reconocimiento de Patrones Capítulo 3: Redes Neuronales Artificiales Curso de doctorado impartido por Dr. Quiliano Isaac Moro Dra. Aranzazu Simón

Más detalles

El modelo relacional

El modelo relacional El modelo relacional El modelo relacional constituye una alternativa para la organización y representación de la información que se pretende almacenar en una base de datos. Se trata de un modelo teórico

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Enfoque propuesto para la detección del humo de señales de video.

Enfoque propuesto para la detección del humo de señales de video. Capítulo 3 Enfoque propuesto para la detección del humo de señales de video. 3.1 Comportamiento del enfoque propuesto. Una visión general del método propuesto se muestra en la figura 2. El método genera

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Conciliación bancaria en CheqPAQ Cargado de estado de cuenta

Conciliación bancaria en CheqPAQ Cargado de estado de cuenta Conciliación bancaria en CheqPAQ Cargado de estado de cuenta Introducción Con la finalidad de mantenerte informado respecto a todos los cambios y mejoras de los productos de CONTPAQ i, ponemos a tu disposición

Más detalles

NeuralTools. Programa auxiliar de redes neuronales para Microsoft Excel. Versión 6 March, 2013. Guía para el uso de

NeuralTools. Programa auxiliar de redes neuronales para Microsoft Excel. Versión 6 March, 2013. Guía para el uso de Guía para el uso de NeuralTools Programa auxiliar de redes neuronales para Microsoft Excel Versión 6 March, 2013 Palisade Corporation 798 Cascadilla St. Ithaca, NY 14850 EE.UU. +1-607-277-8000 +1-607-277-8001

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014 Tecnologías en la Educación Matemática jac@cs.uns.edu.ar Dpto. de Ciencias e Ingeniería de la Computación UNIVERSIDAD NACIONAL DEL SUR 1 Datos Los algoritmos combinan datos con acciones. Los datos de entrada

Más detalles

9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de decisión.

9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de decisión. TEMA 9 TÉCNICAS DE INTELIGENCIA ARTIFICIAL PARA EL ANÁLISIS DE LA INFORMACIÓN CONTABLE 9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos I. Barbona - Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparison among

Más detalles

COMBINAR CORRESPONDENCIA EN MICROSOFT WORD

COMBINAR CORRESPONDENCIA EN MICROSOFT WORD COMBINAR CORRESPONDENCIA EN MICROSOFT WORD Combinar documentos consiste en unir dos documentos diferentes sin que se modifiquen los datos que aparecen en ellos. Esta operación es muy útil y muy frecuente

Más detalles

Decidir cuándo autenticar en dispositivos móviles a partir de modelos de machine learning 1

Decidir cuándo autenticar en dispositivos móviles a partir de modelos de machine learning 1 Decidir cuándo autenticar en dispositivos móviles a partir de modelos de machine learning 1 En los dispositivos móviles como tablets o teléfonos celulares se tiene la opción de implementar o no un sistemas

Más detalles

Redes Neuronales Artificiales y sus Aplicaciones

Redes Neuronales Artificiales y sus Aplicaciones Redes Neuronales Artificiales y sus Aplicaciones Profesorado Departamento Programa de Doctorado Créditos 3 Nº de Plazas 2. La asignatura 2. Objetivos de la asignatura 3. Contenidos 4. Metodología de trabajo

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

Principios de Bases de Datos Relacionales, Normalización. Unidad 4

Principios de Bases de Datos Relacionales, Normalización. Unidad 4 Principios de Bases de Datos Relacionales, Normalización Unidad 4 Introducción Dependencia Funcional La dependencia funcional es una restricción entre dos conjuntos de atributos en una relación de una

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja o asocia datos

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: ADMINISTRACIÓN DE PROYECTOS I FECHA DE ELABORACIÓN: MARZO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS

Más detalles

Tema 2: Análisis Discriminante

Tema 2: Análisis Discriminante Tema 2: Análisis Discriminante P 1 P 2 Problema de clasificación: Ténemos observaciones que corresponden a 2 grupos P_1, P_2. Si nos dan uno nuevo x_0 a que grupo pertenece? Guión 1. Motivación 2. Clasificación

Más detalles

Tutorial: Uso básico de RapidMiner

Tutorial: Uso básico de RapidMiner Introducción Tutorial: Uso básico de RapidMiner En el mundo de la minería de datos (Data Mining) es imprescindible contar con software especializado que permita trabajar los datos para alcanzar los objetivos

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Amaro Camargo Erika, Reyes García Carlos A. Instituto Nacional de Astrofísica, Óptica

Más detalles

EPB 603 Sistemas del Conocimiento!"#$ %& $ %'

EPB 603 Sistemas del Conocimiento!#$ %& $ %' Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM EPB 603 Sistemas del Conocimiento!"#$ %& $ %' Modelos de proceso para proyectos de Data Mining (DM) Son diversos los modelos de

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

Métricas de complejidad para la transformación del problema de detección de cáncer basado en

Métricas de complejidad para la transformación del problema de detección de cáncer basado en Índice para la transformación del problema de detección de cáncer basado en mamografías Alumna: Núria Macià Antoĺınez Asesora: Ester Bernadó Mansilla Núria Macià Antoĺınez PFC: 1/49 Índice 1 Planteamiento

Más detalles

UTILIZACIÓN DE RELOJES

UTILIZACIÓN DE RELOJES UTILIZACIÓN DE RELOJES Para la utilización de Relojes en el Módulo Control de Personal, deberá definir lo que se indica seguidamente: 1- DEFINICION DEL MODELO DE RELOJ Los modelos son utilizados para identificar

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales. Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,

Más detalles

Ejemplos de conversión de reales a enteros

Ejemplos de conversión de reales a enteros Ejemplos de conversión de reales a enteros Con el siguiente programa se pueden apreciar las diferencias entre las cuatro funciones para convertir de reales a enteros: program convertir_real_a_entero print

Más detalles

Guía de Modelo Relacional y Conversión de Entidad-Relación a Relacional

Guía de Modelo Relacional y Conversión de Entidad-Relación a Relacional Guía de Modelo Relacional y Conversión de Entidad-Relación a Relacional Prof. Claudio Gutiérrez, Aux. Mauricio Monsalve Primavera de 2007 1. Problemas conceptuales 1. Qué es una relación? Qué es un esquema

Más detalles