Campo Gravitatorio. I.E.S. Francisco Grande Covián Campo Gravitatorio 20/09/2005 Física 2ªBachiller

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Campo Gravitatorio. www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 20/09/2005 Física 2ªBachiller"

Transcripción

1 Campo Gravitatorio 1.- La masa del Sol es veces mayor que la de la Tierra y su radio 108 veces mayor que el terrestre. a) Cuántas veces es mayor el peso de un cuerpo en la superficie del Sol que en la de la Tierra? b) Cuál sería la altura máxima alcanzada por un proyectil que se lanza verticalmente hacia arriba, desde la superficie solar, con una velocidad de 720 km h -l ; g= 10 m s 2. Andalucía. Junio, ,82; 73,4 m 2.- La Luna describe una órbita casi circular en torno a la Tierra en 27,3 días. a) Calcula la distancia entre los centros de la Tierra y la Luna. b) Calcula el valor de la masa de la Luna sabiendo que una partícula de masa m podría estar en equilibrio en un punto alineado con los centros de la Tierra y de la Luna y a una distancia del centro de la Tierra de 3, m. c) Si en la Luna se deja caer, sin velocidad inicial, un objeto desde una altura de 10 m, con qué velocidad llegará al suelo? Datos: G = 6, N m 2 kg 2. Masa de la Tierra: 6, kg. Radio de la Luna: 1, m. Canarias. Junio, , m; 9, Kg; 7,15 m/s 3.- Razona por qué son planas las trayectorias de los planetas en torno al Sol. Canarias. Junio Halla la expresión de la "velocidad de escape" de un cuerpo que se encuentra en la superficie de la Tierra. Canarias. Junio En un planeta cuyo radio es la mitad del radio terrestre, la aceleración de la gravedad en su superficie vale 5 m s 2.Calcular: a) La relación entre las masas del planeta y la Tierra. b) La altura a la que es necesario dejar caer desde el reposo un objeto en el planeta, para que llegue a su superficie con la misma velocidad con que lo hace en la Tierra, cuando cae desde una altura de 100 m. (En la Tierra: g = 10 m s 2 ) Galicia Junio 96. 0,125 ; 200 m. b) La energía potencial gravitatoria de una partícula de masa m en las proximidades de la superficie de un planeta, por ejemplo la Tierra, puede expresarse en la forma aproximada E p = m g h, donde h es la respecto a un cierto nivel de referencia. En qué circunstancias es válida esta expresión? El mencionado de referencia, debe ser necesariamente la superficie del planeta? Razona tus contestaciones. Zaragoza Junio Unos nos dicen que la velocidad con que habría que lanzarse un cohete desde la superficie de la luna para que escapara de su atracción gravitatoria es 300 m s 1. Pero otros nos aseguran que es sólo 213 m s 1. a) Calcula la velocidad de escape correcta. b) Calcula la diferencia entre lo que nos han dicho nuestros amigos y el resultado correcto que has obtenido. Exprésalas en tantos por ciento de valor correcto. Datos- La masa de la Luna es 7, kg y su radio es 1, m. Constante de la gravitación universal: G = 6, UI 237,2 m/s; 26,5%; 10,2% 9.- La Luna es aproximadamente esférica con radio R L = 1, m y masa M L = 7, kg. La constante de gravitación universal es G = 6, N m 2 kg 2. Desde la superficie de la Luna se lanza verticalmente un objeto que llega a elevarse una altura máxima sobre la superficie h = R L. Determina: a) la velocidad inicial con que se ha lanzado el objeto. b) La aceleración de la gravedad en la superficie de la Luna y en el punto más alto alcanzado por el objeto. Zaragoza Junio m/s 10.- Un satélite artificial describe una órbita elíptica, con el centro de la Tierra en uno de sus focos. a) En el movimiento orbital del satélite, se conserva su energía mecánica? Y su momento angular respecto al centro de la Tierra? Por qué? b) Supón que conocemos las distancias máxima y mínima del satélite al centro de la Tierra (apogeo y perigeo). R A y R P respectivamente. Plantea razonadamente. sin resolverlas. las ecuaciones necesarias para determinar las velocidades orbitales del satélite en el apogeo y en el perigeo, V A y V P. Datos: constante de gravitación universal. G. Masa de 6.- Suponiendo a la Tierra como una esfera homogénea de radio R y despreciando efectos que sobre la fuerza de atracción entre masas ejerce la rotación de la Tierra alrededor de su eje, determinar la altura h a la que hay que elevar sobre la superficie terrestre una masa de 1 kg para que su peso se reduzca a la mitad. Discutir los resultados. Valencia Junio 96. 0,414 R y 2,414 R 7.- a) Explica el concepto de energía potencial gravitatoria. Qué energía potencial gravitatoria tiene una partícula de masa m situada a una distancia r de otra de masa M? D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 1 de 44

2 la Tierra. M. Zaragoza Septiembre 97 S 11.- Un enorme cañón dispara verticalmente un proyectil desde la superficie de la Tierra que asciende pero vuelve a caer siendo la altura máxima alcanzada igual a la décima parte del radio terrestre. Con idéntico armamento repetimos la experiencia desde la superficie de un planeta imaginario, cuyo radio es la cuarta parte del de la Tierra, observando ahora que el proyectil no regresa. a) Calcula la máxima masa que puede tener el planeta imaginario (Masa de la tierra = kg ). b) Si no conoces el valor de la constante de gravitación G, pero te dan el valor del radio de un planeta cualquiera, R 0, y el valor de la gravedad en su superficie, g 0, cómo podrías calcular su velocidad de escape? M T /44=1, kg ; 2g 0 R La N.A.S.A. coloca en órbita circular un satélite artificial de 300 kg de masa de forma que un observador terrestre, convenientemente situado, podría verlo inmóvil en el firmamento. Este tipo de satélite se denomina geoestacionario o geosincrónico, y se utiliza principalmente en comunicaciones. a) Calcula el radio de la órbita y su altura respecto a la superficie terrestre. b) Determina la energía mecánica del satélite en su órbita. Constante de Gravitación Universal, G = 6, U.S.I. Masa de la Tierra M = 5, kg Radio terrestre R = 6370 km.; 4, m ;35863 km; 1, J 13.- Si un gigante cósmico y mal intencionado detuviera la luna en su trayectoria alrededor de la Tierra y después la soltara y abandonara a sí misma, esta caería irremediablemente sobre nuestras cabezas. Calcula: a) Cual seria la energía cinética con que llegaría la Luna a la superficie terrestre? b) Sabes que para evaporar por calentamiento una masa de 1 kg de agua hay que emplear aproximadamente una energía de Julios. Qué cantidad de agua se evaporaría si toda aquella energía cinética se empleara en evaporar agua de mar? Da el resultado en millones de toneladas (no te asustes; recuerda que el tamaño de la Luna es comparable al del mar Mediterráneo). Datos: La masa de la Luna es 7, kg: Toma la distancia entre los centros de la Tierra y la Luna 3, y el valor de la gravedad en la superficie de la Tierra como g 0 = 9,8 m s 2. El radio de la tierra es R T = 6, m. 4, J, 1, MT 14.- a) Escribe y comenta la Ley de Gravitación Universal. b) La Tierra tarda un año en realizar su órbita en tomo al Sol. Esta órbita es aproximadamente circular con radio R = 1, m. Sabiendo que G = 6,67 l0 11 N m 2 kg 2, calcula la masa del Sol. Zaragoza 98. 1, kg 15.- Una sonda espacial se encuentra "estacionada" en una órbita circular terrestre a una altura sobre la superficie terrestre de 2,26 R T, donde R T es el radio de la Tierra. a) Calcular la velocidad de la sonda en la órbita de estacionamiento. b) Comprobar que la velocidad que la sonda necesita, a esa altura, para escapar de la atracción de la Tierra es aproximadamente 6,2 km/s Datos: Gravedad en la superficie de la Tierra g = 9,81 ms 2 Radio medio Terrestre R T = 6370 km. Madrid ,2 m/s ; 6, m/s 16.- Dos masas puntuales m = 6,4 kg se encuentran fijas en dos puntos separados d = 16 cm. Una tercera masa (m'= 100 g) se suelta en un punto A equidistante de los anteriores y situado a una distancia de 6 cm por encima del punto medio B del segmento que une las masas m. Determinar: a) La aceleración de la masa m' en los puntos A y B. b) La velocidad que llevará cuando pase por el punto B. G = 6, N m 2 /kg 2. Baleares Junio, m/s 2 ; 768G j r ; 6, m/s 17.- Razona las respuestas a las siguientes preguntas: a) Si el cero de energía potencial gravitatoria de una partícula de masa m se sitúa en la superficie de la Tierra, cuál es el valor de la energía potencial de la partícula cuando ésta se encuentra a una distancia infinita de la Tierra? b) Puede ser negativo el trabajo realizado por una fuerza gravitatoria? Puede ser negativa la energía potencial gravitatoria? Andalucía a) Momento angular de una partícula: definición; teorema de conservación.) b) Un satélite artificial, de masa m = 200 kg describe una órbita circular de radio R = 6700 km en torno a la Tierra- Calcula su momento angular respecto al centro de la Tierra. Es constante? Por qué? (1,5 p.) Datos: M T = 5, kg; G = 6, N m 2 kg 19.- Describe cualitativamente el cambio de peso que sufre una nave espacial de masa m en un viaje de la Tierra a la Luna. Supón que la Tierra y la Luna se encuentran en reposo y que la nave se mueve según la dirección que une los centros. Balares Es posible que un satélite artificial describa una órbita circular alrededor de la Tierra si su velocidad es de 1 km/s? Razona la respuesta. Datos: R T = 6370 km ; g T = 9,8 m/s 2 Distancia Tierra Luna 3, m Balares98. No es posible el radio de la órbita es 3, m 21.- Dos masas iguales de 300 kg se suponen concentradas en dos puntos, A y B, separados entre sí 0,16 m. Desde un punto C, situado sobre la perpendicular por el punto medio a la línea que une las dos masas anteriores y a una altura de 0,06 m, se suelta una tercera masa m de 1 kg, sometida exclusivamente a la acción de las dos D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 2 de 44

3 primeras. Calcula: a) La aceleración de m en el instante en que es soltada. b) La velocidad de m cuando pasa por el punto medio de la línea que une A y B. c) La aceleración de m cuando se encuentra en este punto medio. G = 6, N m 2 /kg 2. Balares98. r r 6 2 a = 2,4 10 j ms ; 5, ms 1 ; La Luna describe una órbita circular en tomo a la Tierra en 28 días. La masa de la Tierra es 6, kg y G = 6, N. m 2 kg 2. a) Calcula la distancia entre los centros de la Tierra y la Luna. b) Calcula el valor de la masa de la Luna sabiendo que una partícula de masa m podría estar en equilibrio en un punto alineado con los centros de la Tierra y de la Luna, a una distancia del centro de la Tierra de 3,4 l0 8 m. c) Si en la Luna, cuyo radio es de 1, m, se deja caer sin velocidad inicial un objeto desde una altura de 10 m, con qué velocidad llegará al suelo? Canarias 98 3, m ; 1, kg ; 7,74 m/s 23.- Deduce la expresión de la energía necesaria para poner un satélite en órbita lanzándolo desde la superficie terrestre, justificándolo físicamente. Canarias El periodo de un péndulo simple de 1 m de longitud en la superficie de la Luna es T = 4,7 s. Sabiendo que el radio de la Luna es R L = 1738 km: a) Determina la gravedad en la superficie lunar. b) Determina la velocidad de escape en la superficie de la Luna. Datos: G = 6, N m 2 /kg 2. Cantabria 98 1,79 m/s 2 ; 2492,4 m/s 25.- Un satélite artificial de 100 kg de masa describe una órbita circular alrededor de la Tierra a una altura de 500 km sobre la superficie terrestre. Sabiendo que su periodo de revolución es T 1 = 5665 s, determina: a) Velocidad del satélite en la órbita. b) Energía cinética, energía potencial y energía total del satélite en la citada órbita. c) Energía necesaria para transferir este satélite a otra órbita de periodo T 2 = 7200 s. Datos: G = 6, N m 2 /kg 2. Radio de la Tierra = 6370 km. Cantabria m/s ; 2, J; 5, J; 2, J ; 0, J 26.- Calcula el periodo de un satélite artificial que describe una órbita alrededor de la Tierra a una distancia de 10 km sobre la superficie terrestre. Datos: G = 6,67 l0 11 N m 2 /kg 2. Masa de la Tierra: M T = 5, kg. Radio de la Tierra: R T = km. Castilla la Mancha s que se halla la Tierra. G = 6, U.S.I. Castilla y León 98. 2, kg ; 8, J kg Razona por qué es imposible que un satélite artificial describa en torno a la Tierra una órbita que, como la de la figura, no está contenida en el plano del ecuador, sino en otro paralelo a él. Castilla y León Determina el campo gravitatorio módulo, dirección y sentido) resultante de los campos gravitatorios individuales de la Tierra y del Sol, en un punto situado en la recta que une la Tierra y el Sol, y a una distancia de km del centro de la Tierra. Datos: G = 6, N. m 2 /kg 2. M Tierra = 5, kg; M Sol 1, kg; D Tierra-Sol = km. Comunidad Valenciana 98. 3, ms 2 hacia el Sol 30.- La distancia entre el Sol y Mercurio es de 57, km, y entre el Sol y la Tierra es de 149, km. Suponiendo que las órbitas de ambos planetas son circulares, calcula su velocidad de rotación alrededor del Sol. Comunidad Valenciana 98;3, y 4, ms Di si es CIERTO o FALSO y razona la respuesta: "El trabajo de una fuerza conservativa, al desplazarse entre dos puntos, es menor si se realiza a través de la recta que los une." Extremadura 98. Falso Fuerzas conservativas. Características. Extremadura Una masa se desplaza en un campo gravitatorio desde un lugar en que su energía potencial vale 200 J hasta otro donde vale 400 J. Cuál es el trabajo realizado por o contra el campo?: a) 200 J. b) 200 J. e) 600 J. Galicia J. la masa se desplaza por si misma disminuyendo su energía potencial La menor velocidad de giro de un satélite de la Tierra, conocida como primera velocidad cósmica, es la que se obtendría para un radio orbital igual al radio terrestre R T. Calcula: a) La primera velocidad cósmica. b) El periodo de revolución correspondiente. Datos: G = 6, N m 2 kg 2 m T = 5, kg R T = 6, m Galicia ,84 m/s ; 5069,88 s 27.- Supón que la órbita de la Tierra en torno al Sol es una circunferencia de radio 1, m y que la Tierra 35.- La nave espacial Lunar Prospector permanece en tarda 3, s en completar dicha órbita. Determina: órbita circular alrededor de la Luna a una altura de 100 a) La masa del Sol. km sobre su superficie. Determina: b) El potencial gravitatorio debido al Sol en el punto en a) La velocidad lineal de la nave y el periodo del mo- D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 3 de 44

4 vimiento. b) La velocidad de escape a la atracción lunar desde esa órbita. Datos: Constante de gravitación: G =6, N m 2 kg 2 ; Masa de la Luna: M L = 7, kg ; Radio medio lunar: R L = 1740 km Madrid ,4 m/s ; 7077,9 s ; 2310 m/s 36.- Un satélite de 1000 kg de masa gira en una órbita geoestacionaria (es decir, la vertical del satélite siempre pasa por el mismo punto de la superficie terrestre).calcula: a) Su velocidad angular. b) El módulo de su aceleración. c) Su energía total. Dato: radio de la Tierra = km. Murcia 98. 7, rad/s: 0,22 ms 2 ; 4, J 37.- Un astronauta, con 100 kg de masa (incluyendo el traje), está en la superficie de un asteroide de forma prácticamente esférica, con 2,4 km de diámetro y densidad media 2,2 g cm 3. Determina: a) Con qué velocidad debe impulsarse el astronauta para abandonar el asteroide? b) Cómo se denomina rigurosamente tal velocidad? c) El astronauta carga ahora con una mochila que pesa 40 kg. Le será más fácil salir del planeta? Por qué? Dato: G = 6, N. m 2 kg 2. Oviedo 98. 1,3 m/s; velocidad de escape; igual Se desea situar un satélite artificial de 50 kg de masa en una órbita circular situada en el plano del ecuador y con un radio igual al doble del terrestre. Calcula: a) Energía que hay que comunicar al satélite y velocidad orbital de éste. b) Energía adicional que habría que aportar al satélite en órbita para que escape de la acción del campo gravitatorio terrestre. Datos: G = 6, N m 2 kg 2 R T = 6, m M T = 5, kg País Vasco 98. 2, J ; 5595 m/s; 7, J 39.- a) Explica el concepto de energía gravitatoria. Qué energía potencial tiene una partícula de masa m situada a una distancia r de otra masa M? b) La energía potencial gravitatoria de una partícula de masa m en las proximidades de la superficie de un planeta, por ejemplo la Tierra, puede expresarse en la forma aproximada Ep= mgh donde h es la altura respecto a un cierto nivel de referencia. En qué circunstancias es válida esta expresión El mencionado nivel de referencia, debe ser necesariamente la superficie del planeta? Razona tus contestaciones. Zaragoza Junio Un satélite artificial de masa m = 300 kg describe una órbita circular en torno a la Tierra. Sabiendo su velocidad orbital es v = 6,3 km/s, que la masa de la Tierra es M T = 5, kg y que la constante de gravitación es G = 6, N m 2 kg 2, determina: a) El radio de la órbita del satélite. b) La energía mecánica. c) El momento angular respecto al centro de la Tierra del satélite. Zaragoza Septiembre m; J ; 1, kg m 2 s 1 S 41.- Escribe y comenta la Ley de Gravitación Universal. b) La Tierra tarda un año en realizar su órbita en tomo al Sol. Esta órbita es aproximadamente circular con radio R = 1, m. Sabiendo que G = 6, N m 2 kg 2, calcula la masa de Sol. Zaragoza Junio 98. 1, kg S 42.- Qué es una fuerza central? Cuándo se dice que un campo de fuerzas es conservativo? Los campos de fuerzas centrales son conservativos? Razona la respuesta y utiliza ejemplos. Madrid Imagina un planeta sin atmósfera, perfectamente esférico, de radio R= 5000 km y masa M = kg. Desde su superficie, se dispara horizontalmente un proyectil. G = 6, N m 2 kg 2. a ) Calcula la velocidad con que debe dispararse el proyectil para que describa una órbita circular rasante a la superficie del planeta b) Explica qué es la "velocidad de escape" y calcúlala en nuestro caso. v = 8167 m/s ; 11549,9 m/s S 44.- Compara las fuerzas de atracción que ejercen la Luna y la Tierra sobre un cuerpo de masa m que se halla situado en la superficie de la Tierra. A qué conclusión llegas? b) Si el peso de un cuerpo en la superficie de la Tierra es de 100 kp. Cuál sería el peso de ese mismo cuerpo en la superficie de la Luna? Datos: La masa de la Tierra es 81 veces la masa de la Luna. La distancia entre los centros de la Tierra y la Luna es de 60 radios terrestres. El radio de la Luna es de 0,27 veces el radio de la Tierra. Madrid N S 45.- a) Cómo se define la gravedad en un punto de la superficie terrestre? Dónde será la mayor la gravedad, en los Polos o en un punto del Ecuador? b) Cómo varía la gravedad con la altura? Qué relación existe entre la gravedad a una altura h y la gravedad en la superficie terrestre? Razona las respuestas. Madrid a) Enuncia las leyes de Kepler. Sabiendo que el radio medio de la órbita de Neptuno en tomo al sol es 30 veces mayor que el de la Tierra. Cuántos años terrestres tarda Neptuno en recorrer su órbita? Zaragoza Junio 97 3 T N = 30 T S 47.- La luna es aproximadamente esférica, con radio R = 1, m y masa M = 7, kg. a) Calcula la aceleración de la gravedad en la superficie lunar. (0,5 p.) b) Si se deja caer una piedra desde una altura de 2 m sobre la superficie lunar, cuál será su velocidad al chocar con la superficie? (1 p.) G = 6, N m 2 kg 2. Zaragoza Junio 99 D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 4 de 44

5 48.- a) Enuncia la tercera ley de Kepler y comprueba que se cumple para órbitas circulares en torno a un planeta esférico de masa M. b) Los satélites de comunicaciones geoestacionarios describen órbitas circulares en el plano ecuatorial de la Tierra. El periodo de estas órbitas coincide con el de rotación de la Tierra (un día), de forma que cada satélite geoestacionario se encuentra siempre sobre el mismo punto del ecuador. Calcula el radio de esta órbita. G = 6, N m 2 kg 2 ; M T = 5, kg. Zaragoza Junio 99 S 49.- Una nave espacial, con los motores apagados describe una órbita circular de radio R = 2, m en torno a la Tierra. a) Calcula la velocidad orbital de la nave y el periodo de la órbita. (1p) b) Calcula la energía cinética y la energía potencial gravitatoria de la nave, de masa m = kg c) Cuanto trabajo tendrían que realizar, como mínimo, los motores de la nave para escapar de la atracción gravitatoria de la Tierra? Explica tu planteamiento. G = 6, N m 2 kg 2 ; Masa de la Tierra: M = 5, kg. Zaragoza Septiembre 99 S 50.- Tres partículas iguales de masa M están fijas en tres vértices de un cuadrado de lado L. a) Determina el potencial gravitatorio en los puntos A y B, vértice vacante y centro del cuadrado respectivamente. b) Si situamos una cuarta partícula en el punto A y la soltamos con velocidad inicial nula, se moverá hacia B. Por qué? Determina la velocidad de esta partícula cuando pasa por B Supón conocida la constante de gravitación Universal Gm G. Zaragoza Septiembre 99 ; V A = 2, 7 ; L GM V B = 4, 24 ; Hacia potenciales menores; L 3,08GM L superficie. Calcula: a) Su velocidad y su periodo de revolución. b) La energía necesaria para poner al satélite en órbita con esa velocidad. Datos: G =6, Nm 2 /kg 2 ; M T =5, kg; R T =6370 km Castilla y León m/s; 5665 s; 8, J 52.- Si un cuerpo tiene un peso de 100 N sobre la superficie terrestre, calcula su peso en la superficie de otro planeta cuya masa sea el doble que la de la Tierra y su radio sea el triple que el de la Tierra. Comunidad Valenciana 99 ; 22,2 N 53.- Leyes de Kepler. Extremadura a) Enuncia la tercera ley de Keppler. b) Si el radio de la órbita circular de un planeta A es cuatro, veces que la de otro B, en qué relación están sus periodos? Castilla-La Mancha 99; La curva que se muestra representa la energía potencial gravitatoria de una masa de 1 kg en un planeta de radio R = km, en función de la altura h sobre la superficie del planeta. a) Cuál será la aceleración de la gravedad en dicho planeta? b) Deduce la expresión de la velocidad de escape y calcula su valor en el caso de este planeta. Cantabria Se lanza desde el ecuador un satélite artificial de masa 100 kg que se sitúa en una órbita circular geoestacionaria. Se desea saber: a) El valor de la altura h sobre la superficie terrestre de la órbita del satélite. b) La energía que habrá que comunicar al satélite para colocarlo en esa órbita, despreciando el rozamiento con la atmósfera. c) El suplemento de energía que habría que aportar al satélite para, una vez en órbita, sacarlo del campo gravitatorio terrestre. Datos: go = 9,8 m/s 2 ; Radio de la Tierra = km Cantabria 99; 3, m ; 5, J; 4, J S 51.- Un satélite de 250 kg de masa está en órbita circular en torno a la Tierra a una altura de 500 km sobre su 57.- Calcula el valor del campo y del potencial gravitatorio creados por dos masas puntuales iguales y separadas 1 m entre sí, en el punto medio de la recta que une las dos masas. Expresa el resultado en función de G y m. Castilla-La Mancha 99 0 m/s 2 ; 4Gm J/kg 58.- Un satélite artificial de 500 kg de masa se lanza desde la superficie terrestre hasta una altura H de dicha superficie, En esa posición se le comunica una veloci- D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 5 de 44

6 dad de m/s para ponerlo en órbita circular alrededor de la Tierra.Se pide: a) La altura, H, a la que debe situarse el satélite para que las órbitas sean circulares. b) La energía necesaria para llevarlo hasta dicha altura H. Datos: G = 6, S.I ; M Tierra = 5, kg; R Tierra = km Comunidad Valenciana 99 9, m; 2, J 59.- Un satélite artificial gira en tomo a la Tierra describiendo una órbita situada a m de altura sobre la superficie terrestre y tarda 1,57 horas en dar una vuelta. Calcula la masa de la Tierra. Datos: Radio de la Tierra = 6, m; G (constante de gravitación universal) = 6,6 l0 11 N m 2 kg 2 Extremadura 99 6, kg 60.- Magnitudes que caracterizan el campo gravitatorio: intensidad y potencial gravitatorio. Extremadura Se desea poner en órbita un satélite artificial a una altura de 300 km sobre la superficie terrestre. Calcula: a) La velocidad orbital que se ha de comunicar al satélite. b) El periodo de rotación. Datos: G = 6, N m 2 /kg 2 ; R T = km; M T = 5, kg Galicia Cuando un satélite que está girando alrededor de la Tierra pierde parte de su energía por fricción, el radio de su nueva órbita es: a) Mayor. b) Menor. c) Se mantiene constante. Galicia 99; menor Un satélite artificial se dice que es geoestacionario si está siempre en la vertical de un cierto punto de la Tierra. a) A qué altura están los satélites geoestacionarios? b) Qué momento cinético respecto al centro de la Tierra tiene un satélite geoestacionario si su masa es de 100 kg? c) Por qué no puede haber un satélite geoestacionario en la vertical de las Islas Baleares? Datos: Aceleración de la gravedad al nivel de la superficie terrestre 9,81 ms 2. Radio de la Tierra, km. Baleares 99 ; km; 1, m 2 kgs En la superficie de un planeta de 2000 km de radio, la aceleración de la gravedad es de 3 m s -2. Calcula: a) La velocidad de escape desde la superficie del planeta. b) La masa del planeta. Dato: G = 6, N m 2 kg 2 Canarias 99; 3464 m/s; 1, kg 65.- Un lejano planeta posee un radio que es el doble del radio de la Tierra, y su densidad media de masa es la misma que la de la Tierra. Dónde será mayor el peso de un objeto, en el planeta o en la Tierra? Especifica cuánto. La Rioja 99; en el planeta el doble El cometa Halley se mueve en una órbita elíptica alrededor del Sol. En el perihelio(posición mas próxima) el cometa está a 8, km del Sol, y en el afelio (posición más alejada) está a 5, km del Sol. a) En cuál de los dos puntos tiene el cometa mayor velocidad? Y mayor aceleración? b) En qué punto tiene mayor energía potencial? Y mayor energía mecánica? Madrid 99; v p >v a ; a p >a a ;E p (P)>E p (A); E m (P)> Em (A) 67.- Se coloca un satélite meterológico de 1000kg en órbita circular, a 300 km sobre la superficie terrestre. Determina: a) La velocidad lineal, la aceleración radial y el periodo en la órbita. b) El trabajo que se requiere para poner en órbita el satélite. Datos: Gravedad en la superficie terrestre: g = 9,8 m s -2 Radio medio terrestre: R T = 6370 km Madrid 99; 7721 m/s; 8,9 m/s 2 ; 5428 s; 3, J Un satélite de 1000 kg de masa gira en una órbita geoestacionaria (es decir, la vertical del satélite siempre pasa por el mismo punto de la superficie terrestre). Calcula: a) Su velocidad angular. b) El módulo de su aceleración. c) Su energía total. Dato: Radio de la Tierra: km. Murcia 99; 7, Rad/s; 0,223 m/s 2 ; 4, J 69.- Dibuja las líneas del campo gravitatorio producido por dos masas puntuales iguales separadas una cierta distancia. Existe algún punto donde la intensidad del campo gravitatorio sea nula? En caso afirmativo, indica dónde. Existe algún punto donde el potencial gravitatorio sea nulo? En caso afirmativo, indica dónde. Oviedo El radio de la Tierra es, aproximadamente, de 6370 km. Si elevamos un objeto de 20 kg de masa a una altura de 300 km sobre la superficie de la Tierra: a) Cuánto pesa el obieto a esa altura? b) Cuál será el incremento de su energía potencial? c) Si se le dejara caer desde esa altura, con qué velocidad llegaría a la superficie de la Tierra? Datos: Constante de la gravitación universal: G = 6, N. m 2 kg -2 Masa de la Tierra: M T = 5, kg País Vasco 99; 179,3 N; 5, N; 2449 m/s 71.- Deduce, para una órbita circular, la tercera ley de Kepler, que relaciona el periodo con el radio de las órbitas de los planetas. País Vasco a) Escribe y comenta la Ley de Gravitación Universal. (1 p.) b) Calcula el radio de la órbita de Neptuno en torno al D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 6 de 44

7 Sol, supuesta circular, sabiendo que tarda 165 años terrestres en recorrerla. (1,5 p.) G = 6, N m 2 kg -2 ; M sol = 1, kg. Zaragoza Junio 2000 ; 4, m 73.- a) La intensidad media del campo gravitatorio en la superficie de la Tierra es g = 9,81 N/kg. Calcula la masa de la Tierra. (1 p.) b) A qué altura sobre la superficie se reduce g a la mitad del valor indicado? (1 p.) G = 6, N m 2 kg 2 ; radio de la Tierra: R = 6, m Zaragoza Junio 2000 ; 5, kg ; 2, m 74.- Una sonda de exploración, de masa m = 500 kg, describe una órbita circular en torno a Marte. Sabiendo que el radio de dicha órbita es R = 3, m, que la masa de Marte es M = 6, kg y que G = 6, N m 2 kg -2, calcula: a) La velocidad orbital de la sonda y su momento angular respecto al centro de Marte. (1,5 p.) b) Las energías cinética, potencial y mecánica de la sonda. (1 p.) Zaragoza Septiembre 2000; m/s; 6, kgm 2 s; J; J; J 75.- a) Explica los conceptos de energía potencial gravitatoria y potencial gravitatorio. Qué potencial gravitatorio crea una partícula de masa M? Cómo son las superficies equipotenciales? (1,5 p.) b) Imagina dos esferas iguales de masa M y radio R. Se sitúan de forma que la distancia entre sus centros es 10R y se libera una de ellas con velocidad inicial nula. Con qué velocidad se moverá cuando llegue a chocar con la otra? Supón conocida la constante de gravitación universal, G. (1 p.) Zaragoza Septiembre a) Qué se entiende por fuerza conservativa? Y por energía potencial? Indica algunos ejemplos de fuerzas conservativas y no conservativas. b) Puede un mismo cuerpo tener más de una forma de energía potencial? Razona la respuesta aportando algunos ejemplos. Andalucia Dos satélites de masas m 1 = m y m 2 = 4m describen sendas trayectorias circulares alrededor de la Tierra, de radios R 1 = R y R 2 = 2R respectivamente. Se pide: Cuál de las masas precisará más energía para escapar de la atracción gravitatoria terrestre? b) Cuál de las masas tendrá una mayor velocidad de escape? Cantabria 2000; E(2)=2 E(1); ve(1)= 2 ve(2) 78.- Dos satélites de igual masa están en órbitas de radios R y 2R, respectivamente. Cuál de los dos tiene más velocidad? Si las masas fueran distintas, influirían en sus velocidades? Justifica las respuestas. Castilla La Mancha; el de órbita R; No 79.- Cuál sería el valor de la intensidad del campo gravitatorio terrestre, si aumenta el radio de la Tierra al doble de su valor, conservándose su masa? Dato: go = 9,8 N/kg Castilla-La Mancha Dos masas puntuales, m 1 = 5 kg y m 2 = 10 kg, se encuentran situadas en el plano XY en dos puntos de coordenadas(0,1) y (0,7) Determina: a) La intensidad del campo gravitatorio debido a las dos masas en el punto de coordenadas (x, y) = (4, 4). b) El trabajo necesario para trasladar una masa de 1 kg situada en el punto (0, 4) hasta el punto (4, 4) en presencia de las otras dos masas, indicando la interpretación física que tiene el signo del trabajo. Todas las coordenadas están expresadas en metros. Dato: G = 6, r 3 r N S.I. Castilla y León 2000; G i + G j kg ; 2G J 81.- Un satélite artificial de la Tierra orbita alrededor de esta describiendo una elipse. El punto A de la órbita que está más alejado del centro O terrestre se denomina apogeo; el perigeo P es el punto más próximo. Demuestra que el momento angular del satélite con respecto a O es constante. b) Usando la constancia de ese momento angular, demuestra que OA OA v( A) = OP v( P)., donde v (A) y v (P) son las velocidades del satélite en A y P, respectivamente. Castilla y León En la superficie de un planeta de 3000 km de radio la aceleración de la gravedad es de 4 m s 2. A una altura de 2, km sobre la superficie del planeta, se mueve en una órbita circular un satélite con una masa de 100 kg. a) Dibuja la fuerza que actúa sobre el satélite y escríbela en forma vectorial. b) Calcula la masa del planeta. c) Calcula la velocidad y la energía total que debe tener el satélite para que no caiga sobre la superficie del planeta. Dato: G = 6, N m 2 kg 2 Islas Canarias Se conoce como "primera velocidad cósmica " la que lleva un satélite que gira muy próximo a la superficie de la Tierra. La "segunda velocidad cósmica" es con la que debe salir un móvil para que pueda escapar justamente del campo gravitatorio. Teniendo en cuenta que el radio de la Tierra es de 6378 km, g = 9,8 m/s 2 y la densidad media de la Tierra es 5,5 g/cm 3, estima las dos velocidades cósmicas. La Rioja 2000; 7906 m/s; m/s 84.- Se pone en órbita un satélite artificial de 600 kg a una altura de 1200 km sobre la superficie de la Tierra. Si el lanzamiento se ha realizado desde el del mar, calcula: a) Cuánto ha aumentado la energía potencial gravitatoria del satélite? b) Qué energía adicional hay que suministrar al satélite para que escape a la acción del campo gravitatorio D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 7 de 44

8 terrestre desde esa órbita. Datos: Constante de gravitación: G = 6, N m 2 kg 2 ; Masa de la Tierra: M T =5, kg ; Radio medio de la Tierra: R T =6, m Madrid 2000; 5, J; 1, J 85.- Para los planetas del sistema solar, según la tercera ley de Kepler., la relación R 3 /T 2 es constante y vale 3, m 3 /s 2 siendo R el.radio de sus órbitas y T el período de rotación. Suponiendo que las órbitas son circulares, calcula la masa del Sol. Dato: G = 6, S.I. Comunidad Valenciana 2000; 1, kg 86.- Una de las lunas de Júpiter, Io, describe una trayectoria de radio medio r = 4, m y período T = 1, s. Se pide: a) El radio medio de la órbita de otra luna de Júpiter, Calisto, sabiendo que su período es 1, s b) Conocido el valor de G, encontrar la masa de Júpiter. Dato: G = 6, unidades S.I. Cantabria Qué trabajo hay que realizar para trasladar un cuerpo de 1000 kg de masa desde la superficie terrestre hasta un punto situado a una altura sobre esta igual a tres veces el radio de la Tierra? Datos: Radio de la Tierra = 6, m; G (constante de gravitación universal) 6, N m2 kg ; Masa de la Tierra = kg Extremadura a) Enuncia las Leyes de Kepler. (1 p.) b) Europa es un satélite de Júpiter que tarda 3,55 días en recorrer su órbita, de 6, m de radio medio, en torno a dicho planeta. Otro satélite de Júpiter, Ganímedes, tiene un periodo orbital de 7,15 días. Calcula el radio medio de la órbita de Ganímedes y la masa de Júpiter. (1,5 p.) Constante de gravitación: G = 6, N m 2 kg 2. Zaragoza Junio 2001; 1, m; 1, Kg 89.- a) Explica el concepto de campo gravitatorio creado por una o varias partículas. (1,5 p.) b) Dos partículas de masas M 1 y M 2 = 4M 1 están separadas una distancia d = 3 m. En el punto P, situado entre ellas, el campo gravitatorio total creado por estas partículas es nulo. Calcula la distancia x entre P y M 1. (1 p.) Zaragoza Junio 2001; 1 m 90.- a) Explica el concepto de energía potencial gravitatoria. Qué energía potencial gravitatoria tiene una partícula de masa m situada a una distancia r de otra de masa M? (1,5 p.) b) Seguro que la expresión Ep = mgh para la energía potencial gravitatoria te resulta familiar. Explica su significado y las circunstancias en que es aplicable. (1 p.) Zaragoza Septiembre a) Momento angular de una partícula: definición; teorema de conservación. (1,5 p.) b) Un cometa realiza una órbita elíptica con el Sol en uno de sus focos. El cociente entre las distancias máxima (afelio) y mínima (perihelio) del cometa al ra centro del Sol es = 100. Calcula la relación entre las r D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 8 de 44 p velocidades del cometa en estos dos puntos, Zaragoza Septiembre 2001; 0,01 v v a p. (1 p.) 92.- Dos proyectiles son lanzados hacia arriba en dirección perpendicular a la superficie de la Tierra. El primero de ellos sale con una velocidad de 5 km/s, y el segundo, con 15 km/s. Despreciando el rozamiento con el aire y la velocidad de rotación de la Tierra, se pide: a) Cuál será la máxima altura que alcanzará el primer proyectil? b) Cuál será la velocidad del segundo proyectil cuando este se encuentre muy lejos de la Tierra? Datos: g = 9,8 m/s 2 R T = 370 km. Cantabria Supongamos que la Tierra, manteniendo su masa, aumentara su radio medio. Cómo variaría la velocidad de escape? Castilla La Mancha Considera que la energía potencial de un cuerpo en el campo gravitatorio de la Tierra es cero en el infinito. a) Halla la energía potencial de una masa de 100 kg en la superficie de la Tierra. b) Halla la energía potencial de la misma masa a una altura sobre la superficie terrestre igual al radio de la Tierra. c ) Cuál es la velocidad de escape del cuerpo considerado en el apartado b) Datos: G=6, N m 2 /kg 2 ; R T = 6370 km Baleares 2001; 6, J; 3, J 7904 m/s 95.- Una sonda es lanzada desde la Tierra hacia el Sol de forma que su trayectoria está siempre en la recta que une los centros de ambos, astros. a) A qué distancia del centro de la Tierra estará la sonda cuando la fuerza que ejerce el Sol sobre ella sea igual y opuesta a la que ejerce la Tierra sobre ella? b) Teniendo en cuenta las fuerzas ejercidas sobre la sonda por la Tierra, la Luna y el Sol, determina el módulo de la fuerza resultante sobre la sonda, cuando está a m de la Tierra, para las siguientes fases de la Luna: luna nueva, luna llena y cuarto creciente. Ayuda: El ángulo entre las líneas que unen la Luna con el Sol y la Tierra en el cuarto creciente es de 90º Datos: Masa de la Tierra = 5, kg; Masa del Sol = 1, kg ; Masa de la Luna = 7, kg ; Distancia Tierra-Sol = 1, m ; Distancia Tierra-Luna = 3, m La Rioja 2001

9 netatierra/faseexplicacion.htm Explica la formación de las diversas fases lunares 96.- Indica sobre la trayectoria de un planeta con órbita elíptica alrededor del Sol, que ocupa uno de los focos, los puntos de máxima y mínima velocidad. Razona la respuesta. La Rioja Dos satélites artificiales de la Tierra describen en un sistema de referencia geocéntrico dos órbitas circulares contenidas en el mismo plano de radios r 1 = 8000 km y r km, respectivamente: En un instante inicial dado, los satélites están alineados con el centro, de la Tierra y situados del mismo lado. a) Qué relación existe entre las velocidades orbitales de ambos satélites? b) Qué relación existe entre los períodos orbitales de los satélites? Qué posición ocupará el satélite S 2 cuando el satélite S 1, haya completado seis vueltas desde el instante inicial) Madrid 2001; 1,01; 0,83;5,02 vueltas 98.- La aceleración de la gravedad en la superficie de Marte es de 3,7 m/s 2. El radio de la Tierra es de 6370 km, y la masa de Marte es un 11 % la de la Tierra. Calcula: a) El radio de Marte. b) La velocidad de escape desde la superficie de Marte. c) El peso en dicha superficie de un astronauta de 80 kg de masa. Murcia 2001; 3, m; 5046 m/s; 296 N 99.- Determina la variación de la energía potencial de la Luna, correspondiente a su interacción gravitatoria con el Sol y la Tierra, entre las posiciones de eclipse de Sol (figura 1) y eclipse de Luna (figura 2). (Supón circulares tanto la órbita de la Tierra alrededor del Sol como la de la Luna alrededor de la Tierra). Datos: Radio de la órbita Luna-Tierra = 3, m ; Radio de la órbita Tierra-Sol = 1, m; Masa de la Tierra 5, kg ; Masa de la Luna 7, kg ; Masa del Sol = 1, kg ; G = 6, N m 2 /kg 2 Oviedo 2001; J La Luna Un meteorito, de 100 kg de masa, se encuentra inicialmente en reposo a una distancia sobre la superficie terrestre igual a 6 veces el radio de la Tierra a) Cuánto pesa en ese punto? b) Cuánta energía mecánica posee? c) Si cae a la Tierra, con qué velocidad llegará a la superficie? Datos: Constante de gravitación universal: G = 6, N m 2 kg 2 ; Masa de la Tierra: M T = 5, kg; Radio de la Tierra: R T =6, m País Vasco 2001; 20,06 N; 8, J; 1, m/s a) Escribe y comenta la Ley de Gravitación Universal(1p) b)recientemente ha sido puesto en órbita el satélite europeo Envisat (environament satellite; satélite del medio ambiente). La altura de su órbita sobre la superficie de la Tierra es h= 800 km. Calcula la velocidad orbital del Envisat y el periodo de su órbita(1,5p) G=6, Nm 2 kg 2 ; M T =5, kg; R T = 6, m Zaragoza Junio a) Calcula la intensidad de campo gravitatorio, g, en la superficie de Júpiter. A qué altura sobre la superficie de Júpiter, h, se reduce g al valor superficial terrestre de 9,81 N/kg (1,5 p) G=6, Nm 2 kg 2 ; M J =1, kg; R J =6, m b) El periodo de oscilación de un péndulo simple en la superficie de la Tierra es T= 1,2 s. Cuál sería su periodo de oscilación en la superficie de Júpiter? (1p) Zaragoza Junio 2002; 26 ms 2 ; 4, m; 0,74 s a) Explica el concepto de energía potencial gravitatoria. Qué energía potencial gravitatoria tiene una partícula de masa m situada a una distancia r de otra partícula de masa M? (1,5 p.) b) Un asteroide se aproxima radialmente hacia un planeta esférico sin atmósfera, de masa M y radio R. Cuando la distancia entre el asteroide y la superficie del planeta es h = 3R, la velocidad del asteroide es v o. Determina su velocidad cuando choca con la superficie del planeta. (1 p.) D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 9 de 44

10 Supón conocida la constante de gravitación universal G. Zaragoza Septiembre 2002; + v0 2R 3GM Los satélites de comunicaciones son geoestacionarios, es decir, describen órbitas ecuatoriales en torno a la Tierra con un periodo de revolución de un día, igual al de rotación de nuestro planeta. Por ello, la posición aparente de un satélite geoestacionario, visto desde la Tierra, es siempre la misma. a) Calcula el radio de la órbita geoestacionaria y la velocidad orbital del satélite. (1,5 p.) b) Calcula la energía mecánica de un satélite geoestacionario de masa m = 500 kg. (1 p.) G=6, Nm 2 kg -2 ; M T =5, kg Zaragoza Septiembre 2002; 4, m; 3070 m/s; 2, J La órbita del Columbia'. Una nave se encuentra en una órbita circular ecuatorial a una altura h = 278 km y moviéndose en el mismo sentido que la rotación de la Tierra en torno a su eje, tal como muestra la figura 1, que no está dibujada a escala. a) Determina la velocidad orbital de la nave, v o, y su periodo de revolución, T. b) Para regresar a su base, en las inmediaciones del punto A (figura 2) y durante un corto intervalo de tiempo, la nave enciende unos motores retrocohetes, logrando así reducir su velocidad a un valor v A, de forma que abandona su órbita circular y pasa a describir una trayectoria elíptica. Determina la velocidad v A para que esta órbita pase por el punto B, cercano a la superficie de la Tierra. c) Calcula la velocidad de la nave cuando pasa por el punto C, situado a una altura h'= 60 km, donde la nave comienza a penetrar en la atmósfera terrestre. d) En la trayectoria desde C hasta el punto de aterrizaje, la fricción con la atmósfera es la principal responsable de reducir la velocidad de la nave. Calcula la energía por unidad de masa disipada por la fricción. Datos: g = 9,81 m/s 2 ; R T = 6, m. Queremos dedicar este problema a la tripulación del Columbia, fallecida en el trágico accidente acaecido el pasado día 1 de febrero, cuando, precisamente, se estaba redactando este ejercicio. 2 Esta trayectoria de transferencia se conoce como órbita de Hohmann. Tiene la importante particularidad de ser la que, tanto para entrar en ella como para abandonarla pasando a otra órbita circular de menor radio, requiere un aporte de energía mínimo. Olimpiada Física Zaragoza a)enuncia la ley de gravitación universal y comenta el significado físico, de las magnitudes que intervienen en ella. b) Según la ley de gravitación universal, la fuerza que ejerce la Tierra sobre un cuerpo es proporcional a la masa de éste; Por qué no caen mas deprisa los cuerpos con mayor masa? Andalucía La nave espacial Apolo XI orbitó alrededor de la Luna con un período de 119 minutos y a una distancia media al centro de la Luna de 1, m. Suponiendo que su órbita fue circular y que la Luna es una esfera uniforme: a) Determina la masa de la Luna y la velocidad orbital de la nave. b) Cómo se vería afectada la velocidad orbital si la masa de la nave espacial se hiciese el doble? Razona la respuesta. Dato:G = 6, N m 2. kg 2 Andalucía Enuncia la ley de gravitación de Newton y deduce, a partir de ella, la tercera ley de Kepler (ley de los periodos), suponiendo órbitas planetarias circulares. Asturias Un planeta gira alrededor del Sol según una órbita elíptica. Cuando se encuentra más cerca del Sol, a una distancia de m, su velocidad es de m/s. Cuál será la velocidad del planeta cuando se encuentre en la posición más alejada del Sol, a una distancia de m? Asturias Sabemos que el cometa Halley tiene un período T = 76 años. Durante su última visita a las proximidades del Sol, en 1986, se midió la distancia al Sol en el perihelio: d 1 = 8, km. a) Cuál es la distancia al Sol en el afelio? D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 10 de 44

11 b) En qué punto de su órbita alcanza el cometa su máxima velocidad y cuánto vale esta? Datos: G = 6, N; Masa del Sol: M S = kg Cantabria 2002; r afelio =5, m; v perihelio =21514 m/s En el campo gravitatorio creado por una masa puntual se superponen dos campos: uno escalar y otro vectorial. De qué campos se trata? Qué relación existe entre ellos? Represéntalos gráficamente Castilla-La Mancha Dos planetas de masas iguales orbitan alrededor de una estrella de masa mucho mayor. El planeta 1 describe una órbita circular de radio R 1 = km con un período de rotación T 1 = 2 años,'mientras que el planeta 2 describe una órbita elíptica cuya distancia más próxima es R 1 = km, y la más alejada es R 2 = 1, km, tal coma muestra la figura Obtén el período de rotación del planeta 2 y la masa de la estrella b) Calcula el cociente entre la velocidad lineal del planeta 2 en los puntos P y A. Castilla v León Movimiento planetario: leyes de Kepler. Castilla v León Se determina, experimentalmente, la aceleración con la que cae un cuerpo en el campo gravitatorio terrestre en dos laboratorios diferentes, uno situado al nivel del mar y otro situado en un globo que se encuentra a u altura h = m sobre el nivel del mar. Los resultados obtenidos son g = 9,81 m/s 2 en el primer laboratorio y g' = 9,75 m/s 2 en el segundo laboratorio. a) Determina el valor del radio terrestre. b) Sabiendo que la densidad media de la Tierra es ρ T = kg/m 3 determina el valor de la constante de gravitación G. Comunidad Valenciana Un satélite de 500 kg de masa se mueve alrededor de Marte, describiendo una órbita circular a m de su superficie. Sabiendo que la aceleración de la gravedad en la superficie de Marte es 3,7 m/s 2 y que su radio es 3400 km, calcula: a) La fuerza gravitatoria sobre el satélite. b) La velocidad y el período del satélite. c) A qué altura debería encontrarse el satélite para que su período fue el doble? Comunidad Valenciana Dos masas iguales, de 2000 kg cada una, están separadas 5 metros. Calcula la fuerza con que se atraen y el valor de la intensidad del campo en el punto medio de la recta que las une. Dato: Constante de gravitación universal: G = 6, N m 2 kg 2 Extremadura Calcula el valor del campo gravitatorio en la superficie de Júpiter sabiendo que su masa es 300 veces mayor que la de la Tierra y su radio 11 veces más grande que el terrestre. Dato: La aceleración de la gravedad en la superficie de la Tierra es g= 9,8 m/s 2 Extremadura Un satélite artificial describe una órbita circular de radio 2 R T en torno a la Tierra. Calcula: a) La velocidad orbital. b) El peso del satélite en la órbita si en la superficie de la Tierra su peso es de 5000 N (dibuja las fuerzas que actúan sobre el satélite). Datos: R T = km; G = 6, N; g o = 9,8 m/s 2 Galicia 2002; 4,9RT ; 1250 N La velocidad de escape que se debe comunicar a un cuerpo de masa m que inicialmente se encuentra en reposo en la superficie de la Tierra, cuya masa es M 7. y su radio R T, para que "escape" fuera de la atracción gravitacional de esta es: 2GM T a) Mayor que R b) Menor que c) Igual a T 2GM R T T g 0 Galicia 2002 R T a) A qué se denomina momento angular de una partícula? b) En qué condiciones se mantiene constante el momento angular? Islas Baleares La masa de la Luna es, aproximadamente, 7, kg, y su radio 1, m. a) Si lanzamos un objeto con una velocidad inicial v o = 5 m/s, verticalmente hacia arriba, cuánto tiempo tarda en volver al punto de lanzamiento? b) Cuánto pesaría en la superficie de la Luna una persona de 70 kg de masa?: c) Hasta qué altura podría saltar esta persona en la superficie de la Luna si en la Tierra alcanza un metro? G=6, Nm 2 kg 2 ; Islas Baleares. 2002; 5,9 s; 119 N; 5,76 m Un cuerpo, A, de masa m A = 1 kg, y otro, B, de masa m e = 2 kg, se encuentran situados en los puntos (2, 2) y (-2, 0) respectivamente. Las coordenadas están expresadas en metros. Calcula: a) El vector intensidad de campo gravitatorio creado por el cuerpo A en el punto (-2, 0). b) El vector intensidad de campo gravitatorio creado por B en (2, 2). c) La fuerza gravitatoria que ejerce el cuerpo A sobre el B. Datos: G = 6, N m 2 kg -2 Islas Canarias Una órbita geosíncrona es una órbita en la que el satélite permanece en la vertical de un punto de la superficie terrestre. Cuál debe ser el período, de dicha órbita? Existe algún plano particular en el que debe D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 11 de 44

12 estar contenida la órbita? Si existe, identifica el plano. La Rioja Un planeta esférico tiene un radio de 3000 km, y la aceleración de la gravedad en su superficie es 6 m/s 2. a) Cuál es su densidad media? b) Cuál es la velocidad de escape para un objeto situado en la superficie de este planeta? Constante de gravitación universal: G = 6, Nm 2 kg 2 Madrid La velocidad angular con la que un satélite describe una órbita circular en torno al planeta Venus 4 es ω 1 = 1,45 10 rad / s y su momento angular respecto al centro de la órbita es L l = 2, kg m 2 s 1. a) Determina el radio r 1 de la órbita del satélite y su masa. b) Qué energía sería preciso invertir para cambiar a otra órbita circular con velocidad angular ω 2 = 10 4 rad / s Datos: Constante de gravitación universal: G = 6, Nm 2 kg 2 ; Masa de Venus: M V = 4, kg Madrid Un satélite de 4000 kg de masa gira en una órbita geoestacionaria (es decir, la vertical del satélite siempre pasa por el mismo punto de la superficie terrestre). Calcula: a) El módulo de la velocidad del satélite. b) El módulo de su aceleración. c) Su energía total. Dato: Radio de la Tierra: R T = km Murcia 2002; 3069 m/s; 0,22 m/s 2 ; 1, J Con la misión de observar la superficie de la Luna, se coloca un satélite de 500 kg en órbita lunar de modo que su altura sobre la superficie de la Luna es de 260 km.. Calcula: a) La velocidad orbital de satélite. b) El periodo de revolución del satélite. c) La energía potencial del satélite debida al campo gravitatorio originado por la Luna. d) La energía total del satélite si se considera solo la interacción con la Luna Datos: Masa de la Luna: M L = 7, kg; Radio de la Luna: R L = 1740 km ;G=6, Nm 2 kg 2 ; País Vasco. 2002; 1564,6 m/s; 8031 s; 1, J; 0, J a) Explica el concepto de energía potencial gravitatoria. Qué energía potencial gravitatoria tiene una partícula de masa m situada a una distancia r de otra partícula de masa M? (1,5 p.) b) Un planeta esférico sin atmósfera tiene masa M = 1, kg y radio R = 1, m. Desde su superficie se lanza verticalmente un proyectil que llega a alcanzar una altura máxima h = R/2 antes de volver a caer hacia la superficie. Con qué velocidad inicial se ha lanzado el proyectil? (1 p.) G = 6, N m 2 kg -2. Zaragoza Junio 2003; GM 2R 3 11 = 6,67 10 m / s Un satélite artificial describe una órbita elíptica, con el centro de la Tierra en uno de sus focos. a) En el movimiento orbital del satélite, se conserva su energía mecánica? Y su momento angular respecto al centro de la Tierra? Razona tus respuestas. (1,5 p.) b) Supón que se conocen las distancias máxima y mínima del satélite al centro de la Tierra (apogeo y perigeo), R A y R P respectivamente. Plantea razonadamente, sin resolverlas, las ecuaciones necesarias para determinar las velocidades orbitales del satélite en estos puntos, V A y V P. (1 p.) Datos: constante de gravitación universal, G. Masa de la vapogeo rperigeo Tierra, M. Zaragoza Junio 2003; = v r perigeo apogeo a) Explica el concepto de campo gravitatorio creado por una o varias partículas. (1,5 p.) b) La distancia entre los centros de la Tierra y la Luna es d = 3, m. En un cierto punto P, situado entre ambas, el campo gravitatorio total es nulo. Sabiendo que la masa de la Tierra es 81 veces superior a la de la Luna, calcula la distancia x entre P y el centro de la Luna.(1p.) Zaragoza Septiembre 2003; 3, m Dos planetas esféricos tienen masas diferentes, M l y M 2 = 9M 1, pero en sus superficies la intensidad del campo gravitatorio es la misma, g 1 =g 2 a) Calcula la relación entre los radios de los planetas, ρ 2 R 2 /R 1, y entre sus densidades de masa, (1,5 p) ρ1 b) Son iguales las velocidades de escape desde las superficies de los dos planetas? Razona tu respuesta. (1 p.) Zaragoza Septiembre 2003; 1/3; v 2 = 3 v Un satélite artificial de 300 kg gira alrededor de la Tierra en una órbita circular de km de radio. Calcula: a) La velocidad del satélite en la órbita. D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 12 de 44

13 b) La energía total del satélite en la órbita. Datos: R r = 6378 km g o = 9,80 m/s 2 Galicia Cada uno de los 24 satélites del sistema de posicionamiento GPS tiene una masa de 840 kg y se encuentra en una órbita circular de km radio. Determina para uno de. estos satélites: a) Su período de rotación alrededor de la Tierra b) El peso del satélite en la órbita. c) La energía potencial y la energía cinética que posee en dicha órbita. Islas Baleares En la superficie de un planeta de 3000 km de radio la aceleración de la gravedad es de 5 m s 2. A una altura de 2, km sobre la superficie del planeta, se mueve en una órbita circular un satélite con una masa d 100kg: a) Dibuja las fuerzas que actúan sobre el satélite. b) Calcula la masa del planeta. c) Calcula la energía total que tiene el satélite. Datos: G = 6, N m 2 kg - 2 Islas Canarias Supón que la órbita de la Tierra alrededor del Sol es circular con un radio de 1, m.calcula: a) La velocidad angular de la Tierra en su movimiento alrededor del Sol. b) La masa del Sol. c) El módulo de la aceleración lineal de la Tierra. Dato: G = 6, N m 2 kg 2 Murcia Enuncia las leyes de Kepler del movimiento de rotación de los planetas alrededor del Sol. A partir de la ley de gravitación de Newton, demuestra la tercera ley de Kepler para una órbita circular. País Vasco Si la Tierra redujese su radio a la mitad conservando su masa: a) Cual sería la intensidad de la gravedad en su superficie? b) Cuánto valdría la velocidad de escape desde su superficie? Castilla y León Calcula el cociente entre la energía potencial y la energía cinética de un satélite en órbita circular. Comunidad Valenciana Una partícula puntual de masa 3M se coloca en el origen de un cierto sistema de coordenadas, mientras que otra, de masa M, se coloca sobre el eje X a una distancia de 1 m respecto al origen. Calcula las coordenadas del punto donde el campo gravitatorio es nulo. Comunidad Valenciana 2003 expresión. Qué cambios cabría esperar si la partícula fuera de A a B siguiendo una trayectoria no rectilínea? Andalucía A qué distancia del centro de la Tierra se compensaría el campo gravitatorio terrestre con el lunar? Datos: M Tierra = 5, kg; M Luna = 7, kg ; D Tierra-Luna = 3, m; Asturias 2003; 3, m a) Distingue entre intensidad del campo gravitatorio y potencial gravitatorio creados por una masa M. b) La velocidad de un satélite en orbita alrededor de un planeta, será mayor o menor que la velocidad de escape desde la superficie del planeta? Justifícalo. Cantabria Un modulo lunar de 3000 kg. de masa esta en orbita circular a una altura de 2000 km por encima de la superficie de la Luna: a) Cual es la velocidad y la energía total del modulo en su orbita? b) Cuanto variara la energía total si el modulo sube a una orbita circular de 4000 km sobre la superficie de la Luna? Datos: G = 6, Nm 2 /kg 2 ;M Luna = 7, kg; R Luna = 1740 km Castilla-La Mancha Si el Sol se colapsara de pronto, transformándose en una enana blanca. (igual masa en un volumen mucho menor), como afectaría al movimiento de la Tierra alrededor del Sol? Castilla-La Mancha Comenta si es verdadera o falsa la siguiente afirmación: Si la Luna gira alrededor de la Tierra siguiendo un movimiento circular uniforme, no tiene aceleración». Asturias Dos satélites, A y B, giran alrededor de un planeta siguiendo orbitas circulares de radios m y 8 l0 8 m, respectivamente. Calcula la relación entre sus velocidades (tangenciales) respectivas. Asturias Un objeto pesa en la Tierra 600 N Cuál sería su peso en un planeta de radio la mitad que el de la tierra y de masa la décima parte que la de la Tierra? Extremadura Se ha descubierto un nuevo planeta que está girando alrededor del Sol. Cómo podrías estimar la distancia que lo separa de este si conoces el período del planeta? La Rioja Una partícula de masa m, situada en un punto A, se mueve en línea recta hacia otro punto B, en una Suponiendo un planeta esférico que tenga un región en la que existe un campo gravitatorio creado radio la mitad del radio terrestre e igual densidad que la por una masa M: Tierra, calcula: a) Si el valor del potencial gravitatorio en el punto B es a) La aceleración de la gravedad en la superficie de dicho planeta. mayor que en el punto A, razona si la partícula se acerca o se aleja de M. b La velocidad de escape de un objeto desde la superficie del planeta, si la velocidad de escape desde la su- b) Explica las transformaciones energéticas de la partícula durante el desplazamiento indicado y escribe su perficie terrestre es 11,2 km/s. Datos: g= 9,81 m s 2 Madrid 2003 D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 13 de 44

14 150.- Mercurio describe una órbita elíptica alrededor del Sol. En el afelio, su distancia al Sol es de 6, m, y su velocidad orbital es de 3, m/s siendo su distancia al Sol en el perihelio de 4, m: a) Calcula la velocidad orbital de Mercurio en el perihelio. b) Calcula las energías cinética, potencial y mecánica de Mercurio en el perihelio. c) Calcula el módulo de su momento lineal y de su momento angular en el perihelio. De las magnitudes calculadas en los apartados anteriores, di cuáles son iguales en el afelio. Datos: Masa de Mercurio: M M = 3, kg Masa del Sol: M s = 1, kg; Constante de gravitación universal: G = 6, N Madrid 2003 ;5, m/s ; 5, ; 9, ; 3, J; 1, ; 8, kgm/s ; Energía mecánica y Momento Angular Se lleva un cuerpo, mediante un cohete, hasta una altura de 630 km s o bre el nivel del mar: a) Cuál es la intensidad del campo gravitatorio terrestre a esa altura b) Con qué velocidad debería lanzarse este cuerpo (colocado a esa altura) en una dirección perpendicular al radio de la Tierra de tal forma que describiese una órbita circular? c) Cuál sería el período de revolución del cuerpo alrededor de la Tierra? Datos: Constante de gravitación universal: G = 6, N m 2 ; Masa de la Tierra: M T = 5, kg ; Radio de la Tierra: R T = 6, m País Vasco Un astronauta aterriza sobre un planeta de radio 0,71R T, siendo R T el radio de la Tierra mide el periodo de un péndulo de 1 m de longitud y obtiene T = 2,5 s a ) Cual es la masa del planeta? Exprésala en función de la masa de la Tierra, M T. b) Si en la Tierra, y cargando el mismo equipo que en el planeta, el astronauta alcanzaba una altura de 20 cm al saltar verticalmente hacia arriba, qué altura alcanzará en dicho planeta? Dato: g = 9,8 m/s 2 Cantabria 2003; 6,31 ms 2 ; 0,33M T ; 0,32 m a) Enuncia las Leyes de Kepler y demuestra la tercera en el caso particular de órbitas circulares. (1,5 p.) b) Neptuno y la Tierra describen órbitas en torno al Sol, siendo el radio medio de la primera órbita treinta veces mayor que el de la segunda. Cuántos años terrestres tarda Neptuno en recorrer su órbita? (1 p.) Zaragoza Junio 2004, 30 3/2 =164,32 Años Terrestres de la partícula cuando choca con el suelo,v f (módulo, v f, y ángulo respecto al suelo, 0). (1 p.) Considera g = 10 m/s 2. Zaragoza Junio r r r r 2004; v = 17,32i 17,30 j ; v = 24,48m / s ; ө=45 º a) Momento angular de una partícula: definición; teorema de conservación. (1 p.) b) Un satélite artificial de masa m = 500 kg describe una órbita circular en torno a la Tierra, a una altura h = 600 km sobre su superficie. Calcula el módulo del momento angular del satélite respecto al centro de la Tierra. Si la órbita está en el plano ecuatorial, qué dirección tiene el vector momento angular, L r? Es L r un vector constante? Por qué? (1,5 p.) G = 6, N m 2 kg 2. Masa y radio de la Tierra: M T = 5, kg, R T = 6, m. Zaragoza Septiembre 2004; 2, k m 2 s 2 ; 2, kg m 2 s a) Escribe y comenta la Ley de Gravitación Universal. (1 p.) b) Se deja caer un cuerpo desde una altura h = 2 m sobre la superficie de la Luna. Calcula su velocidad cuando choca con la superficie y el tiempo de caída. (1 p.) G = 6, N m 2 kg 2. Masa y radio de la Luna: M L = 7, kg; R L = 1, m. Zaragoza Septiembre 2004; 2,54 m/s ; 1,57 s a) La energía potencial de un cuerpo de masa m. en el campo gravitatorio producido por otro cuerpo de masa m' depende de la distancia entre ambos. Aumenta o disminuye dicha energía potencial al alejar los dos cuerpos? Por qué? b) Que mide la variación de energía potencial del cuerpo de masa m al desplazarse desde una posición A hasta otra B? Razona la respuesta. Andalucía a) Determina la densidad media de la Tierra. b) a que altura, sobre la superficie de la Tierra, la intensidad del campo gravitatorio terrestre se reduce a la tercera parte? Datos: G = 6, N m 2 kg -2 ; R T = 6370 km; g = 10 m s -2 Andalucía a) Explica cómo es y qué intensidad tiene el campo gravitatorio en las proximidades de la superficie Qué se entiende por velocidad de escape de la terrestre. Qué energía potencial gravitatoria tiene una superficie de un planeta: Deduce su expresión. partícula de masa m en presencia de este campo? Explica tu contestación. (1,5 p.) Un satélite artificial gira alrededor de la Tierra a 3, m de su superficie. Calcula: b) Desde una altura respecto al suelo h = 10 m se lanza a) La velocidad del satélite. una partícula con velocidad inicial v i = 20 m/s, formando un ángulo α= 30 con la horizontal. Supuesta des- b) Su aceleración. c) El periodo de rotación del satélite alrededor de la preciable la fricción con el aire, determina la velocidad Tierra, expresado en días. Qué nombre reciben los sa- D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 14 de 44

15 télites de este tipo? Datos: R T = 6, m; M T = 5, kg; G = 6, N Asturias Un péndulo simple que realiza pequeñas oscilaciones tiene un periodo de 2,000 s cuando está situado en un punto a nivel del mar. Cuando lo situamos en lo alto de una montaña, su periodo es de 2,002 s. Calcula la altura de la montaña. Dato: Radio de la Tierra: R T = 6370 km Navarra a) Determina la densidad media de la Tierra. b) A qué altura, sobre la superficie de la Tierra, la intensidad del campo gravitatorio terrestre se reduce a la tercera parte? Datos: G = 6, N m 2 kg 2, R T = 6370 km; g = 10 m s 2 Andalucía 2004; 5615,6 kg/m 3 ; 4663,2 km a) Explica el concepto de campo gravitatorio creado por una o varias partículas. (1 p.) La Tierra es aproximadamente esférica, de radio R T = 6, m. La intensidad media del campo gravitatorio en su superficie es g 0 =9,81 m/s 2 b) Calcula la densidad de masa media de la Tierra, ρ. (1 p.) c) A qué altura h sobre la superficie de la Tierra se reduce g a la cuarta parte de g o? (1 p.) G = 6, N m 2 kg 2 Zaragoza Junio a) Calcula la velocidad de escape desde la superficie de la Luna. (1 p.) b) Se lanza verticalmente un objeto desde la superficie de la Luna, con velocidad inicial igual a la de escape. A qué distancia del centro de la Luna se reduce su velocidad a la mitad de la inicial? (1 p.) G = 6, N m 2 kg 2. Masa y radio de la Luna: M L = 7, kg, R L = 1, m Zaragoza Junio La aceleración de la gravedad en la superficie de Marte es g =3,87 m/s 2. a) Calcula la masa de Marte. (1 p.) b) Se lanza verticalmente un objeto desde la superficie de Marte, con velocidad inicial igual a la mitad de la de escape. Calcula la máxima altura sobre la superficie, h, que llega a alcanzar el objeto. (1,5 p.) G =6, N m 2 kg -2. Radio de Marte: R M =3, m.zaragoza Septiembre Un satélite de masa m = 500 kg describe una órbita circular de radio R = 7, m en torno a la Tierra. a) Calcula la velocidad orbital del satélite. (1 p.) b) Para pasar a otra órbita circular de radio 2R, cuánto trabajo deben realizar los motores del satélite? (1,5p.) G=6, N m 2 kg 2. Masa de la Tierra: M T = 5, kg. Zaragoza Septiembre 2005 S Problemas resueltos, localizables en la página web htm D:\2ºbachiller\cagravitatorio\cagra05.doc Luis Ortiz de Orruño pg 15 de 44

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial. Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2008 AÑO 2008 1).. a) Principio de conservación de la energía mecánica b) Desde el borde de un acantilado de altura h se deja caer libremente

Más detalles

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol Leyes de Kepler 1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Planeta Sol 2.- El radio focal que une a un planeta con el Sol describe

Más detalles

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004 FÍSICA CUESTIONES Y PROBLEMAS BLOQUE II: INTERACCIÓN GRAVITATORIA PAU 2003-2004 1.- Resume la evolución de las distintas concepciones del universo hasta establecer las leyes cinemáticas de Kepler que describen

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

G = 6'67.10-11 N.m 2 /kg 2

G = 6'67.10-11 N.m 2 /kg 2 Demostrar que el campo gravitatorio es un campo conservativo. Un campo es conservativo si el trabajo que realizan las fuerzas del campo para trasladar una masa de un punto a otro es independiente del camino

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA PAU FÍSICA LA RIOJA - CUESTIONES 1. Si un cuerpo pesa 100 N cuando está en la superficie terrestre, a qué distancia pesará la mitad? Junio 95 2. Sabiendo que M Luna = M Tierra

Más detalles

Guía Gravitación y Leyes de Kepler.

Guía Gravitación y Leyes de Kepler. Guía Gravitación y Leyes de Kepler. Leyes de Kepler Johannes Kepler, trabajando con datos cuidadosamente recogidos por ycho Brahe y sin la ayuda de un telescopio, desarrolló tres leyes que describen la

Más detalles

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos.

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. 1. LEYES DE KEPLER: Las tres leyes de Kepler son: Primera ley Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. a es el semieje mayor de la elipse b es el semieje menor de la

Más detalles

Ejercicios de FÍSICA DE 2º DE BACHILLERATO

Ejercicios de FÍSICA DE 2º DE BACHILLERATO Movimiento Armónico Simple, Ondas, Sonido Ejercicios de FÍSICA DE 2º DE BACHILLERATO INDICE 1 ONDAS... 2 1.1 MOVIMIENTO ARMÓNICO... 2 1.2 MOVIMIENTO ONDULATORIO... 5 1.3 EL SONIDO... 10 2 INTERACCIÓN GRAVITATORIA...

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

5,98.10.2000 c 6 - 9,97.10 J

5,98.10.2000 c 6 - 9,97.10 J JUNIO 96 A1. Un satélite de 000 kg de masa describe una órbita ecuatorial circular alrededor de la Tierra de 8000 km de radio. Determinar: a) Su momento angular respecto al centro de la órbita. b) Sus

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

GRAVITACIÓN UNIVERSAL

GRAVITACIÓN UNIVERSAL FÍSICA 2º BACHILLERATO BLOQUE TEMÁTICO: INTERACCIÓN GRAVITATORIA GRAVITACIÓN UNIVERSAL 1) Leyes de Kepler 2) Ley de la gravitación universal 3) Concepto de campo. Campo gravitatorio 4) Intensidad de un

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 2 2013 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2013. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio)

Más detalles

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

Estos valores corresponden a Unidades Astronómicas (1 UA: 149598000 km o sea aproximadamente 150000000 km).

Estos valores corresponden a Unidades Astronómicas (1 UA: 149598000 km o sea aproximadamente 150000000 km). Curso sobre el Sistema Solar: Lección nro. 3 b2) Movimientos planetarios Establecidas las Leyes de Kepler, conviene describir las características de los movimientos planetarios que no están descriptas

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ). Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

CIENCIAS SOCIALES 5º EL UNIVERSO

CIENCIAS SOCIALES 5º EL UNIVERSO EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 3 Fuerzas y movimientos circulares Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

LAS LEYES DE KEPLER EN EL SUELO DE LA CLASE Esteban Esteban Atrévete con el Universo

LAS LEYES DE KEPLER EN EL SUELO DE LA CLASE Esteban Esteban Atrévete con el Universo LAS LEYES DE KEPLER EN EL SUELO DE LA CLASE Esteban Esteban Atrévete con el Universo Planteamiento de la actividad Se trata de una actividad didáctica en la que se intenta plasmar las órbitas y movimientos

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso.

Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso. Internado Nacional Barros Arana Depto. de Física. Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso. Las preguntas siguientes se elaboraron para que repase los puntos más importantes

Más detalles

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011 FÍSIC º DE BCHILLER Problemas: CMP ELÉCRIC NVIEMBRE.0. Dos cargas puntuales iguales, de, 0 6 C cada una, están situadas en los puntos (0,8) m y B (6,0) m. Una tercera carga, de, 0 6 C, se sitúa en el punto

Más detalles

Ejercicios trabajo y energía de selectividad

Ejercicios trabajo y energía de selectividad Ejercicios trabajo y energía de selectividad 1. En un instante t 1 la energía cinética de una partícula es 30 J y su energía potencial 12 J. En un instante posterior, t 2, la energía cinética de la partícula

Más detalles

Energías Gravitatorias

Energías Gravitatorias > ENERGÍA POTENCIAL GRAVITATORIA A) CONCEPTO DE ENERGÍA POTENCIAL GRAVITATORIA La energía potencial gravitatoria (Ep), es la energía debida a la posición de una masa (m) en un campo. La energía potencial

Más detalles

Movimiento de los Planetas

Movimiento de los Planetas Movimiento de los Planetas Cosmología Geocéntrica Copérnico: Cosmología Heliocéntrica Galileo Galilei Tycho Brahe y Johannes Kepler Leyes de Kepler Principios de la Mecánica L. Infante 1 Nicholas Copernicus

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15

PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 PROBLEMAS Y CUESTIONES PAU. CAMPO GRAVITATORIO. IES El Clot Curso 2014-15 1) (P Jun94) Se lanza verticalmente un satélite de masa m = 2000 kg desde la superficie de la Tierra, y se pide: a)energía total

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

UNIDAD 1: ESTRELLAS, PLANETAS Y SATÉLITES

UNIDAD 1: ESTRELLAS, PLANETAS Y SATÉLITES UNIDAD 1: ESTRELLAS, PLANETAS Y SATÉLITES 1.UNIVERSO, GALAXIAS Y ESTRELLAS Lee con atención Durante mucho tiempo los humanos han intentado explicar cómo se formó el Universo. En la actualidad se ha aceptado

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur

Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur El astrónomo alemán Johannes Kepler (1571-1630) formuló las tres famosas leyes que llevan su nombre después de analizar

Más detalles

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular.

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. Cuestiones: 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. Res. a) Consultad libro y apuntes. b) En el movimiento

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Escriba y comente la Ley de Gravitación Universal. b) El satélite Jasón-2 realiza medidas de la superficie del mar con una precisión de pocos centímetros para estudios oceanográficos.

Más detalles

Colegio Santa Gema Galgani

Colegio Santa Gema Galgani Física: 2 Medio Guía de Estudio N 9 Unidad 9: Tierra y Universo Profesor: Juan Pedraza 1. LEY DE GRAVITACION UNIVERSAL Se cuenta que Newton vio caer una manzana mientras descansaba a la sombra de un árbol.

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

ASTROFÍSICA 2007/8. m 1 Es decir, la más cercana al cdm es la que orbita más lentamente y es la más masiva.

ASTROFÍSICA 2007/8. m 1 Es decir, la más cercana al cdm es la que orbita más lentamente y es la más masiva. 0 ASTROFÍSICA 007/8 ÓRBITAS CIRCULARES Estudiamos como ejemplo las estrellas binarias y los cuerpos del sistema solar en la aproximación newtoniana (clásico) de la gravedad y en la aproximación de órbitas

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

La ley de gravitación

La ley de gravitación La ley de gravitación Qué hace la Gravedad fuera de su cama a medianoche? William Shakespeare El sistema que Newton erigió no hubiera tenido el impacto que tuvo, de no haber incluido su otro gran aporte

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles