PRÁCTICA 3: Sistemas de Orden Superior:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 3: Sistemas de Orden Superior:"

Transcripción

1 PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos.

2 . INTRODUCCIÓN Esa prácica se divide en res aparados: inicialmene se realiza la idenificación experimenal de un modelo aproximado de Primer Orden Más Tiempo Muero (POMTM) a parir de la respuesa escalón de un sisema de orden superior. Ese ipo de modelos es muy uilizado en conrol de procesos químicos, ya que la mayoría de esos sisemas dinámicos presenan una curva de reacción monóonamene creciene que se ajusa muy bien a dicho modelo. El modelo POMTM es en el que se basan algunas de las reglas empíricas de sinonía de conroladores PID. Por lo que será el que se uilice en las prácicas poseriores. El segundo aparado se dedica al esudio de la esabilidad de un sisema realimenado aplicando el crierio de Rouh-Hurwiz a la ecuación caracerísica del mismo. Finalmene, en el ercer aparado se analiza las respuesas escalón y rampa de sisemas realimenados de ipo 0 y.. SISTEMAS DE ORDEN SUPERIOR Ese aparado se dedica a la obención de modelos de orden reducido. En primer lugar se dan las pauas a seguir para idenificar un modelo de POMTM a parir de la respuesa escalón experimenal. Ese ipo de aproximación es aplicable cuando la respuesa es monóonamene creciene, que es el caso de muchos procesos indusriales. De hecho es el modelo de proceso que uilizan algunas de las reglas de sinonía de PIDs más conocidas. A coninuación se esudia el efeco de los polos (rerasar la respuesa) y el de los ceros (adelanar la respuesa) y se obienen conclusiones que permien enconrar un modelo de orden reducido basándose en los crierios de cancelación polo-cero (un cero próximo a un polo cancela el efeco de ése sobre la respuesa) y de polos dominanes, polos cuya componene emporal es la principal en la respuesa ransioria.. Idenificación experimenal de un modelo de POMTM En ese aparado vamos a ver cómo obener un modelo aproximado de primer orden más iempo muero (POMTM) a parir de la curva de reacción de un proceso (respuesa a enrada escalón). El modelo se obiene a parir de daos experimenales de enrada/salida y sólo es aplicable si la salida es monóonamene creciene. Conrol e Insrumenación de Procesos Químicos. 2

3 U U Proceso Y Y Modelo La aproximación consise en idenificar a parir de la curva experimenal el polo dominane del proceso (τ) y susiuir los polos no dominanes por un reardo puro. El ercer parámero de la función de ransferencia es la ganancia del sisema. Por ano, la función de ransferencia del modelo aproximado es: POMTM K G( s) = e + τs m s Idenificación de los parámeros K, τ y m : Méodo. Trazado de la angene de máxima pendiene. razar la angene a la curva de reacción de máxima pendiene (reca angene en el puno de inflexión) 2. m : puno de core de la angene de máxima pendiene con el valor inicial de la salida 3. τ: puno de core de la angene de máxima pendiene con el valor final de la salida (ver figura) y 4. K = u La siguiene figura ilusra la forma de idenificar los 3 parámeros del modelo de POMTM. g de máxima pendiene y valor esacionario y u d m τ u Κ= y/ u - m s ds Ke τ s + Conrol e Insrumenación de Procesos Químicos. 3

4 Inconvenienes: Trazar la angene de máxima pendiene, especialmene si la salida esá conaminada por ruido Comporamieno exremo. Es decir, pendienes muy grandes o muy pequeñas Alernaiva: basarse en dos punos de la curva Méodo 2. Basado en 2 punos de la curva de reacción Si omamos dos punos de la curva: y( ) = KA( e ( m ) / τ ) τ = m + y = m τ y eniendo en cuena que τ τ 3 m + y( m + ) = ( e ) KA = 0,28 KA en = m +τ/3, la salida alcanza el 28% de su valor final + τ y( + τ ) = ( e ) KA = 0,63 KA m m 63 en = m +τ, la salida alcanza el 63% de su valor final Los valores de esos dos punos 28 y 63 pueden obenerse de la curva experimenal: 28 : iempo en el que la salida alcanza el 28% de su valor final (0,28* y ss ) 63 : iempo en el que la salida alcanza el 63% de su valor final (0,63* y ss ) Por ano, τ 28 = m + ; 63 = m + τ resolviendo para m yτ: 3 3 τ = ( ) 2 = τ m 63 La siguiene figura ilusra la idenificación experimenal basada en 2 punos de la curva de reacción. Conrol e Insrumenación de Procesos Químicos. 4

5 y y y y τ =.5 ( ) m = 63 - τ Κ= y/ u 2 u u Ke m s τ s + = 28, 2 = 63 REALIZACIÓN EN EL LABORATORIO Idenificar un modelo de POMTM para el sisema cuya función de ransferencia 5000 es: G p ( s) = a parir de su respuesa escalón, uilizando el ( s + )( s + 0)( s + 20)( s + 25) méodo de los dos punos. Para ello, uilizar el modelo simulink del sisema de 4º orden, simular la respuesa a escalón y uilizando los comandos Malab zoom y grid, para obener de la gráfica los valores de 28 y : iempo en el que y() alcanza el 28% de su valor final 63 : iempo en el que y() alcanza el 63% de su valor final Un vez obenido el modelo de POMTM, ediar el modelo Simulink de la figura, que coniene el sisema de orden superior y el modelo de POMTM. Observa las diferencias en su respuesa escalón. K + Ts Conrol e Insrumenación de Procesos Químicos. 5

6 El bloque de reardo de iempo (ranspor delay) puede obenerse de la librería coninuous de simulink, y se le debe dar el valor m del modelo de POMTM. Simular la respuesa a una enrada escalón del sisema original y del modelo de POMTM y dibujarlas en la misma gráfica, observando sus diferencias..2 Modelos de orden reducido Dado el siguiene sisema realimenado: R(s) + G p (s) Y(s) H(s) Su función de ransferencia viene represenada por la expresión: Y ( s) G p ( s) b0s G( s) = = = R( s) + G ( s) H ( s) a s p 0 m n + b s + a s m n b a m n s + b s + a m n Para deerminar la respuesa ransioria de ese sisema será necesario descomponer Y(s) en facores correspondienes a sus polos reales y/o complejos conjugados, de forma que si el sisema es esable la respuesa ransioria esará formada por érminos exponenciales decrecienes (correspondienes a los polos reales) y érminos sinusoidales amoriguados (correspondienes a los polos complejos conjugados). Muchos procesos indusriales (aunque no odos) son de orden superior y sus polos son reales. Es decir, la respuesa ransioria a enrada escalón uniario esá formada por la suma de exponenciales decrecienes, correspondienes a los polos reales, muliplicadas por el residuo correspondiene. Por lo ano, el residuo A i de un polo real siuado en s = -s i deermina la imporancia relaiva de la componene emporal de dicho polo sobre la respuesa del sisema. Supongamos que inicialmene el sisema no iene ceros. Por lo ano, la función de ransferencia será: k G( s) = ( + τ s)( + τ 2s)...( + τ n s) La respuesa escalón uniario vendrá dada por la expresión: A n 0 Ai Y ( s) = + s Σ= + τ s i i Conrol e Insrumenación de Procesos Químicos. 6

7 Donde A 0 y A i son los residuos correspondienes a la señal de exciación y a los polos del sisema, respecivamene y cuya expresión es: y A = k 0 A i = k n j= j i τ n i ( τ τ ) i j se observa que el residuo correspondiene a la componene emporal que cada polo apora a la respuesa, depende de la posición relaiva enre los polos del sisema en bucle cerrado..2. Efeco de los polos En ese aparado se va a analizar el efeco en la dinámica del sisema de la ubicación de sus polos. Se considera que un polo es dominane si, siendo el más cercano al eje imaginario, esá suficienemene alejado del reso de los polos. Se dice que es dominane porque su consane de iempo es mayor que las del reso de los polos y, por ano, la componene emporal que apora a la salida ardará más en desaparecer. Análogamene, se dice que un polo es no dominane, si esá lo suficienemene alejado respeco a oros polos como para que la componene emporal con la que conribuye a la salida sea despreciable frene a la que aporan los demás. Normalmene un crierio muy uilizado para considerar que un polo es dominane frene a oros es que su pare real sea al menos cinco veces menor (consane de iempo al menos 5 veces mayor). Veámoslo con un ejemplo. Sean dos sisemas con las siguienes funciones de ransferencia: G (s) = ; s ( + ) G 2 ( s) = 5000 ( s + )( s + 0)( s + 20)( s + 25) PREPARACIÓN DE LA PRÁCTICA. Dibujar el diagrama de polos y ceros de las funciones de ransferencia que represenan a ambos sisemas, G (s) y G 2 (s). 2. Calcular analíicamene la salida del sisema para una enrada escalón uniario, observando el valor del residuo correspondiene a cada polo. REALIZACIÓN EN EL LABORATORIO 3. Simular y represenar en una misma gráfica la respuesa emporal del sisema de primer orden, y (), y la respuesa emporal del sisema de cuaro orden, Conrol e Insrumenación de Procesos Químicos. 7

8 y 2 (), suponiendo una enrada escalón uniario. Observar el efeco de los polos no dominanes en la respuesa del sisema..2.2 Efeco de los ceros En ese aparado vamos a esudiar el efeco de los ceros en la respuesa de un sisema dinámico. Para ello, compararemos la respuesa escalón uniario de un sisema dinámico que no iene ceros con la de un conjuno de sisemas con los mismos polos pero con un cero en diferene ubicación. Se podrá observar que el efeco de un cero es adelanar la respuesa y que, al igual que ocurre cuando se añaden polos, cuando el cero se aleja del origen su efeco se hace menos pronunciado, y para valores muy alejados su influencia es despreciable. Sea el sisema de cuaro orden siguiene: G (s) = 0. 5 ( s + 0. )( s )( s + )( s + 0). A ese sisema se le va a añadir un cero ubicado en diferenes posiciones: s = -2, -/8, -/20, +0. REALIZACIÓN EN EL LABORATORIO. Simular y represenar en una misma gráfica la respuesa emporal del sisema de cuaro orden sin ceros, así como con el cero en las disinas posiciones indicadas, suponiendo una enrada escalón uniario. Observar el efeco del cero para los disinos casos..2.3 Modelo de orden reducido En ese aparado se va a analizar el comporamieno de los sisemas de orden superior con el objeivo de obener un modelo de orden reducido cuyo comporamieno se aproxime al sisema original. Para ello, se uilizarán dos aproximaciones: cancelación polo-cero y susiución de polos no dominanes por un reardo puro equivalene. Cancelación polo-cero Si exise un cero cerca de un polo, el residuo de dicho polo se hace muy pequeño (en valor absoluo) por efeco de la cercanía -5 del cero. Cuano más próximo esé el cero del polo, ese efeco es más acusado. Por lo que se puede decir que polos y ceros siuados muy próximos se cancelan enre sí, no afecando a la respuesa ransioria del sisema. En al caso, el conjuno polo-cero puede ser susiuido por su ganancia en esado esacionario. Polos no dominanes Como ya se ha comenado, si un polo esá suficienemene alejado de oro (relación de pares reales 5), su efeco en la respuesa se hace despreciable. Además, como el efeco de los polos es rerasar la respuesa, se pueden susiuir odos los polos no dominanes (dinámica de alo orden) por un reardo puro equivalene. Como en el caso anerior, se debe añadir al modelo reducido la ganancia en esado esacionario de los polos no dominanes. Conrol e Insrumenación de Procesos Químicos. 8

9 Veámoslo con el siguiene ejemplo: u s s + 3 y s + 2 PREPARACIÓN DE LA PRÁCTICA. Dibujar el diagrama de polos y ceros del sisema de la figura. 2. Calcular analíicamene la función de ransferencia Y(s)/U(s), escribiéndola en forma de polos y ceros. 3. Es posible reducir el orden del sisema?. Planear las reducciones posibles. REALIZACIÓN EN EL LABORATORIO 4. Dibujar las respuesas a enrada escalón uniario del sisema original y de las posibles reducciones sobre la misma gráfica, observando sus diferencias. 2. ANÁLISIS DE ESTABILIDAD DE SISTEMAS REALIMENTADOS En ese aparado se analiza la esabilidad absolua de un sisema realimenado. 2. Esabilidad Absolua: Crierio de Rouh-Hurwiz Sea el sisema realimenado con ganancia Kc ajusable, ilusrado en figura. El inerés es hallar el valor de la ganancia que hace que el sisema sea críicamene esable (ganancia críica) así como el periodo de la oscilación. Como se verá en la siguiene prácica, esos dos valores se uilizarán para calcular los parámeros del conrolador PID que hace que el sisema realimenado se compore como un sisema subamoriguado con δ=0,25. R(s) 5000 ( s + )( s + 0)( s + 20) s + 25) E(s) U(s) Y(s) + - K c Conrol e Insrumenación de Procesos Químicos. 9

10 PREPARACIÓN DE LA PRÁCTICA Realizar el esudio de la esabilidad absolua de dicho sisema realimenado mediane la aplicación del crierio de Rouh-Hurwiz y calcular el valor de K c a la que el sisema es críicamene esable, así como el periodo de la oscilación, T c. REALIZACIÓN EN EL LABORATORIO Para comprobar los resulados obenidos por aplicación del crierio de Rouh-Hurwiz vamos a uilizar un comando Malab que raza el lugar de las raíces de la ecuación caracerísica del sisema realimenado (es decir, dibuja el movimieno de los polos del sisema en bucle cerrado para valores de K variando de 0 a ). La función de ransferencia del sisema en bucle abiero es: G BA 5000 ( s) =, ya que H(s)= ( s + )( s + 0)( s + 20)( s + 25) La siguiene secuencia de comandos Malab dibuja el lugar de las raíces del sisema realimenado con ganancia K ajusable a parir de la función de ransferencia en bucle abiero: >> V=[ ]; % vecor que coniene los polos de la función de >> % ransferencia en bucle abiero de G BA (s) >> num=[5000]; >> den=[poly(v)]; % poly(v) genera un vecor con los coeficienes del >> % polinomio que iene como raíces los polos de G BA >> rlocus(num,den) % dibuja el lugar de las raíces del sisema >> % realimenado con ganancia k variando de 0 a Imag Axis k c =k críica Real Axis Conrol e Insrumenación de Procesos Químicos. 0

11 Como se observa en la figura, exise un valor de K c (K críica ) para el que dos polos del sisema en bucle cerrado se ubican en el eje imaginario (sisema críicamene esable). A parir de ese valor de K c, el sisema en bucle cerrado se hace inesable. Para calcular el valor de K c sobre el lugar de las raíces que hace que los polos se ubiquen en un lugar deerminado del plano s, se puede uilizar el comando Malab rlocfind. Para ello ejecuar el comando: >> [ganancia,polos]=rlocfind(num,den) Sobre el lugar de las raíces aparece un cursor. Posicionarlo en el lugar deseado (en ese caso sobre el puno en el que dos polos se encuenran en el eje imaginario) y pulsar el boón izquierdo del raón. Comprobar que la K críica es la calculada aplicando el crierio de Rouh-Hurwiz. Hallar el periodo de la oscilación, comprobando que es el mismo que el obenido analíicamene aplicando el crierio de Rouh-Hurwiz. Para ello, simular el sisema realimenado con Kc=Kcríica. 2. RÉGIMEN PERMANENTE: ERROR A ENTRADA ESCALÓN Y RAMPA En ese aparado se analiza el error en régimen permanene a enrada escalón y rampa para sisemas realimenados de ipo 0 y de ipo. Un sisema realimenado es de ipo 0 si G(s)H(s) no iene ningún polo en el origen (s=0) y es de ipo si G(s)H(s) iene un polo en s=0. PREPARACIÓN DE LA PRÁCTICA Sea el sisema realimenado de la figura: R(s) + - K G p Y(s) Sisema de ipo 0 0 Si G p ( s) =. Calcular, haciendo uso de los coeficienes esáicos de error Kp y ( s + 0) Kv, el error en esado esacionario a enrada escalón y rampa uniarios, para k= y k=0. Conrol e Insrumenación de Procesos Químicos.

12 Sisema de ipo 0 Para, G p ( s) = calcular, haciendo uso de los coeficienes esáicos de error s( s + 0) Kp y Kv, el error en esado esacionario a enrada escalón y rampa uniarios, para k= y k=0. REALIZACIÓN EN EL LABORATORIO Comprobar los resulados obenidos mediane simulación. Conrol e Insrumenación de Procesos Químicos. 2

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

Tema 4: Fuentes y generadores

Tema 4: Fuentes y generadores Tema 4: Fuenes y generadores Fuenes de alimenación: : convieren ensión ac en ensión dc E. Mandado, e al. 995 Generadores de funciones: Fuene de señal calibrada y esable Aplicaciones: obención de respuesa

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS DEPARTAMETO DE QUÍMICA AALÍTICA Y TECOLOGÍA DE ALIMETOS FUDAMETOS DE AÁLISIS ISTRUMETAL. 7º RELACIÓ DE PROBLEMAS..- Las susancias A y B ienen iempos de reención de 6.4 y 7.63 min, respecivamene, en una

Más detalles

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú Ciclos Económicos y Riesgo de Crédio: Un modelo umbral de proyección de la morosidad bancaria de Perú Subgerencia de Análisis del Sisema Financiero y del Meado de Capiales Deparameno de Análisis del Sisema

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR 1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente).

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente). Auorización SHCP: 09/11/2010 Fecha de publicación úlima modificación: 29/08/2014 Fecha de enrada en vigor: 05/09/2014 Condiciones Generales de Conraación del Conrao de Fuuro sobre el Índice de Precios

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO VAR: GENERAL Represenación del modelo VAR: () + + = e e A A A A w w c c c c L L L L L L L L ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Selección:.

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

Análisis espectral Tareas

Análisis espectral Tareas Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe

Más detalles

Documento de distribución gratuita y exclusivo para los miembros asociados y colaboradores del Centro de Estudios Monetarios Latinoamericanos (CEMLA).

Documento de distribución gratuita y exclusivo para los miembros asociados y colaboradores del Centro de Estudios Monetarios Latinoamericanos (CEMLA). Traduce y publica el CEMLA, con la debida auorización, el presene ensayo de Emilio Fernández-Corugedo, del original publicado en inglés, con el íulo Consumpion Theory, por el Cenro de Esudios de Banca

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en:

Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en: Sisemas Físicos Dependiendo de los elemenos del sisema, los podemos clasificar en: Sisemas elécricos Sisemas mecánicos Sisemas elecromecánicos Sisemas de fluídos Sisemas ermodinámicos Sisemas Físicos En

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica Universidad Nacional de Rosario Faculad de Ciencias Exacas, Ingeniería y Agrimensura Escuela de Ingeniería Elecrónica Deparameno de Elecrónica EECRÓNICA III RECIFICACIÓN Federico Miyara AÑO 00 B05.0 Riobamba

Más detalles

Condiciones Generales de Contratación de los Contratos de Futuro sobre Acciones (Liquidación en Especie)

Condiciones Generales de Contratación de los Contratos de Futuro sobre Acciones (Liquidación en Especie) Condiciones Generales de Conraación de los Conraos de Fuuro sobre Acciones (Liquidación en Especie) I. OBJETO. 1. Acivo Subyacene. Las Acciones, Cerificados de Paricipación Ordinarios emiidos sobre Acciones

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Revista INGENIERÍA UC ISSN: 1316-6832 revistaing@uc.edu.ve Universidad de Carabobo Venezuela

Revista INGENIERÍA UC ISSN: 1316-6832 revistaing@uc.edu.ve Universidad de Carabobo Venezuela Revisa INGENIERÍA UC ISSN: 1316-6832 revisaing@uc.edu.ve Universidad de Carabobo Venezuela Pérez R., Aída; Peña T., Eliana; Aljibes D., Pascual Modelación, simulación y conrol de un reacor exoérmico por

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS **

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** Revisa de Economía Aplicada E Número 53 (vol. XVIII), 2010, págs. 163 a 183 A Observaorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** GONZALO FERNÁNDEZ-DE-CÓRDOBA Universidad

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

ENERGY SAVER DIGITAL CONTROL OF A SINGLE PHASE INDUCTION MOTOR USING A DSP

ENERGY SAVER DIGITAL CONTROL OF A SINGLE PHASE INDUCTION MOTOR USING A DSP Recibido: 22 de enero de 2011 Acepado: 10 de marzo de 2011 ENERGY SAVER DIGITAL CONTROL OF A SINGLE PHASE INDUCTION MOTOR USING A DSP CONTROL DIGITAL BASADO EN DSP PARA UN MOTOR DE INDUCCIÓN MONOFÁSICO

Más detalles

SERIES TEMPORALES. Cecilia Esparza Catalán

SERIES TEMPORALES. Cecilia Esparza Catalán SERIES TEMPORALES Cecilia Esparza Caalán Cecilia Esparza Caalán ÍNDICE Página.- INTRODUCCIÓN.. 2 2.- ANÁLISIS PRELIMINAR DE UNA SERIE... 3 - Tendencia y nivel de la serie.... 4 - Esacionalidad.... 9 -

Más detalles

MODELO PARA EL CÁLCULO DE TARIFAS DE EMPRESAS ELÉCTRICAS DE DISTRIBUCIÓN CONSIDERANDO ASPECTOS ECONÓMICO-FINANCIEROS

MODELO PARA EL CÁLCULO DE TARIFAS DE EMPRESAS ELÉCTRICAS DE DISTRIBUCIÓN CONSIDERANDO ASPECTOS ECONÓMICO-FINANCIEROS MODELO PARA EL CÁLCULO DE TARIFAS DE EMPRESAS ELÉCTRICAS DE DISTRIBUCIÓN CONSIDERANDO ASPECTOS ECONÓMICO-FINANCIEROS Marcos Facchini (*), Albero Andreoni (*), Andrés Koleda (**), Ángel Garay (**), María

Más detalles

UNIDAD 5: MATRICES Y DETERMINANTES

UNIDAD 5: MATRICES Y DETERMINANTES UNIDD 5: MTRICES Y DETERMINNTES ÍNDICE DE L UNIDD - INTRODUCCIÓN - MTRICES CONCEPTOS BÁSICOS TIPOS DE MTRICES 3- OPERCIONES CON MTRICES 4 4- TRNSFORMCIONES ELEMENTLES EN UN MTRIZ6 5- MTRIZ INVERS 7 6-

Más detalles

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA *

CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 1988-2000 JUAN BYRON CORREA FONNEGRA * CARACTERÍSTICAS DEL DESEMPLEO EN MEDELLÍN Y EL VALLE DE ABURRÁ: 988 - JUAN BYRON CORREA FONNEGRA * Inroducción En las úlimas dos décadas en Colombia se ha presenado un aumeno en los esudios sobre economía

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

El OSCILOSCOPIO * X V d

El OSCILOSCOPIO * X V d UNIVERSIDAD NACIONAL DE COLOMBIA Deparameno de Física Fundamenos de Elecricidad y Magneismo Guía de laboraorio N o 10 Objeivos 1. Conocer y aprender a usar el osciloscopio. 2. Aprender a medir volajes

Más detalles

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE Evaluación de Proyecos de Inversión 4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE La generación de indicadores de renabilidad de los proyecos de inversión, surge como respuesa a la necesidad de disponer

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 ADAPTACION DE LOS TIPOS DE INTERES DE INTERVENCION A LA REGLA DE TAYLOR. UN ANALISIS ECONOMETRICO Carlos Paeiro Rodríguez 1, Deparameno de Análisis

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

Conceptos teóricos. Revisión de la literatura sobre pobreza, desigualdad y crecimiento. Contexto económico.

Conceptos teóricos. Revisión de la literatura sobre pobreza, desigualdad y crecimiento. Contexto económico. Relación enre crecimieno, desigualdad y pobreza: Un análisis aplicado a las regiones españolas. CAPÍTULO Concepos eóricos. Revisión de la lieraura sobre pobreza, desigualdad y crecimieno. Conexo económico..

Más detalles

13.0 COSTOS Y VALORACIÓN ECONÓMICA

13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.1 INTRODUCCIÓN En esa sección, se calcula el valor económico de los impacos ambienales que generará el Proyeco Cruce Aéreo de la Fibra Ópica en el Kp 184+900, el cual

Más detalles

MODELIZACIÓN NUMÉRICA DE UN COMPRESOR MONOCILINDRICO DE DESPLAZAMIENTO POSITIVO

MODELIZACIÓN NUMÉRICA DE UN COMPRESOR MONOCILINDRICO DE DESPLAZAMIENTO POSITIVO Mecánica Compuacional Vol XXV, pp 1313-1334 Albero Cardona, Norbero Nigro, Vicorio Sonzogni, Mario Sori (Eds) Sana Fe, Argenina, Noviembre 6 MODELIZACIÓN NUMÉRICA DE UN COMPRESOR MONOCILINDRICO DE DESPLAZAMIENO

Más detalles

Metodología de Cálculo Mensual de los Índices de Precios de Comercio Exterior

Metodología de Cálculo Mensual de los Índices de Precios de Comercio Exterior Meodología de Cálculo Mensual de los Índices de Precios de Comercio Exerior Dirección Técnica de Indicadores Económicos Dirección Ejecuiva de Índices de Precios LIMA PERÚ Ocubre de 2013 1 ÍNDICE Pág. Inroducción

Más detalles

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de:

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de: 1 MPLIFICDOES OPECIONLES CON DIODOS OJEIVOS DE PENDIZJE l erminar la lecura de ese capíulo sobre amplificadores operacionales con diodos, será capaz de: Dibujar el circuio de un recificador de media onda

Más detalles

ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA RESUMEN

ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA RESUMEN ESTIMACION DE LA TASA DE DESEMPLEO NO ACELERADORA DE LA INFLACION PARA LA ECONOMIA ECUATORIANA Segundo Fabián Vilema Escudero 1, Francisco Xavier Marrio García. 2 RESUMEN Esa esis esablece la uilización

Más detalles

FERIAS DE GANADO DOCUMENTO METODOLÓGICO INSTITUTO NACIONAL DE ESTADÍSTICAS

FERIAS DE GANADO DOCUMENTO METODOLÓGICO INSTITUTO NACIONAL DE ESTADÍSTICAS FERIAS DE GANADO DOCUMENTO METODOLÓGICO INSTITUTO NACIONAL DE ESTADÍSTICAS Marzo / 2016 SUBDEPARTAMENTO DE ESTADISTICAS AGROPECUARIAS DEPARTAMENTO DE ESTUDIOS ECONOMICOS ESTRUCTURALES Meodología Encuesa

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A MUESTREO DE SEÑALES Tipos de Señales de los Procesos Indusriales El ipo de señales usadas en conrol de procesos dependen del nivel en el que nos siuemos. Así, a nivel alo se uilizan señales de comunicación

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

MODELOS AUTORREGRESIVOS CON VARIABLES EXÓGENAS APLICADOS A SERIES DE TIEMPO HIDROLÓGICAS EN LA CUENCA DEL RÍO LEBRIJA

MODELOS AUTORREGRESIVOS CON VARIABLES EXÓGENAS APLICADOS A SERIES DE TIEMPO HIDROLÓGICAS EN LA CUENCA DEL RÍO LEBRIJA MODELOS AUTORREGRESIVOS CON VARIABLES EXÓGENAS APLICADOS A SERIES DE TIEMPO HIDROLÓGICAS EN LA CUENCA DEL RÍO LEBRIJA DIEGO LEANDRO BLANCO MUÑOZ ERIKA PATRICIA GUALDRÓN DÍAZ UNIVERSIDAD INDUSTRIAL DE SANTANDER

Más detalles

Un Análisis de las Tasas de Interés en México. a través de la Metodología de Reglas Monetarias

Un Análisis de las Tasas de Interés en México. a través de la Metodología de Reglas Monetarias Un Análisis de las Tasas de Inerés en México a ravés de la Meodología de Reglas Monearias Albero Torres García 1 Diciembre 2002 Documeno de Invesigación No. 2002-11 Dirección General de Invesigación Económica

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Acumulados INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 II.1. ETIVOS

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

CAPÍTULO 4 RESISTENCIA A LA TRACCIÓN

CAPÍTULO 4 RESISTENCIA A LA TRACCIÓN CAPÍTULO 4 RESISTENCIA A LA TRACCIÓN 4.1 Inroducción La resisencia a la racción en suelos es un parámero que por lo general es bajo con respeco a la resisencia a la compresión y además depende de la succión

Más detalles

Criterios de evaluación y selección de los proyectos de inversión en Cuba

Criterios de evaluación y selección de los proyectos de inversión en Cuba Crierios de evaluación y selección de los proyecos de inversión en Cuba Auor: Msc. Eliover Leiva Padrón E-Mail: eleyva@ucfinfo.ucf.edu.cu Insiución: Universidad de Cienfuegos Carlos Rafael Rodríguez Carreera

Más detalles

EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES

EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES Banco Ineramericano de Desarrollo Oficina del Economisa Jefe Red de Cenros de Invesigación EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES Luis Zambrano Sequín Maías Riuor Rafael Muñoz Juan

Más detalles

IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO*

IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO* Igualdad Esudios de Economía. Oporunidades: Vol. 32 /- Fernando Nº 1, Junio Cabrales, 2005. Págs. Ana 69-96 Fernández, Friz Grafe 69 IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO*

Más detalles

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final Consorcio de Invesigación Económica y Social (CIES) Concurso de Invesigación CIES - IDRC - Fundación M.J. Busamane 2012 Informe Técnico Final (Agoso 2013) Creación y Desrucción de Empleos en Economías

Más detalles

Factores Cíclicos y Estructurales en la Evolución de la Tasa de Desempleo *

Factores Cíclicos y Estructurales en la Evolución de la Tasa de Desempleo * Facores Cíclicos y Esrucurales en la Evolución de la Tasa de Desempleo * Nikia Céspedes Reynaga 1. Inroducción El esudio de la relación enre los agregados económicos iene una imporancia vial para quienes

Más detalles

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A.

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. ÍNDICE BBVA INVERSO X3 ÍNDICE ITX INVERSO X3 ÍNDICE SAN INVERSO X3 ÍNDICE TEF INVERSO X3 ÍNDICE BBVA

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Desarrollo de un prototipo de un Sistema en un Chip Programable (SOPC) destinado a aplicaciones de tratamiento digital de imágenes en movimiento

Desarrollo de un prototipo de un Sistema en un Chip Programable (SOPC) destinado a aplicaciones de tratamiento digital de imágenes en movimiento Projece de Fi de Carrera Enginyer Indusrial Desarrollo de un prooipo de un Sisema en un Chip Programable (SOPC) desinado a aplicaciones de raamieno digial de imágenes en movimieno MEMÒRIA Auors: Carles

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN.

BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN. BASES TÉCNICAS ACTUARIALES DEL SISTEMA PARA LA VALORACIÓN DE LOS DAÑOS Y PERJUICIOS CAUSADOS A LAS PERSONAS EN ACCIDENTES DE CIRCULACIÓN. INSTITUTO DE ACTUARIOS ESPAÑOLES. 5 de junio de 2014. 0 Inroducción

Más detalles