3.-AMORTIZACIÓN DE PRÉSTAMOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.-AMORTIZACIÓN DE PRÉSTAMOS"

Transcripción

1 .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns concons: Prorrogr l oprcón ños más. o bonr nngun cuní n sos momnos n l fnl l próxmo ño, n los os sguns bonrá los nrss sobr l u y n los rsns nuls crcns sno c érmno l % supror l nror. El nrés n lo sucsvo srá l 9% nul fcvo. Drmnr: nul qu morzb l présmo con ls concons ncls. b Du pnn l prncpo l curo ño, ns mofcr ls concons l présmo. c Du pnn l prncpo l quno ño un vz mofcs ls concons l présmo. nul qu pgmos n l ño sépmo un vz cmbs ls concons ncls. Ecucons los nos fcvos l prsms y l prsro s és n unos gsos l % sobr l cpl prso n l orgn l oprcón y gsos l % sobr l u vv l prncpo l curo ño como conscunc ls lrcons l conro. (Sol: 9., ; b.88, ; c., ; 9.8,8.. o n,8 9, 88,8 ( n. 9.,,8,8,8,8 9.,.88,.88,

2 D D D = D q D,9,,8, 98,89,,,,8,9 D D (.,.,.88,,9,,9,9,,9.,., 9.8,8 Suponno qu los gsos l uor son con rcros:. 9.,. (,,.88,( 9.,.,8 (.,8 9.8,8 (, ( 9.8,8,, ( (, (..-El sñor X s comprr un pso pr lo qu nrg un nr., fcú cnco pgos curmsrls qu umnn c uno sobr l nror un %, bonános l prmro. l nrg l nr. onr más un hpoc l nrg ls llvs, qu s fcurá concno con l vncmno l úlm lr, por un ol.. Drmnr: Prco l cono l pso vlorno oos los smbolsos l % nul vnco. b mpor los pgos nuls consns l hpoc, s és s conr por l ssm lmán l % nrés ncpo y ños urcón. c n nrg pr cnclr l hpoc los cnco ños conrrl s pr llo nrg l nu prop y l 8% l usufruco, sno l no nrés mrco l 9% (nul vnco. (Sol:.,8 ;.99, ; 8.8,88... (- z.,., / / Enr q q P,,,8 ( Hpoc z,8, 99,,9 9, 8,9 nclcón 88,88

3 P,., (, * ncl ( (. (,. ( z (,8 U..99, ( z z,8 z, z.8,9,8 (,8,8 (,, 8.8,88. 9.,,.,8..- Hc cnco ños un sñor obuvo un présmo prncpl. pr morzr n ños mn mnsuls consns un no nomnl cplzbl mnsulmn l %. Trs ños spués l frm y rs l pgo l mnsul corrsponn s có consrvr ls cuos morzcón prvss y clculr ls cuos nrés l no nrés l.% mnsul fcvo (ls cuos morzcón l présmo mnnn por no l msm rlcón nr lls. lculr: L scomposcón n morzcón nrés ls mnsuls prmr y úlm ns l cmbo concons. b El cpl pnn morzcón l présmo n s momno y l próxm mnsul. c u prop, usufruco y vlor fnncro l présmo s l no mrco s l % nul fcvo. (nccón: lculrlos n s orn. Qué l nrs más l bnco, cnclr l présmo cobrno pr llo l slo juno con un comsón l % o l cnclcón fnncr l no mrco?. (Sol:, +. ;, +.,9 ; b.8, ;.8, ; c =99., ; U=9.9,9 ; =8., ; l cnclcón fnncr. s con ( =,. / / / 8/ momno cul o j( ( n m,, 8,9 (,9,9,9 8,, 8,8 ( U,, 99, 99,8 8,,98

4 j( U,, 8 ( ( ( ( (, ( ( ( ( ( Lugo l bnco l nrs l cnclcón fnncr ( por sr myor qu l slo pnlzo n un % (. ( U ( (., 8,..8, ( ( ( j(, 8.,.,9,, (,.8,. 99., 9.9,8, ; ( (, (,,.,9.8,8..-Un prsms n concros con un msmo prsro os présmos qu nn ls sguns crcríscs: El prmr présmo fu solco hc ños por un mpor., un no nrés nul fcvo l 8 % pr morzrlo n ños mn nuls pospgbls y consns. El sguno présmo fu solco hc ños por un mpor., un no nrés nul fcvo % pr morzrlo n ños mn cuos morzcón consns. S p: Dscomponr n cuo morzcón y cuo nrés l sépm nul qu morz l prmr présmo y clculr l slo pnn l msmo n s momno. bdscomponr n cuo morzcón y cuo nrés l qun nul qu morz l sguno présmo y clculr l slo pnn l msmo n s momno. cel prsro propon cmbr n s momno sos os présmos por uno sólo urcón ños pr morzrlo mn smsrls pospgbls vrbls n progrsón gomérc rzón. y un no l 9 % fcvo nul. lculr l vlor l prmr smsrl. (Sol:.8,88 +., ;., ; b. +.8 ;. ; c.89,..

5 . o n s,8,99,9898 8,88,, o n s, 8 8 ( q o 8,,9,, 89,8 8,. n,9 8,8.,9.,..8 ; ( (,8,8 8.,,8,9 q.,9.8,88 (. ( ( ( q, (..,.,,,,,.8.89,..-Un Sñor concró un présmo prncpl. pr morzr n ños mn mnsuls consns un no nomnl l %. Trs ños spués l frm y rs l pgo l mnsul corrsponn s có cmbr ls concons, consrvno ls cuos morzcón l présmo orgnl (ls cuos morzcón l présmo mnnn l msm rlcón nr lls y cmbno l po nrés l.% mnsul fcvo. S p: Mnsul ns l cmbo concons, sí como l scomposcón n cuos morzcón más cuos nrés l prmr mnsul y l mnsul corrsponn l fnl l rcr ño. b Slo pnn l fnl l rcr ño. c Prmr mnsul rs l cmbo concons. lculr l nu, l usufruco y l vlor fnncro l présmo rnscurros os ños s l cmbo concons s l no nrés l mrco n s momno s l % nul fcvo. (nccón: lculrlos n s orn. (Sol:, +8 ;, +9, ; b8.8, ; c.,8 ; =98.9, ; U=8.,8; =.,8.

6 . / / 8/ o n m j( (,,,9 ( 8,9, 9, 88,9,,8 ( U,, 989, 8,8, j( U,, ( ( ( ( ( ( ( ( ( ( ( U ( 8 ( ( ( 8 8.8, ( ( ( j(.,, (., 98.9, ( (,, ( (, ; (, (, ( 9,,.,8 8.,8..-El Sr. Lópz, pó hc rs ños un présmo. n los sguns érmnos: morzcón n ños. Ls nuls vrín n progrsón rméc, smnuyno c un rspco l nror n. ( frnc = -.. Tpo nrés fcvo nul l %. S p: lculr l úlm cuo morzcón qu h hcho fcv (l l ño. b Dscomponr ls nuls sgun y cur n cuo morzcón y cuo nrés. c Qué po rn consuyn ls cuos morzcón pnns vncmno n s momno?. lculr su vlor cul s l no vlorcón s l,% nul fcvo. (Sol:. ; b. +. ;. +. ; c consn;.,9.

7 . -. o n o, - 8,,9 s n s un rn cons n.... n y sí os ls cuos morzcón... n.,, (. 8..,9., Hc ños s conró un présmo. y urcón ños qu s mpz morzr hoy mn mnsuls pospgbls consns un no nomnl l %. Trnscurros ños prr hoy y común curo, s c cmbr ls concons psno sr ls cuos morzcón consns y vlorános l % nul. Obnr: L mnsul úlm ns l cmbo concons y l prmr spués l cmbo, sí como su scomposcón n morzcón nrss. b El vlor, usufruco y nu l présmo l prncpo l ocvo ño sno l no mrco l %. c Plnr l cucón qu nos l no fcvo l présmo s l gso prur s l % sobr l cpl prncpl. (Sol:., =, +, ;., =8, +,8 ; b=.,9 ; U=8., ; =8.8,8. crnc. / / / 8/

8 o n m j( ( (,,,,,98, 8,8,89,98 988,,898 ( 8 U8 8 8,,8,,,9 8, 88,9 j( 8,, 8 (., ( ( ( 9 ( ( 8 ( (. ( ( ( 8 ( ( (., U ( j( 9.88,.,98, 8,.,9 ; U 8.8,8 ( ( (,, 8,, ( ( (, ( ( (, 8 8,,,8., 8 ( ( 8., (.8.- El Sr. Ruz solc un présmo. un po nrés l % morzr n ños mn smsrls l sgun form: urn los os prmros ños ls smsrls son consns cuní. y prr s momno ls cuos morzcón son consns. Psos ños s qu solcó l présmo gn. n l lorí por lo qu cncl l présmo pgno l slo pnn n s momno más l cuo nrés qu nrí qu pgr n l sgun príoo. nvr l cn sobrn n concr un présmo l Sr. Lópz, pgr mn rmsrls consns un no nomnl l % urn ños. S p: lculr l slo pnn l fnl l sguno ño l présmo solco por l Sr. Ruz. buní ls cuos morzcón consns l présmo solco por l Sr. Ruz. cn qu h pgr l Sr. Ruz pr cnclr l présmo. uní ls rmsrls consns l présmo conco l Sr. Lópz. (Sol:., ; b., ; c9.8,8 ;.,.

9 . / / / /. - - ( / / / o n m (,,, / ( + ( L Rso j( (, 98,8 8,8,, n m, j( R so,, ( ( ( (.,. (.8,8 ( ( ( j(,. s 9.8,8 (.,,,.,.,.8,8 ( 9.8,8.9.- Un sñor s pln l posbl lqulr o comprr un pso. El prco quscón l pso s 8.. En cso lqulr, és s pgrí por vnco rzón mnsuls con un ncrmno nul mnsuls. culmn cho sñor pos un fcvo. y su sulo porí snr l compr o lqulr l pso un máxmo mnsuls, quno l rso s cn, s lo hubs, ngrso n un fono qu rn l % nomnl cplzbl smsrlmn. En l cso quscón l pso s nrgrn los. qu spon y pr l rso s solcrá un présmo volvr n ños mn mnsuls consns un nrés l 8% nomnl pgro mnsulmn. S p: En l cso compr l pso: Mnsul l présmo. pl cumulo n l fono n ños, s lo hubs. lor l pso los ños n l cso qu s rvlorc un po nrés l %

10 nul compuso. b En l cso lqulr: pl cumulo n l fono con l rmnn l lqulr l cbo ños. Monn obno con los. s los nvr n l fono. (c uál ls os opcons s más vnjos pr cho sñor?. (Sol: 9, ;.89, ;.9,9 ; b 8.8,99 ;.9, ; ccompr l pso. 8. / / / 8 / / 9/ / o j( ( n m 8,8, 9,8 j( ( ( F,,,9, 89,, 9,98 F M ompr lqulr 88,89 9, 8,,89 j(,8 j(,8 (, j(, j(, (, ( ( ( (, ;, 8. ( 9, ( ( ( ( F (..89, ( F M 8. ( s (. ( s.9,9 ( s.9, ( s ( omo F + =.8, > F + M =.,89 l compr s más vnjos. s (,9 ( 8.8,89

11 ..- El Sñor X p un présmo. morzr n ños un no nrés nul compuso l %, pgno rmsrlmn los nrss y morzcón l prncpl l fnl l oprcón. Smulánmn cur con or n qu cplz l % nrés nul compuso, un oprcón horro con mposcons rmsrls vrbls n progrsón rméc rzón con l objvo obnr l cbo los ños un monn.. los ños conco l présmo, l uor concr con l prmr n nrgr l cn qu n cumul n l fono pr rucr l cpl pnn por morzr, y concrr l morzcón l cpl pnn, mn érmnos morzvos consns y mnsuls (méoo frncés y rspno l po nrés pco n l présmo. S p: n smbolsr por Sr. X l prmr rmsr. b uní consu n l fono l prncpo l sxo ño. c uní ls nuvs mnsuls pr morzr l cpl pnn urn los sguns ños. (Sol:., ; 9.9, ;.,.. ( ( ( ( + / / 9/ / nclcón prcl y cmbo méoo frncés o ( n m o (,,8,8 ( F o ( + F 9,9,,, 99,8 (,8,8,8. F,, (., ( ( ( ( F. ( ( ( (., (,8 s (.,,8 s, (.9,8 ( ( ( ( ( ( ( (., 9.9,,8.9,8

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS 3.-MORTIZIÓ DE PRÉSTMOS 3..- Un prson solicit un préstmo. pr mortizrlo n ños mint nulis constnts postpgbls y un tipo intrés fctivo nul l 8%. Trnscurrios 3 ños y hbino bono l nuli l trcr ño, curn uor y

Más detalles

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000 . Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

ANEXO 10 - Ejercicio de Planificación

ANEXO 10 - Ejercicio de Planificación ANEXO 10 - Ejrcicio Plnificción En l Mr Mium s sá rlizno un jrcicio plnificción con l fin sgurr un mnjo susnbl los rcursos y l consrvción los srvicios cológicos involucros. Pr llo s h runio l mjor informción

Más detalles

Nuevos Productos SOPORTES BRIDA CUADRADA SOPORTES PILLOW BLOCK COMPACTOS. UCF/CL - HCF/CL Lubricado de por vida UCF/C - HCF/C

Nuevos Productos SOPORTES BRIDA CUADRADA SOPORTES PILLOW BLOCK COMPACTOS. UCF/CL - HCF/CL Lubricado de por vida UCF/C - HCF/C uvo Prouco SOPORTES BRIDA UADRADA UF/L - HF/L Lubrco por v LUBRIADO DE POR VIDA Rcomno uo n co UF/ - HF/ uv vron - ( Dnc nr orfco 0 ) B08 B06 UF - HF uv vron - ( Dnc nr orfco 0 ) F uv vron j ( Dnc nr orfco

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

aumenta, d dt Figura 2 disminuye, d dt aumenta, d dt (b)

aumenta, d dt Figura 2 disminuye, d dt aumenta, d dt (b) Pof.: Ig.. M. Há lcogso II Pág 9 Cpos s l po. cucos Mwll L o, 07 Os osó 80 qu u co lécc fc l gu u búul. so sgfc qu l co lécc pouc cpo géco l cul s su l cpo géco s po llo l búul s fc. Co bs lo o s poí uc

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872 9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....

Más detalles

TEMA 1. OPERACIONES BANCARIAS A CORTO

TEMA 1. OPERACIONES BANCARIAS A CORTO 1 E 6 TEMA 1. OPERACIONES BANCARIAS A CORTO PLAZO (I) 1.1. Itrouccó 1.2. Cuts corrts 1.3. Cuts corrts bcrs 1.4. Cuts créto 1.5. Cálculo los ttos fctvos 1. INTROUCCIÓN Toos los rchos rsrvos. Qu prohb l

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

V p i 1,13. C i , C i V0 n , ,05 9, ,05. 0, , , Ln(1,1)

V p i 1,13. C i , C i V0 n , ,05 9, ,05. 0, , , Ln(1,1) . Mednte el pgo de. l fnl de cd ño se pretende cncelr un deud. S el tnto nul de vlorcón es el %, cuál será el nº de pgos relzr s el vlor de l deud es.58, 5?..58,5. n n,.58,5 9,9 58,5 n,.58,5.,,57595, Ln(,975)

Más detalles

MORFOLOGIA DEL EXAMEN

MORFOLOGIA DEL EXAMEN MATEMÁTIAS FINANIERAS L. A. D. E. FINAL 1 MRFLGIA DEL El exmen es práctico compuesto por vrios problems de desrrollo con distintos prtdos. MATEMÁTIAS FINANIERAS L. A. D. E. FINAL 2 PRÁTIA 1) un inversor

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

Productos de grado 10

Productos de grado 10 Prouos ro 10 Aplons El ro 10 or un p lvón qu s un 25% supror l l ro 8 on un n mño smlr. En muhs plons, s pu lr un mño n mnor. El rsulo son slns n más lrs y áls mnjr. Aln Vn Bs or un mpl m lmnos ro 10 pr

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

MEDICOS DE CUALQUIER ESPECIALIDAD

MEDICOS DE CUALQUIER ESPECIALIDAD bjto: Dfusón ofrts trbjo pr DICS n FNCI. stmos Srs.: ngt, 23 octubr 2013 Somos Lborr Cons, spcz n procsos sccón prson sntro pr trbjr n Frnc y n Hon, n hospts, consuts o cíncs, sgún ofrt qu s fun y orgn

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

Física para todos 1 Carlos Jiménez Huaranga CINEMÁTICA

Física para todos 1 Carlos Jiménez Huaranga CINEMÁTICA ísc pr odos 1 Crlos Jménez Hurng CINEÁTIC CONCEPTOS PREVIOS omeno.- Se dce que un cuerpo esá en momeno cundo su poscón rí respeco un ssem de referenc que se supone fjo. Tryecor.- Es l fgur descr por ls

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE CCESO L UNVERSDD L.O.G.S.E. CURSO 2001-2002 - CONVOCTOR: JUNO ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros e clfccón.- Expresón clr y precs entro el lenguje técnco y gráfco s fuer

Más detalles

Hongos patógenos en semilla de arroz asociados con la incidencia de plántulas anormales en la prueba de germinación

Hongos patógenos en semilla de arroz asociados con la incidencia de plántulas anormales en la prueba de germinación Alizg Rmiro. Hongos ptógnos n smill d rroz socidos con l incidnci d plántuls normls n l prub d grminción. Tcnologí n Mrch. Vol. 15 N 1. Hongos ptógnos n smill d rroz socidos con l incidnci d plántuls normls

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

glosario de BBVA GLOSARIO -Análisis Técnico-

glosario de BBVA GLOSARIO -Análisis Técnico- BBVA GLOSARIO -Aná Tén- A (): Mn n (ún ní Pn On E) qu nn n n. Auuón (uun n): Fón nón u n un (uu íu n ). A ADX (ADX): ADX (DMI): Ín n n, un n un nn. L ín ADX W n n n n un 0 100. Un ín ADX nn n qu n nn y

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

4ª Etapa. Contaminación de Alimentos

4ª Etapa. Contaminación de Alimentos 4ª Etp Cotmcó de Almetos *Cotmcó de lmetos. Almeto cotmdo: *lterdo *Adulterdo *Geuo,etc. Tpos de Cotmcó: * Bológc * Químc * Físc 3 3 Almeto cotmdo: *Alterdo: *Cotmdo: *Adulterdo: Almeto que h sufrdo, por

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Bienestar Universitario

Bienestar Universitario Ejcutmos progrms y proyctos qu contrbuyn l formcón ntgrl d l comundd unvrstr con l fnldd d lcnzr l más lto grdo d stsfccón prsonl y colctv, drgndo nustr lbor hc studnts, grdudos, docnts y dmnstrtvos. Pr

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

TEMA 8: DETERMINANTES

TEMA 8: DETERMINANTES DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros:

Más detalles

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática.

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática. Mtátc fnnc. Mtl copldo po l Pof. Enqu Mtus Nvs Doctondo n Educcón Mtátc. 4. TASAS DE INTERES Y EQUIVALENCIA ENTRE TASAS OBJETIVOS. Dstngu y xplc ls dfncs nt ntés pódco, nonl y fctvo. 2. Copnd y xplc los

Más detalles

fichas indispensables para los alumnos mydocumenta

fichas indispensables para los alumnos mydocumenta fhs ndspnsbs p os umnos mydoumn mydoumn.om ÍNDICE DETALLADO AdMyDoumn Cmbuonsñ Ennmydoumn Cydunpoyo Cunpoyo Ebjongupo Pvsuzyd Modudíu Cmbosoosdsínsydfondodudíu Cmbnºd syoumns Unds Dsunsdsunds Lsdmnsonsdpoyo

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

Un mundo mejor. p œ 4 œ œ œ. ˆ«j. b b 2. l l l l l. l l l l l l l l l l. l l l l l l l l l l. l l l l l l l l l. l l l l l l l l l l

Un mundo mejor. p œ 4 œ œ œ. ˆ«j. b b 2. l l l l l. l l l l l l l l l l. l l l l l l l l l l. l l l l l l l l l. l l l l l l l l l l œ œ œ œ œ œ œ Letr: bo Benegs To Hbner q = 60 S ============================ bb 2 4 œ œ œ œ œ œ œ œ œ U œ bom E C ============================ bb 2 Ṷ 4 # bom E T ============================ b b 2 œ 4

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne -

FESTEJO DE NAVIDAD. tj t. t N. rum, bum, پ0 3Ha! ci -do/en. na - Ma - r ھ - tra - del. gros. ne - 1 31 FESTEJO DE AVIDAD Allgro ( C= 10) Hrbr Birich Txo Alfro Osoj 1 6 1 Conrlo I I I I S - پ0ٹ9or Don Jo - 18 پ0 0 I I I I I پ0 0 J I I I I I پ0 0 J I I I I s, Y پ0 0 Y پ0 0 Y S - پ0ٹ9o - Y r M - r ھ -

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

CRISTO ALTISIMO SEÑOR

CRISTO ALTISIMO SEÑOR RISTO LTISIMO SÑOR Bm7 QUÍ STOY N TU SNTO LUR, /D D VIN QUÍ PR DORRT. Bm7 MI ORTLZ D TÍ LUIRÁ /D D Y MI DLII S ONTMPLRT. m Bm7 HRÉ MI MORD JUNTO TU PRSNI. QUIRO VR TU ROSTRO /D D B7/D# Y XLTRT TÍ SÑOR.

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:.. GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

EJERCICIOS DE DINÁMICA

EJERCICIOS DE DINÁMICA EJERCICIOS DE DIÁMICA 1. Dd un cuerd cpz de oporr un fuerz áx de 00, cuál erá l celercón áx que e podrá councr con ell un de 10 kg cundo e encuenr obre un plno horzonl n rozeno? Sol: ) 0. En un plno horzonl

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

La Patata. La Patata Frita

La Patata. La Patata Frita La Patata La c omú n y c or r i e n t e pat at a (S ol an u m t u b e r osu m) t i e n e u n pasado e xót i c o. Las pat at as pr ovi e n e n de S u damé r i c a, don de l os n at i vos de l ár e a ah

Más detalles

Práctica 2: Codificación Aritmética.

Práctica 2: Codificación Aritmética. TRANMÓN DE DATO 006/07 Práctc : Codfccón Artmétc. Apelldos, nombre Apelldos, nombre Grupo Puesto Fech 0 Octubre/ Novembre 006 El objetvo de est práctc es ntroducr l lumno en los fundmentos de ls codfccón

Más detalles

All Savers. All Savers. Alternate Funding. Planes de Salud Autoasegurados para Pequeñas Empresas

All Savers. All Savers. Alternate Funding. Planes de Salud Autoasegurados para Pequeñas Empresas Alternte Funding Plnes de Slud Autosegurdos pr Pequeñs Empress Pr Su Pequeñ Empres Plnes que no lo llevn l bncrrot L principl preocupción de los propietrios de pequeñs empress es el costo de l tención

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales.

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales. 7. Transformaors Cállo ransformaors S s onsrano n oro qvaln. Calqr ransformaor p sñars hano so rs aons nrals. Prmra aón. Dfnón nsa fljo manéo (nón ampo manéo). B A Sna aón. y Ampèr. l I 7. Transformaors

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESUELA TÉNIA SUPERIOR DE NÁUTIA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO OI ESKOLA TEKNIKOA UNDAMENTOS MATEMÁTIOS : ORMAS UADRÁTIAS orm blel Decó K Se E res espcos vecrles dedos sobre el

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

Tema 5 - El Volumen de Control

Tema 5 - El Volumen de Control T 5 - El Volun d Conrol Tráno onrol vol. onrol S rrdo d onrol Coordnd lgrngn Sguno d un qu voluon n l po Bln d r: Bln d nrgí: Q-WE -E S bro volun d onrol Coordnd ulrn Eudo d un qupo por dond nr y l r Bln

Más detalles

A a. actiludis.com. focaclipart.net23.net focaclipart.wordpress.com

A a. actiludis.com. focaclipart.net23.net focaclipart.wordpress.com ctlds.cm fcclprt.nt23.nt fcclprt.wrdprss.cm MÉTODO D LCTO SCRTR CTLDS st métd s trí d Jsé Mgl d l Rs Sánchz y stá j lcnc Crtv Cmmns BY-NC-S 3.0. D st métd s pdn hcr tnts cps mprss cm s ds smpr q s dstrcón

Más detalles

Documento.: M.00. Revisión : 08

Documento.: M.00. Revisión : 08 MNUL D L CLDD PR L PUST N MRCH Y MNTNMNTO CORRCTVO Y PRVNTVO D PRTOS D GS, D CS Y CLFCCON, NRG SOLR, NRG RNOVBL Y MÁQUNS D R CONDCONDO. DCUCON D DCHOS PRTOS POR CMBO D FML D GS. VNT D RPUSTOS CTMNP, S.L

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

OCTUBRE 2015. ACTIVIDADES FINES DE SEMANA Para público individual, familias y niños. Más información en www.mncn.csic.es INVESTIGA CON TU HIJ@

OCTUBRE 2015. ACTIVIDADES FINES DE SEMANA Para público individual, familias y niños. Más información en www.mncn.csic.es INVESTIGA CON TU HIJ@ OCTUBRE 2015 ACTIVIDADES FINES DE SEMANA Pr públco ndvdul, fml y nño ábdo Son l 11 y l 12 h. TALLER DE CETRERÍA AVES DE PRESA Pr públco gnrl y fml con nño. Durnt l tllr l Dr. Jvr Cbllo, comro d l xpocón

Más detalles

1 Álgebra Lineal Taller N o 1 con matlab

1 Álgebra Lineal Taller N o 1 con matlab Álger Linel Tller N o con mtl Tem: Vectores en R n : Sistems de m ecuciones con n incógnits. Suespcio generdo. Operciones con mtrices, independenci linel en R n : Suespcios fundmentles socidos con un mtri.

Más detalles

UTN - FRBA Ing. en Sistemas de Información

UTN - FRBA Ing. en Sistemas de Información Modelo Relconl UTN - FRBA Ing. en Sstems de Informcón Gestón de Dtos Prof.: Ing. Jun Zffron Gestón de Dtos Ing. Jun Zffron / Ing. Mrí Crstn Chhn Modelo Relconl - 1 Concepto Propuesto por el Dr. E.F. Codd

Más detalles

Implementación de las jornadas de inducción y re inducción del personal, incursionando la cultura de la transparencia en dicho proceso.

Implementación de las jornadas de inducción y re inducción del personal, incursionando la cultura de la transparencia en dicho proceso. DPATAMNTO DL MTA MUNICIPIO D L CASTILLO SCTAIA D GOBINO Y DSAOLLO SOCIAL CONTOL INTNO SGUIMINTO A LA JCUCION DL PLAN ANTICOUPCION STATGIA ACTIVIDAD PUBLICACION ACTIVIDADS ALIZADAS SPONSABL ANOTACIONS go-

Más detalles

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1.

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1. CASOS TEMA 3 CASO PRÁCTICO Nº 1 El ptrimonio de l empres individul "ALFA", cuy ctividd es l comercilizción de los rtículos A, B y C, está integrdo por el siguiente conjunto de bienes derechos y obligciones,

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Modelo A PID# Cuartos 3.5 Baños Garaje Sencillo 195 m 2

Modelo A PID# Cuartos 3.5 Baños Garaje Sencillo 195 m 2 PI D#140 P ne t or or t ConR ol nt o L oung B r G mn o L OMEJ ORDEL ACOMUNI DAD L uj o ot ownhom y v on ub d nun omun d dpr v d20m nut odd n y.cu nt onun nf í ndá r r r t v n uy ndounp n onr o nt o, p

Más detalles

Manual de Ayuda del Sistema para la Impresión de Planilla de Reemplazo

Manual de Ayuda del Sistema para la Impresión de Planilla de Reemplazo Manual d Ayuda dl Sstma paa la Impsón d Planlla d Rmplazo PASOS A REALIZAR PASO NRO 1: El pm paso s ngsa al sto d la Dccón Gnal d Escula, la dccón s http//:bass.mndoza.du.a/ntant, n l stos dbá ngsa l nomb

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es :

E - 1 En el circuito de la figura la tensión sobre el resistor de 20 ohms es : E Régimen Senoidl Permnente ) Sistems monofásicos E En el circuito de l figur l tensión sore el resistor de 0 es : ) ) ( 00 j 00) c) ( 50 j 50 ) d) + j 75 L potenci disipd en el resistor y l potenci medi

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES Mg. Mrco Atoio Plz Viurre LA TASA E ITERÉS ATICIPAA Y SUS APLICACIOES L ts e iterés veci es quell que se utiliz e u operció ficier cuy liquició se efectú l fil el u perioo y l ts e iterés ticip, ifereci

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción B Junio, Ejercicio 6, Opción A Reserv 1, Ejercicio 4, Opción B Reserv 1, Ejercicio 5, Opción

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO.

8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. 8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. La oría conrol ópmo lnal mpo scro s nrsan por su aplcacón n l conrol por compuaor. 8. DESCRIPCION EN VARIABLES DE ESTADO A vcs nrsa obsrvar un ssma n

Más detalles

LA ESTRATEGIA DE INVERSIÓN DE INVERSIS ESCENARIO ECONÓMICO GLOBAL

LA ESTRATEGIA DE INVERSIÓN DE INVERSIS ESCENARIO ECONÓMICO GLOBAL ARTERA MODELO DEFENSVA DE NVERSS BANO Oub 2004 LA ESTRATEGA DE NVERSÓN DE NVERSS Hk Lumol, Es Jf NVERSS BANO A ouó ls psmos los lmos sls l s vsó p los pómos 3-6 mss. Ofmos u vloó l sfoo oómo Esos Uos y

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

NFORMEMENSUALDECARNES I I

NFORMEMENSUALDECARNES I I I I NFORMEMENSUALDECARNES I I II CAP RI NOS D nn o n d M u nyf s z n E NE RO216 CONT ROLAGROPECUARI O MI NI S T E RI ODEAGROI NDUS T RI A DEL ANACI ÓN: Con R dobu y S í dag u u G n d í yps : I ng Ag R

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

NFORMEMENSUALDECARNES I I

NFORMEMENSUALDECARNES I I I I NFORMEMENSUALDECARNES I I II E QUI NOS D nn o n d M u nyf s z n E NE RO216 CONT ROLAGROPECUARI O MI NI S T E RI ODEAGROI NDUS T RI A DEL ANACI ÓN: Con R dobu y S í dag u u G n d í yps : I ng Ag R dong

Más detalles

I I NFORMEMENSUALDECARNES

I I NFORMEMENSUALDECARNES I I I I NFORMEMENSUALDECARNES I I II OV I NOS D nn o n d M u nyf s z n J UL I O216 CONT ROLAGROPECUARI O MI NI S T E RI ODEAGROI NDUS T RI A DEL ANACI ÓN: Con R dobu y S í dag u u G n d í yps : I ng P

Más detalles