Tema: Representación de los Sistemas de Potencia y Análisis en por unidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema: Representación de los Sistemas de Potencia y Análisis en por unidad"

Transcripción

1 Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Análisis de sistemas de potencia I Tema: Representación de los Sistemas de y Análisis en por unidad Objetivos Específicos. En esta actividad los estudiantes serán capaces de: Aplicar normativas de representación simbólica de los sistemas de potencia para la representación circuital de redes eléctricas de generación de potencia. Aplicar los conceptos de transformación de parámetros eléctricos a valores en por unidad p.u. sobre la base de los datos de placa y métodos numéricos para el cambio de base. Implementar circuitos de redes de potencia complejos en cuanto a la cantidad de componentes de medición y cableado eléctrico para la conexión, de manera que se convierta en una operación que puedan hacer a una velocidad mayor para actividades de laboratorio posteriores y con mayor complejidad interpretando la simbología ANSI de representación. Modelar experimentalmente los Sistemas de a valores numéricos en por unidad aplicando técnicas matemáticas que agilicen los cálculos engorrosos. Introduccion Teorica La representación de los sistemas de potencia en la actualidad lleva la tendencia a normalizar los símbolos y nomenclaturas de los dispositivos y sistemas. La simbología ANSI/ IEEE es la más aplicada a nivel occidental y en el mundo globalizado es bastante común la aplicación de representaciones IEC (código eléctrico internacional) principalmente en sistemas de fabricación europea y asiáticos. La aplicación de la simbología estandarizada permite compatibilizar tecnología de un país a otro y generar un proceso de transferencia tecnológica y una asimilación de la tecnología por el personal técnico y operativo que esta involucrado con esa simbología. Como ejemplo de la simbología general de redes de potencia, se presentan los siguientes casos como claves para el modelado de redes de generación, distribución y transmisión. MOT Motor eléctrico WH Medidor electrico de watt-hora GEN Generador eléctrico Transformador de potencia CB Elemento de circuito Ej: Circuit Breaker Circuit Breaker (Aperturador de circuito al aire) Figura 4.1. Pág. 1

2 Análisis de Sistemas de I Representación de Transformadores SIMBOLO IEC-IEEE HV LV SIMBOLO ANSI-NEMA H1 X1 H1 X H X H X1 POLARIDAD SUSTRACTIVA POLARIDAD ADITIVA Figura 4.. Sistemas en Por Unidad. Es la representación numérica de los valores de los parámetros eléctricos de una manera adimensional equivalente a la razón que existe entre las especificaciones reales o experimentales con las especificaciones ideales o nominales que se denominan como datos de placa o especificaciones del fabricante, dichos valores base son considerados como valores base de referencia de comparación en una gama de familia de dispositivos equipos o sistemas. valor en p.u. = valor real valor base = Especificiones realeso experimentales Especificaciones del Fabricante Un ejemplo clásico de la aplicación de esta razón es en la simplificación de redes de potencia en las cuales no es necesaria la utilización de las unidades de medida eléctricas para los análisis de sistemas (voltios, Ohmios, etc.), por cuanto se conocen los valores en p.u., los resultados del análisis de la red serán independientes de las especificaciones nominales de placa y por ende, si los equipos sufren cambos en sus datos de placa, solo es necesario relacionar los modelos eléctricos en por unidad que son para una amplia gama de condiciones, con los nuevos valores de base para que adquieran la unidades de medida respectivas. Por ejemplo si un transformador tienen una impedancia de % p.u. esto quiere decir que es el % del valor de la impedancia base, cuyo valor es calculado como la relación de la tensión nominal de uno de los devanados entre la Intensidad de corriente del devanado de la misma fase o como la razón de la tensión al cuadrado entre la potencia aparente, es decir, que la información es sustraída de los datos de placa. Si para el transformador anterior se especifica una tensión de 13,800 voltios y de 5 KVA, la impedancia base se calcula de la forma siguiente: GUÍA 4 Pág.

3 Análisis de Sistemas de I ( Voltajede fase ) aparente por fase V S 1 ( kv ) ( MVA ) (13800 ) Voltios (13.8 kv ) = = VA 0.05 MVA Para el caso en arreglo en banco trifásico la relación es similar, tanto para arreglo estrella como arreglo en delta: ( Voltaje de linea base ) aparente trifásica Material y Equipo V S ( kv ) ( MVA ) ( ( 3 ) *13800 ) kv 3*5000 VA ( 3.9 ) kv = MVA 3 LL 1 Mesa de trabajo Lucas Nülle o similar. 1 Generador del tipo sincrónico trifásico. 1 Primotor de corriente continúa para generación del par. 1 Carga trifásicas de tipo resistivo (banco de resistencias). 1 Carga trifásicas del tipo reactivo (banco de reactancias). 3 Medidores electrónicos de potencia real y reactiva. 3 Medidores del factor de potencia (red, generador y carga). 1 Medidores de secuencia de fases (sincronoscopios). 1 Amperímetro de gancho. 1 Multímetro digital portátil. Procedimiento Parte I: Modelado de un sistema de potencia para generación eléctrica trifásica con variables en p.u.. Paso 1. Registre y anote los datos de placa de los equipos para su aplicación como valores base (primotor y generador). Paso. Implemente el circuito de la Figura 4.3, conformado por un generador eléctrico del tipo sincrónico acoplado a la red eléctrica que será nuestro bus infinito. Paso 3. Verifique que los interruptores de control de conexión de la carga este inicialmente en la posición de abierto. Pág. 3

4 Análisis de Sistemas de I Paso 4. Primero probara la red con carga de tipo resistivo, es decir, habilitara SW y SW3. Paso 5. Conecte los diversos instrumentos e indicadores de lectura tal como se indica para completar los datos de la Tabla 4.1 a Tabla 4.4 en la que se registraran los puntos de operación del generador. Figura 4.3. Pág. 4

5 Análisis de Sistemas de I Lugar de medición: RED o BUS INFINITO. Lugar de medición: ESTATOR DEL GENERADOR. Tabla 4.1. excitación (Campo) Real Tabla 4.. Lugar de medición: ROTOR DEL GENERADOR. l circuito de CAMPO l circuito de ARMADURA Frecuencia Velocidad de rotación Tabla 4.3. Lugar de medición: CARGA. Real Tabla 4.4. Paso 6. Abrir los interruptores SW y SW3. Pág. 5

6 Análisis de Sistemas de I Paso 7. Efectúe el proceso de sincronización de la red de generación con la red de suministro utilizando el método de las 3 condiciones fundamentales (tensión, frecuencia y secuencia de fases iguales). Los interruptores SW1, SW y SW3 deben de permanecer abiertos. Paso 8. A continuación cierre SW para habilitar la red (barraje infinito). Paso 9. Una vez realizado el paso anterior conecte el generador (SW1). Cerciórese de que el generador entre en el momento en que la aguja del sincronoscopio esté situado aproximadamente en su posición central (sincronismo entre los dos sistemas). Paso 10. Completar las Tablas 4.5 a Tabla 4.8, después de meter la carga al sistema, lo cual se hará con el interruptor SW3. Lugar de medición: RED o BUS INFINITO. Lugar de medición: ESTATOR DEL GENERADOR. Tabla 4.5. excitación (Campo) Real Tabla 4.6. Lugar de medición: ROTOR DEL GENERADOR. l circuito de CAMPO l circuito de ARMADURA Frecuencia Velocidad de rotación Tabla 4.7. Pág. 6

7 Análisis de Sistemas de I Lugar de medición: CARGA. Real Tabla 4.8. Paso 11. Cuando el generador este acoplado proceda a variar la velocidad del primotor cuidadosamente, de manera de acelerar el generador para que se incremente la carga de potencia activa en el mismo. Llévelo a una posición en el que tome el 50% de la demanda de potencia de la carga. Paso 1. Registre los nuevos puntos de operación del generador en la tablas siguientes, tenga cuidado de no sobrepasar la frecuencia de la red o provocar un desenganche de la sincronización. Lugar de medición: RED o BUS INFINITO. Lugar de medición: ESTATOR DEL GENERADOR. Tabla 4.9. excitación (Campo) Real Tabla Pág. 7

8 Análisis de Sistemas de I Lugar de medición: ROTOR DEL GENERADOR. l circuito de CAMPO l circuito de ARMADURA Frecuencia Velocidad de rotación Tabla Lugar de medición: CARGA. Real Tabla 4.1. Parte II: Efectos de la transmisión sobre la representación de los circuitos equivalentes en redes de potencia con generadores. Paso 1. Modifique el circuito de la Figura 4.3, de manera que las líneas de transmisión sean sustituidas por modelos de líneas del tipo resistivo inductivo. Los valores de la resistencia por fase a considerar son de 33 y la inductancia de 80 mh. Paso. Realice el proceso de sincronización nuevamente para el generador y registre las tensiones, corrientes, Factores de de los puntos solicitados en las Tablas 4.13 a Lugar de medición: RED o BUS INFINITO. Tabla Pág. 8

9 Análisis de Sistemas de I Lugar de medición: ESTATOR DEL GENERADOR. excitación (Campo) Real Tabla Lugar de medición: ROTOR DEL GENERADOR. l circuito de CAMPO l circuito de ARMADURA Frecuencia Velocidad de rotación Tabla Lugar de medición: CARGA. Real Tabla Paso 3. Tome carga con el generador de manera de lograr manejar el 50% de la potencia real y el 50% de la potencia reactiva equitativamente con la red del bus infinito. Paso 4. Complemente las Tablas 4.17 a 4.0. Lugar de medición: RED o BUS INFINITO. Pág. 9

10 Análisis de Sistemas de I Lugar de medición: ESTATOR DEL GENERADOR. Tabla excitación (Campo) Real Tabla Lugar de medición: ROTOR DEL GENERADOR. l circuito de CAMPO l circuito de ARMADURA Frecuencia Velocidad de rotación Tabla Lugar de medición: CARGA. Real Tabla 4.0. Paso 5. Desconecte el interruptor de la carga abruptamente y mida la tensión del generador en sus terminales de entrada V1 y el voltaje en la carga por fase. Paso 6. Asegúrese que el circuito de la excitación sea desconectado para no sobrecalentar el rotor del generador síncrono. Discusión de resultados Parte I. 1. Dibuje el circuito equivalente representado con los modelos de resistencia y reactancia por fase.. Traslade el circuito equivalente a valores en por unidad sobre la base del sistema de los datos de placa del generador. Pág. 10

11 Análisis de Sistemas de I 3. Si ahora supone una carga resistiva que consuma tres veces mas potencia que la que usó en la Parte I. Calcule con el modelo en por unidad los nuevos valores de operación en el generador y la red. Puede suponer una impedancia del 10% para los generadores sobre sus datos de placa. Pase los datos obtenidos en las tablas a valores en p.u. Parte II. 4. Dibuje el circuito equivalente representado con los modelos de resistencia y reactancia por fase. 5. Traslade el circuito equivalente a valores en por unidad sobre la base del sistema de los datos de placa del generador. 6. Suponga que la carga la conecta en delta, determine el análisis de los parámetros en por unidad sobre una base de los datos de placa del generador. Suponga un 10% de impedancia de base para los generadores. Pase los valores medidos obtenidos en las tablas a valores en p.u. Investigacion complementaria Bibliografía 1) Compare los resultados medidos con los calculados y presente al menos 3 conclusiones para cada una de las partes de la práctica de laboratorio. ) Si supone un cambio de base de los datos de placa de los generadores, cambiarían los valores en por unidad obtenidos. 3) Qué entiende por cambio de base del sistema?. 4) Qué sentido tienen el flujo de potencia en el vatímetro del generador si abruptamente se quita el torque de impulso del promotor?. [1] CNR. / Centro Nacional de Registros. ATLAS DE EL SALVADOR 001. [] STEAVENSON, William D. ANÁLISIS DE SISTEMAS ELÉCTRICOS DE POTENCIA. Segunda edición. McGraw-Hill [3] HARPER, Enrique. TÉCNICAS COMPUTACIONALES EN SISTEMAS DE POTENCIA. McGraw-Hill. México. [4] EXPÓSITO, Antonio Gómez. ANÁLISIS Y OPERACIÓN DE SISTEMAS DE ENERGÍA ELÉCTRICA. McGraw-Hill. Segunda edición. 00. [5] GRAINGER/ STEAVENSON JR. ANÁLISIS DE SISTEMAS DE POTENCIA. McGraw- Hill. USA [6] FITZGERALD, A. E./ KINGSLEY, Charles/UMANS, Stephen D. MÁQUINAS ELECTRICAS. McGraw-Hill. México. Quinta Edición [7] FINK, Donald G./BEATY, H Wayne. MANUAL DE INGENIERÍA ELÉCTRICA. McGraw- Hill. Décimo Tercera edición [8] DE JALÓN / Javier García, RODRIGUEZ/ José Ignacio, BRAZÁLEZ Alfonso. MANUAL DE MATLAB 5.3: APRENDIENDO MATLAB COMO SI ESTUVIERA EN PRIMERO. Escuela Técnica Superior de Ingenieros Industriales. Madrid, Febrero 001. Pág. 11

12 Análisis de Sistemas de I [9] [10] [11] [1] [13] Página WEB de la Universidad Pontificia Católica de Chile. Pág. 1

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas.

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas. Facultad: Ingeniería Escuela: Ingeniería electrónica Asignatura: Análisis de Sistemas de Potencia I Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas.

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Tema: CONEXIÓN DE BANCOS TRIFÁSICOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Que el alumno: Realice la conexión de un banco de transformadores

Más detalles

Tema: Aplicaciones de hojas de cálculo y bases de datos para el estudio de parámetros eléctricos de los Sistemas de Potencia.

Tema: Aplicaciones de hojas de cálculo y bases de datos para el estudio de parámetros eléctricos de los Sistemas de Potencia. Tema: Aplicaciones de hojas de cálculo y bases de datos para el estudio de parámetros eléctricos de los Sistemas de Potencia. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas

Más detalles

Experimento Nº 1: El transformador monofásico y los sistemas trifásicos

Experimento Nº 1: El transformador monofásico y los sistemas trifásicos Curso: Laboratorio de Transformadores y Máquinas Eléctricas Experimento Nº 1: El transformador monofásico y los sistemas trifásicos I. Objetivo: Al finalizar este experimento, el estudiante estará en capacidad

Más detalles

Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. Academias Ingeniería Electromecánica

Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. Academias Ingeniería Electromecánica 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Máquinas Eléctricas Ingeniería Electromecánica EMC - 0523 4 2 10 2.- HISTORIA

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

PROGRAMA PROFESIONAL DE INGENIERÍA MECÁNICA : MÁQUINAS ELÉCTRICAS

PROGRAMA PROFESIONAL DE INGENIERÍA MECÁNICA : MÁQUINAS ELÉCTRICAS PROGRAMA PROFESIONAL DE INGENIERÍA MECÁNICA SÍLABO MÁQUINAS ELÉCTRICAS 1. DATOS INFORMATIVOS Asignatura : MÁQUINAS ELÉCTRICAS Código : 430502 Programa Profesional : INGENIERÍA MECÁNICA Semestre Académico

Más detalles

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas.

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas. Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. I. OBJETIVOS.

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Protección y Coordinación de Sistemas de Potencia. Tema: Transformadores de Instrumento.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Protección y Coordinación de Sistemas de Potencia. Tema: Transformadores de Instrumento. Tema: Transformadores de Instrumento. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Protección y Coordinación de Sistemas de Potencia. o o o o o Determinar la polaridad de los

Más detalles

PLANTAS EOLICAS DL WPP

PLANTAS EOLICAS DL WPP PLANTAS EOLICAS DL WPP Este entrenador permite a los alumnos estudiar las funciones y las operaciones de una turbina eólica moderna simulando los efectos de la fuerza del viento en el sistema. Este sistema

Más detalles

Figura 6.1: Modelo de Línea de Transmisión de Longitud Media. (a) Circuito nominal π. (b) Circuito nominal T.

Figura 6.1: Modelo de Línea de Transmisión de Longitud Media. (a) Circuito nominal π. (b) Circuito nominal T. Tema: Modelo de Línea de Transmisión PI con y sin efectos capacitivos. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Describir el funcionamiento

Más detalles

Carrera: ELC-0510 4-2-10. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELC-0510 4-2-10. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Conversión de la Energía I Ingeniería Eléctrica ELC-00 --0.- HISTORIA DEL PROGRAMA

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

Ejercicios. 4. Para el transformador del problema 2 repetir las partes (a) y (b) del problema 3.

Ejercicios. 4. Para el transformador del problema 2 repetir las partes (a) y (b) del problema 3. Ejercicios 1. Se usa un autotransformador elevador para suministrar 3 kv a partir de una línea de alimentación de 2,4kV. Si la carga del secundario es de 50 A, calcular (despreciando las pérdidas y la

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Tema: MOTOR CON DEVANADOS DAHLANDER. MOTOR DE DOBLE DEVANADO. I. OBJETIVOS. Conocer las características

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Control de motores eléctricos. 2. Competencias Desarrollar y conservar sistemas

Más detalles

SISTEMAS DE PROTECCIONES EN INSTALACIONES DE AUTOPRODUCTORES EN REGIMEN ESPECIAL A LA RED DE DISTRIBUCIÓN DE IBERDROLA

SISTEMAS DE PROTECCIONES EN INSTALACIONES DE AUTOPRODUCTORES EN REGIMEN ESPECIAL A LA RED DE DISTRIBUCIÓN DE IBERDROLA MT 3.53.02 Edición: 00 Fecha: Marzo, 2008 MANUAL TÉCNICO DE DISTRIBUCIÓN SISTEMAS DE PROTECCIONES EN INSTALACIONES DE AUTOPRODUCTORES EN REGIMEN ESPECIAL A LA RED DE DISTRIBUCIÓN DE IBERDROLA MT 3.53.02

Más detalles

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR Un transformador es un elemento que transfiere energía de un circuito a otro mediante inducción electromagnética. Es un dispositivo eléctrico que sirve para bajar

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

Cursos 2011 en Sistemas Eléctricos de Potencia

Cursos 2011 en Sistemas Eléctricos de Potencia Funken Ingenieros S. A. de C.V. presenta algunos de sus cursos de capacitación, y recuerde que si necesita un curso personalizado, en su empresa elija el temario, la fecha y la cantidad de horas, no dude

Más detalles

1. DATOS DE LA ASIGNATURA. Nombre de la asignatura Carrera Clave de la asignatura Especialidad

1. DATOS DE LA ASIGNATURA. Nombre de la asignatura Carrera Clave de la asignatura Especialidad 1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Especialidad (Créditos) SATCA Subestaciones Eléctricas Ingeniería Eléctrica GOC-1303 Generación y Operación de Sistemas

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

Carrera : Ingeniería Electromecánica SATCA 1 4-2 - 6

Carrera : Ingeniería Electromecánica SATCA 1 4-2 - 6 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Máquinas Eléctricas Carrera : Ingeniería Electromecánica Clave de la asignatura : EMJ-1017 SATCA 1 4-2 - 6 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

omprender el concepto del Factor de Potencia con respecto al comportamiento de circuitos reactivos capacitivos e inductivos.

omprender el concepto del Factor de Potencia con respecto al comportamiento de circuitos reactivos capacitivos e inductivos. Universidad Don Bosco Facultad de Ingeniería Escuela de Ingeniería Eléctrica Sistemas Eléctricos Lineales I Práctica No.9 Medición de Sistemas de Potencia y Factor de Potencia Objetivos: tilizar instrumentos

Más detalles

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i.

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i. CAULO 6 OENCA COMLEJA 6. NRODUCCON La potencia compleja (cuya magnitud se conoce como potencia aparente) de un circuito eléctrico de corriente alterna, es la suma (vectorial) de la potencia que disipa

Más detalles

CORRECCION del FACTOR de POTENCIA

CORRECCION del FACTOR de POTENCIA CORRECCION del FACTOR de POTENCIA Las cargas generan perturbaciones CARGA Armónicas Potencia Reactiva Cargas Asimétricas Flicker RED 2 Diferentes aspectos de la calidad de energía eléctrica Perturbaciones

Más detalles

CONEXIÓN EN MOTORES ELÉCTRICOS DE INDUCCIÓN TRIFÁSICOS CON ROTOR TIPO JAULA DE ARDILLA HASTA 600 VOLTIOS

CONEXIÓN EN MOTORES ELÉCTRICOS DE INDUCCIÓN TRIFÁSICOS CON ROTOR TIPO JAULA DE ARDILLA HASTA 600 VOLTIOS EN MOTORES ELÉCTRICOS DE INDUCCIÓN TRIFÁSICOS CON ROTOR TIPO JAULA DE ARDILLA HASTA 00 VOLTIOS INTRODUCCIÓN Este documento tiene como objetivo ilustrar las conexiones más frecuentes utilizadas en los motores

Más detalles

En un transformador, el núcleo tiene dos misiones fundamentales:

En un transformador, el núcleo tiene dos misiones fundamentales: Transformador El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA ELT 8.MEDICION DE ENERGIA ELECTRICA ACTIVA.- INTRODUCIÓN MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA La medición de energía eléctrica activa se realiza con el medidor de KWH de tipo inducción y con el medidor

Más detalles

Tema: Dispositivos de control de motores.

Tema: Dispositivos de control de motores. Tema: Dispositivos de control de motores. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Control Industrial. I. Objetivos. Que el estudiante: Conozca las diferentes partes de un contactor. Desarrolle

Más detalles

Carrera : Ingeniería Eléctrica SATCA 1 3-2 - 5

Carrera : Ingeniería Eléctrica SATCA 1 3-2 - 5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Instalaciones Eléctricas Industriales Carrera : Ingeniería Eléctrica Clave de la asignatura : ELF-1014 SATCA 1 3-2 - 5 2.- PRESENTACIÓN Caracterización

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I

UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I Reporte 1 INTEGRANTES FÉLIX SUÁREZ BONILLA A45276 FECHA DE ENTREGA JUEVES, 15 DE FEBRERO

Más detalles

NORMAS ESPECIALES PARA EL SISTEMA DE DISTRIBUCIÓN

NORMAS ESPECIALES PARA EL SISTEMA DE DISTRIBUCIÓN 1. OBJETO En la presente norma se definen las condiciones técnicas de la conexión de plantas de generación de energía eléctrica trifásica al Sistema de Distribución Local de Energía de las Empresas Públicas

Más detalles

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica

Electrotecnia. Tema: Motor eléctrico. Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Tema: Motor eléctrico Definición: o Motor eléctrico: Es una maquina que transforma la energía eléctrica en energía mecánica Principio de funcionamiento: Clasificación: 1. Energía eléctrica de alimentación

Más detalles

TEMA 2. ESQUEMAS ELÉCTRICOS (II)

TEMA 2. ESQUEMAS ELÉCTRICOS (II) TEMA 2. Esquemas eléctricos (II) 1 TEMA 2. ESQUEMAS ELÉCTRICOS (II) 1. SÍMBOLOS Y ESQUEMAS ELÉCTRICOS EN LAS NORMAS UNE EN 60.617...2 1.1. DISPOSITIVOS DE CONMUTACIÓN DE POTENCIA...2 1.1.1. Contactor...2

Más detalles

Tipos de Conexión de los Dispositivos de Protección contra Sobretensiones.

Tipos de Conexión de los Dispositivos de Protección contra Sobretensiones. Dispositivo de Protección contra Sobretensiones (SPD) Por Luis E. Mosquera Ingeniero de Especificación En las instalaciones eléctricas a menudo se presentan perturbaciones tales como las sobretensiones

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL Pág. 1 de 18 TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Máquinas eléctricas 2. Competencias Supervisar

Más detalles

a) Enclavamiento instalado para ser operado desde un punto con vista al equipo;

a) Enclavamiento instalado para ser operado desde un punto con vista al equipo; 12.- INSTALACIONES DE FUERZA 12.0.- EXIGENCIAS GENERALES 12.0.1.- Conceptos generales 12.0.1.1.- Se considerará instalación de fuerza a toda aquella instalación en que la energía eléctrica se use preferentemente

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 9: Máquinas síncronas PUNTOS OBJETO DE ESTUDIO 3

Más detalles

El coeficiente de acoplamiento k especifica el grado de acercamiento de la inductancia mutua al límite l

El coeficiente de acoplamiento k especifica el grado de acercamiento de la inductancia mutua al límite l Energía a en un circuito acoplado La energía a almacenada en un inductor es w = La energía a total instantánea nea almacenada en bobinas magnéticamente acopladas es El signo positivo se selecciona si ambas

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona

Máquinas eléctricas de corriente alterna. Capítulo 2 Máquina Asíncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 2 Máquina Asíncrona David Santos Martín CAPÍTULO 2 Máquina Asíncrona 2.1.- Introducción 2.2.-

Más detalles

Boletín Técnico. Guía para la elaboración de la memoria técnico descriptiva y de cálculo

Boletín Técnico. Guía para la elaboración de la memoria técnico descriptiva y de cálculo La memoria técnica descriptiva y de cálculo es un documento descriptivo con toda la información especializada para el conocimiento de un proyecto de instalación eléctrica, debe contener la descripción

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Tema: Procesamiento Matricial en Sistemas de Potencia interconectados. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Comprobar las ventajas

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Fundamentos de motores síncronos Contenidos Operación de un motor a tensión nominal y en vacío.

Más detalles

MEDICIONES ELECTRICAS

MEDICIONES ELECTRICAS índice SINCRONOSCOPIO INDICADOR DE SECUENCIA DE FASE RECTIFICADOR ESTATICO RESISTENCIA VARIABLE DOBLE CONMUTADOR MICROAMPERIMETRO MILLIAMPERIMETRO AMPERIMETRO VOLTIMETRO VOLTIMETRO FRECUENCIMETRO WATTMETRO

Más detalles

Tema conferencia: Educación y sistemas de Información Tipo: Resumen extendido

Tema conferencia: Educación y sistemas de Información Tipo: Resumen extendido DISEÑO DE UN PROTOTIPO DE BOBINA TESLA CON TENSIÓN DE OPERACIÓN PICO DE 280kV F. PINILLA, V. PINILLA Tutor del proyecto: S. P. LONDOÑO Universidad Distrital Francisco José de Caldas [Facultad Tecnológica]

Más detalles

13.- ANEXOS 13.1.- RECOMENDACIONES EN LA PROTECCIÓN SEGÚN IEE

13.- ANEXOS 13.1.- RECOMENDACIONES EN LA PROTECCIÓN SEGÚN IEE 13.- ANEXOS 13.1.- RECOMENDACIONES EN LA PROTECCIÓN SEGÚN IEE IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems Recognized as an IEEE Std 242-2001 American

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX I N D I C E 1.- Disposiciones Reglamentarias con respecto a la Corrección de Energía Reactiva.Generalidades.... 1 2.- Sobrecompensación de Energía Reactiva....

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 ELECTROTECNIA. CÓDIGO 148

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 ELECTROTECNIA. CÓDIGO 148 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 ELECTROTECNIA. CÓDIGO 148 Elige una de las dos opciones de examen siguientes (opción A u opción B). No pueden contestarse

Más detalles

Análisis del desempeño del reléanti-isla de un generador distribuido. C. R. Saldaña UTE

Análisis del desempeño del reléanti-isla de un generador distribuido. C. R. Saldaña UTE 1 Análisis del desempeño del reléanti-isla de un generador distribuido C. R. Saldaña UTE INTRODUCCIÓN 2 Un importante desafío en la actualidad es la utilización de generación no convencional como respuesta

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS INTRODUCCIÓN Para una mejor comprensión del problema que se plantea, partamos en primer lugar del circuito equivalente por fase del motor asíncrono trifásico.

Más detalles

Característica de Corriente Voltaje de un Módulo Fotovoltaico

Característica de Corriente Voltaje de un Módulo Fotovoltaico Característica de Corriente Voltaje de un Módulo Fotovoltaico I. Objetivos 1. Medir la relación característica de corriente y voltaje (I-V) de un Módulo PV usando una carga resistiva variable. 2. Entender

Más detalles

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS: I Utilizar el vatímetro análogo y el digital para medir la potencia activa absorbida por una puerta. II Repasar los fundamentos teóricos

Más detalles

I. DATOS DE IDENTIFICACIÓN. 2. Carrera (s): PROGRAMA HOMOLOGADO DE INGENIERIA 3. Vigencia del plan: 2003-1

I. DATOS DE IDENTIFICACIÓN. 2. Carrera (s): PROGRAMA HOMOLOGADO DE INGENIERIA 3. Vigencia del plan: 2003-1 UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA DEPARTAMENTO DE FORMACION BASICA DEPARTAMENTO DE FORMACION PROFESIONAL Y VINCULACION PROGRAMA DE ASIGNATURA POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN 1. Unidad

Más detalles

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas.

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas. PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B ELECTROTECNIA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: No se permitirá

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA LABORATORIO DE: TRANSFORMADORES Y MOTORES DE INDUCCIÓN. GRUPO: PROFESOR ALUMNO

Más detalles

Fundamentos físicos y conceptos básicos sobre sensores

Fundamentos físicos y conceptos básicos sobre sensores Fundamentos físicos y conceptos básicos sobre sensores Un sensor es un dispositivo para detectar y señalar una condición de cambio. Con frecuencia, una condición de cambio, se trata de la presencia o ausencia

Más detalles

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales:

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales: El circuito eléctrico Está formado por cuatro elementos fundamentales: Generador de corriente: pila. Conductor de la corriente: los cables. Control de la corriente: los interruptores. Receptores: bombillas,

Más detalles

Megger Megger Megger Megger Megger

Megger Megger Megger Megger Megger 5 Formas de ejecutar Ensayos en Transformadores de Intensidad/Corriente 5 veces mas Eficiente Washington Cabrera Gerente de Ventas para México Dallas, Texas, Estados Unidos Diego Robalino, PhD, PMP Octubre

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

Termistores NTC (Coeficiente Temperatura Negativo):

Termistores NTC (Coeficiente Temperatura Negativo): a) Señala las analogías y las diferencias entre ambos ciclos de funcionamiento. Analogías: los dos transductores basan su funcionamiento en la detección de la proximidad de un objeto. Diferencias: el transductor

Más detalles

5. Solución de Problemas

5. Solución de Problemas FLUID COMPONENTS INTL 5. Solución de Problemas Cuidado: Solo personal calificado debe intentar probar este instrumento. El operador asume toda la responsabilidad de emplear las practicas seguras mientras

Más detalles

CIGRÉ-MÉXICO BIENAL 2001

CIGRÉ-MÉXICO BIENAL 2001 COMITÉ MEXICANO 11-2 BIENAL IMPACTO DE LAS CORRIENTES DE SECUENCIA NEGATIVA EN LOS GENERADORES SINCRONOS INSTALADOS EN SISTEMAS INDUSTRIALES Edgar Robles* Oscar Reyes* Roberto Campuzano * Enrique Priego**

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Carrera: ELM-0524 3-2-8. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELM-0524 3-2-8. Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Instalaciones Eléctricas II Ingeniería Eléctrica ELM-0524 3-2-8 2.- HISTORIA DEL

Más detalles

Pontificia Universidad Javeriana-Cali Facultad de Ingeniería Departamento de Ciencias Naturales y Matemáticas-Área de Física

Pontificia Universidad Javeriana-Cali Facultad de Ingeniería Departamento de Ciencias Naturales y Matemáticas-Área de Física ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 7a CIRCUITO RC 1. INTRODUCCIÓN El condensador es un dispositivo de gran utilidad en circuitos eléctricos y electrónicos. Una de sus características

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN

SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN SISTEMAS ELÉCTRICOS PROBLEMAS DE MÁQUINAS DE INDUCCIÓN MQ_IND_1 El rotor de un generador síncrono de seis polos gira a una velocidad mecánica de 1200 rev/min. 1º Expresar esta velocidad mecánica en radianes

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d accés a la universitat Convocatòria 2014 Electrotecnia Serie 3 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva

Más detalles

CIRCUITOS ELECTRICOS I

CIRCUITOS ELECTRICOS I 1. JUSTIFICACIÓN. CIRCUITOS ELECTRICOS I PROGRAMA DEL CURSO: Circuitos Eléctricos I AREA: MATERIA: Circuitos Eléctricos I CODIGO: 3001 PRELACIÓN: Electricidad y Magnetismo UBICACIÓN: IV T.P.L.U: 5.0.0.5

Más detalles

MEDIDAS PARA PREVENIR ENERGIZACIONES INADVERTIDAS Y PROTECCIONES ESPECÍFICAS PARA ESTE EVENTO EN GENERADORES SÍNCRONOS

MEDIDAS PARA PREVENIR ENERGIZACIONES INADVERTIDAS Y PROTECCIONES ESPECÍFICAS PARA ESTE EVENTO EN GENERADORES SÍNCRONOS COMITÉ MEXICANO No 34 01 BIENAL 2001 MEDIDAS PARA PREVENIR ENERGIZACIONES INADVERTIDAS Y PROTECCIONES ESPECÍFICAS PARA ESTE EVENTO EN GENERADORES SÍNCRONOS Marco V. González Gómez Comisión Federal de Electricidad

Más detalles

Módulo de Aprendizaje 21: Arrancadores Estatóricos. Serie Básica 101

Módulo de Aprendizaje 21: Arrancadores Estatóricos. Serie Básica 101 Módulo de Aprendizaje 21: Arrancadores Estatóricos Serie Básica 101 Temario En este módulo, estudiaremos con detalles cada uno de estos temas: Arrancadores - Una Breve Reseña 4 Qué es el Arranque con Tensión

Más detalles

Objetivos. Equipo y materiales

Objetivos. Equipo y materiales Laboratorio Circuitos DC Experimento 3: Fuentes de Voltaje Objetivos Conectar fuentes de voltaje fotovoltaicas en serie, paralelo y serie paralelo Medir corriente de carga en circuitos con fuentes de voltaje

Más detalles

PARALELO DE TRANSFORMADORES

PARALELO DE TRANSFORMADORES GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 2 PARALELO DE TRANSFORMADORES 1. Objetivos Estudio teórico y práctico de las condiciones que se deben cumplir para realizar el conexionado en paralelo de dos

Más detalles

Unas cuantas palabras acerca de los alternadores trifásicos

Unas cuantas palabras acerca de los alternadores trifásicos Rincón Técnico Unas cuantas palabras acerca de los alternadores trifásicos Autores: El contenido de este artículo fue tomado del Electrical Engineering Portal Elaboración técnica: Esta publicación ha sido

Más detalles

Eficiencia energética. Corrección del factor de potencia

Eficiencia energética. Corrección del factor de potencia Madrid 24 octubre 2012 IFEMA Auditorio Sur Eficiencia. Corrección del factor de potencia Juan Manuel Antúnez Castillo Índice 1 DEFINICIONES 2 MEJORA DEL FACTOR DE POTENCIA 3 CONDENSADORES 4 CORRECCIÓN

Más detalles

Con el fin de limitar la corriente de falla de los sistemas eléctricos de los centros de producción de Pemex, es

Con el fin de limitar la corriente de falla de los sistemas eléctricos de los centros de producción de Pemex, es Equipos Eléctricos Transformadores y equipo de subestación Evaluación del equipo eléctrico de potencia del Complejo Procesador de Gas (CPG) Ciudad Pemex Con el fin de limitar la corriente de falla de los

Más detalles

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA Introducción En la gran mayoría de las industrias, hoteles, hospitales, tiendas departamentales, etc. existen gran cantidad de motores; en equipo

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010 DPARTAMNTO D NGNRÍA LÉCTRCA BOLTÍN D PROBLMAS TRANSFORMADOR 009/010 TRANSFORMADORS Problemas propuestos 1. Dibujar un diagrama vectorial para un transformador monofásico cargado y con relación de transformación

Más detalles

Dr. José Sebastián Gutiérrez Calderón Profesor Investigador Universidad Panamericana

Dr. José Sebastián Gutiérrez Calderón Profesor Investigador Universidad Panamericana ó Dr. José Sebastián Gutiérrez Calderón Profesor Investigador Universidad Panamericana 1 Respeto al compañero, al profesor y a la UP Participación en clase Trabajo en Equipo 2 Expulsión de la Asignatura

Más detalles

NORMA DE DISTRIBUCIÓN N.MA.00.02/0 SÍMBOLOS GRÁFICOS PARA DIAGRAMAS DE ESTACIONES FECHA: 13/10/04

NORMA DE DISTRIBUCIÓN N.MA.00.02/0 SÍMBOLOS GRÁFICOS PARA DIAGRAMAS DE ESTACIONES FECHA: 13/10/04 NORMA DE DISTRIBUCIÓN N.MA.00.02/0 SÍMBOLOS GRÁFICOS PARA DIAGRAMAS DE ESTACIONES FECHA: 13/10/04 I N D I C E 0.- REVISIONES... 1 1. - OBJETO... 1 2. - CAMPO DE APLICACIÓN... 1 3. - DEFINICIONES... 1 N...

Más detalles

Controlador para Bomba Auxiliar de Compensación de Presión

Controlador para Bomba Auxiliar de Compensación de Presión Hubbell Industrial Controls, Inc. Una subsidiaria de Hubbell Incorporated 4301 Cheyenne Dr. Archdale, NC 27263 HUBBELL Teléfono (336) 434-2800 FAX (336) 434-2803 Manual de Instrucciones Controlador para

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

6. Controlador del Motor

6. Controlador del Motor 6. Controlador del Motor 82 6.1 Introducción: El controlador es el dispositivo encargado de controlar el motor, dependiendo de las señales que le llegan a través del programador de mano y las señales provenientes

Más detalles

CONVERTIDOR DE FASES PRISMA La vanguardia e innovación tecnológica que caracteriza a nuestro convertidor de fases PRISMA, fabricado por IUSA, proporciona al mercado una nueva y más eficiente opción en

Más detalles

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Máquinas Eléctricas I y Lab.

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Máquinas Eléctricas I y Lab. Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: Máquinas Eléctricas I y Lab. Carácter Semestre recomendado Obligatorio 6o. Sesiones Créditos Antecedentes

Más detalles

CAPÍTULO 5 MEDICIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO 5 MEDICIÓN DE ENERGÍA ELÉCTRICA 1 de 5 5.1 Consideraciones generales CAPÍTULO 5 En Colombia la Energía Eléctrica se factura teniendo en cuenta la energía activa y la energía reactiva. De acuerdo con la ley, el cliente que tenga un factor

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS

CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS CARACTERÍSTICAS OPERACIONALES DE LAS TURBINAS EÓLICAS Comportamiento en una Granja Eólica Estela de la turbina Turbulencia Déficit de velocidad Consecuencia de la estela de la turbina Pérdidas de conjunto

Más detalles