Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009"

Transcripción

1 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Una aria rctina y uniform, d masa m y ongitud ca ibrmnt n posición horizonta. En instant n qu su ocidad s, a aria gopa ásticamnt bord d una cuchia rgida y fija. a) Dtrminar stado d moiminto d a aria inmdiatamnt dspués d gop. b) Cacuar a prcusión sobr a aria. c) Dtrminar cambio qu xprimnta a nrga cinética d a aria. cuchia m, a) Durant procso impusio, a aria stá somtida a una prcusión xtrna n su xtrmo izquirdo, por o qu no s consran ni su cantidad d moiminto, ni su nrga cinética. Apicamos as cuacions cardinas d a dinámica impusia, tomando momntos n c.m. d a aria, y as diidimos m.a.m. para iminar Π: ì- P = m ( - ) w - = + = w () m.a.m. P = m ( w-) - î Apicamos a ga d Huygns-Nwton con = (coisión prfctamnt ástica), sindo A a ocidad d punto A d a aria inmdiatamnt dspués d a coisión y obtnmos dicha ocidad a partir d a d cntro d masa C d a aria: ì A =- A = -w î - w =- - w =- () somos sistma d cuacions () y (): A m, C ì + w = ì =.5 8 = 3 m.a.m. - =- + w w = î + b) La prcusión qu rcib a aria s igua a cambio qu xprimnta su cantidad d moiminto. Cacuamos a Π m, ω + prcusión a partir d a primra c. d () n a qu A sustituimos os rsutados antriors: P =-m ( - ) =-m(.5- ) = m (hacia arriba) c) Variación d a nrga cinética: ì ì E = m Δ E = E- E =- m Δ æ æ æ3 = E E m =-.5 =-5% + m = + ç = èç w m m èç øèç m î î E d modo qu a pérdida d nrga cinética rprsnta 5% d a inicia. î Otro Método. Consración d momnto anguar n A: æ m = m + ç m w = + çè w () Dpartamnto d sica Apicada E.T.S.I.A.M. Unirsidad d Córdoba Cración: 9/3/9 - isión: //9 - Imprsión://9

2 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Un piar d hormigón armado, d scción cuadrada y m d atura, db soportar una carga, a comprsión pura, d 55 t. S sab qu % d ára d a scción cuadrada d piar stá ocupado por os rdondos (arias cindricas, ongitudinas) d y rsto por hormigón n masa. Las caractrsticas máximas d trabajo prmitidas y os móduos d Young tinn os aors siguints: σ máx ( N/mm ) E ( N/mm ) hormigón 5 3 a) Cacuar a dformación ongitudina máxima qu pud soportar piar. b) Dtrminar ado d a scción cuadrada d piar. c) Sindo cuatro os rdondos d d a armadura d hormigón, dtrmns diámtro d cada uno d os. Datos: 3 55 ton = =.5 N ; N/mm = N/m a) Las dformacions máximas xprimntadas n as condicions crticas d trabajo son hormigón: : max H max s -5 = = =-.83 EH 3 s - = = =- E max H max a Como max < H max, y ambos matrias xprimntan a misma dformación, tndrán mit d más crtico; i.., máx máxh - Δ = máx máx =-.83 m =-8.3 mm = =-.83 b) La carga soportada por cada uno d os matrias srá H =.9 S EH ü ý H + = (.9 EH +. E ) S =-.5 =. S E þ -.5 S = = 383 mm 7 + (-.83 ) a = 383 = 53 mm c) La scción d srá % d a d piar S = 383mm y cada uno d os cuatro rdondos tndrá una scción d S rdondo = mm r=.3 mm Æ=. mm Dpartamnto d sica Apicada E.T.S.I.A.M. Unirsidad d Córdoba Cración: 9/3/9 - isión: //9 - Imprsión://9

3 undamntos sicos d a Ingnira Sgundo Parcia / abri 9 3. Un pénduo compusto stá constituido por una aria (masa m, ongitud ) sodada a una sfra (masa 5m, radio ), ta como s indica n a figura. a) Dtrminar a ongitud d pénduo simp quiant, a frcuncia y priodo d as pquñas osciacions. b) Marcar n un squma gráfico as posicions d os puntos notabs d pénduo (cntro d gradad, cntro d osciación,...) Datos: momnto d inrcia d una sfra, m / 5 m 5m Locaizamos cntro d gradad (G) d pénduo: + m 5m 5 7 OG = h= = =.5 m Mdiant torma d Stinr, cacuamos momnto d inrcia d a sfra con rspcto a j d rotación n O y, ugo, d pénduo compto: 5 5 (5 ) 5 7 IO,sf = m + m = + m = m IO = IO,ar + IO,sf = m + 7m = m = La ongitud rducida d pénduo s: I O 397 m / = = = = mpéndh m( 7 /) 8.9 E cntro d osciación (O, conjugado d O) stá situado a una distancia h' = - h=.9-.5 =. por dbajo d cntro d gradad G. La frcuncia y priodo d as pquñas osciacions srán: g 8g g w = = = T = p = 3.9 8g g h h O G G O G Dpartamnto d sica Apicada E.T.S.I.A.M. Unirsidad d Córdoba Cración: 9/3/9 - isión: //9 - Imprsión://9

4 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Un ton d comptamnt no d ino (d dnsidad,.9 g/3) tin as dimnsions qu s indica n a figura y stá tumbado n a bodga. Cacuar mpuj qu jrc ino sobr cada una d as tapas d ton y dtrminar a posición d cntro d prsions sobr as mismas mdidas rspcto a cntro d as tapas. x x Cácuos prios Mdimos as profundidads a partir d j xx indicado n a figura. E cntro gométrico (cntroid) d a tapa s h c ncuntra a una profundidad h c =. D D h cp Dtrminamos momnto d ára d r a tapa con rspcto a j DD (Torma Ejs Prpndicuars): y IDD = I = Sr IDD = Sr Ahora, mdiant Torma d Stinr, dtrminamos momnto d ára d a tapa rspcto a j xx dfinido n a figura: æ æ = I xx I xx IDD + S = Sr + S = r + = + çè S r ø S çè La furza rsutant sobr a tapa srá c = ( rgh ) S = rg pr = prgr La profundidad a a qu s ncuntra cntro d prsions s dtrmina mdiant torma d cntro d prsions: c æ Ixx / S c cp = cp= = r hh S Ixx h ç r + = + çè h ø O bin, mdida rspcto a cntro d a tapa: d - = r Sustituyndo os aors numéricos s obtin: = p = 957 N = 5 kg.5 d = =.893 m = Dpartamnto d sica Apicada E.T.S.I.A.M. Unirsidad d Córdoba Cración: 9/3/9 - isión: //9 - Imprsión://9

5 undamntos sicos d a Ingnira Sgundo Parcia / abri 9 5. E géisr Od aithfu (Yowston Park) xpusa priódicamnt un chorro d agua qu acanza una atura d hasta m. a) Dtrminar a ocidad d agua n a bas d chorro. b) Cacuar a prsión manométrica qu db xistir n intrior d géisr, a una profundidad d m, para qu puda proyctar agua hasta sa atura. a) Apicamos Brnoui d a 3: p + rgz + r = p + rgz = g z - z atm atm 3 3 d modo qu = g z - z = 9.8 = 8 m/s =.8 km/h 3 m 3 b) Apicamos Brnoui d a 3: p+ rgz+ = patm + rgz3+ p- patm = rg z3- z m d dond p - p = rg z - z = = atm 3.37 atm 3. atm = = Pa Dpartamnto d sica Apicada E.T.S.I.A.M. Unirsidad d Córdoba Cración: 9/3/9 - isión: //9 - Imprsión://9

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

ÍÒ Ú Ö ÇÚ Ó Ô ÖØ Ñ ÒØÓ ÁÒ Ò Ö Ð ØÖ Ð ØÖ ÓÒ ÓÑÔÙØ ÓÖ Ý Ë Ø Ñ Å ÑÓÖ Ô Ö Ð Ó Ø Ò ÓÒ Ð Ö Ó ÓØÓÖ ÁÒ Ò ÖÓ ÁÒ Ù ØÖ Ð ÈÄ ÆÁ Á Á ÇÆ Ä ÅÇÎÁÅÁ ÆÌÇ Î À Á ÍÄÇË ÍÌ ÇÆÇÅÇË Ë Æ Ë ÆËÇÊ Ë ÂÙ Ò ÖÐÓ ÐÚ Ö Þ ÐÚ Ö Þ ÓÒ Ë ÔØ

Más detalles

ÍÒ Ú Ö ÈÓÐ Ø Ò Å Ö ÙÐØ ÁÒ ÓÖÑ Ø ÌÖ Ó Ò ÖÖ Ö Ø Ò Ý ØÖ Ù Ò ÔÐ ÓÒ Ò Ö Ò ÇÖ Ò Þ ÓÒ CERN-THESIS-2001-022 01/05/1998 ÌÙØÓÖ ÈÖÓ º Öº Â Ö Ó Ä Ö ÙØÓÖ ÖÑ Ò Ò Ó Å Ð Ö Ñ ÒØÓ Ó ÑÔ Þ Ö Ò Ó Ð Ö Ð ÈÖÓ ÓÖ Öº Â Ö Ó ÔÓÖ

Más detalles

Ê Ú Ø ÓÐ Ú Ò ß½¼½ ¾¼¼¾µ ¼ ÆÇË Ä ÍÆ Á ÇÆ Ä Ä ÇÊ ÌÇÊÁÇ ÁËÁ ÇËÅÁ Ä ÅÇÆÌ À ÄÌ º Ä Ä ÍÆÁÎ ÊËÇ ÁÒ Ø ØÙØÓ ÁÒÚ Ø ÓÒ ÍÒ Ú Ö Å ÝÓÖ Ë Ò Ò Ö Ä È Þ¹ ÓÐ Ú Ê ËÍÅ Æ À ¼ ÒÓ Ö Ó Ó ÐÑ ÒØ Ð Ä ÓÖ ØÓÖ Ó Ó Ñ ÐØ Ý Ô Ò ÒØ Ð ÍÒ

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1 E Enigma d Radio d Carga d Nutrino Luis G. Cabra Rostti Dpartamnto d Física d Atas Enrgías, ICNUNAM. E Enigma d Radio d Carga d Nutrino p.1 Pan d a Chara: 1. Introducción 2. Factors d forma d Nutrino 3.

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

ÁÒÓÖÑ Ø ØÖº ÐÑÒØÓ ÔÖÓÔÙØÓ º ÊÐ ÑÞ ÅÖÒ Ý ÒÖ ËÖ ÊÑÖÞ ÔÙÐÓ ÔÓÖ Ð ÓÒÓ ØÓÖÐ Ð ÍÒÚÖ ÁÌ ¾¼¼¾º ÆÙ ØÖÓ ØÜØÓ Ø ÓØÓº Ä ÚÖ Ò ÕÙ Ù Ø Ø ÐÝÒÓ ÓÖÖ ÔÓÒ ÙÒ Öѹ ÔÖ Ò ÔÖ Ð Ï Ò Ð ÙÐ ÑÓ ÖÐÞÓ ÐÙÒ ÓÖÖÓÒ ÕÙ ÖÒ ÒÙ ØÖÓ ÓÒÓÑÒØÓº

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

ÍÆÁÎÊËÁ ÈÇÄÁÌ ÆÁ ÌÄÍ Æ ÈÖÓÖÑ ÓØÓÖÓ ÍÌÇÅÌÁÁ ÇÆ ÎÆ ÊÇ ÇÌÁ Ì ÓØÓÖÐ ËÌÊÌÁË ÇÆÌÊÇÄ ÈÊ ËÁËÌÅË ÁÄÁÆÄË ÈÄÁÇË ÄÇË ÇÆÎÊÌÁÇÊË ÈÇÌÆÁ ߺ ÅÙÖÓ Ö ØÒº ÖØÓÖ ÀÖØØ ËÖßÊÑÖÞ ÁÒ ØØÙØÓ ÇÖÒÞÓÒ Ý ÓÒØÖÓÐ Ë ØÑ ÁÒÙ ØÖÐ º ÑÖÞÓ Ð ¾¼¼¼

Más detalles

Cálculo de Obras de Drenaje Trasversal de Carreteras

Cálculo de Obras de Drenaje Trasversal de Carreteras Cálculo d Obras d Drnaj Trasvrsal d Carrtras Víctor Flórz Casillas Ingniro d Caminos, Canals y Purtos Dirctor dl Dpartamnto d Prsas y Obras Hidráulicas d FCC CONSTRUCCIÓN, S.A. VFlorz@fcc.s Batriz Iturriaga

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

TRAZADO Y DISEÑO DE CARRETERAS. Categoría de la ruta. Velocidad de proyecto Pendiente máxima 8% Tangente mínima Ancho de pista 7 Curva de transición

TRAZADO Y DISEÑO DE CARRETERAS. Categoría de la ruta. Velocidad de proyecto Pendiente máxima 8% Tangente mínima Ancho de pista 7 Curva de transición . DATOS GENERAES DE PROYECTO Categoría de la ruta III Topografía del área Montañoso Velocidad de proyecto 40 Km/h Pendiente máxima 8% Tangente mínima 40m Ancho de pista 7 Curva de transición P/R

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

λ ± «½ -² Òf èçèñïì ßÍÛÍÑÎ ß ÖËÎ Ü Ýß Ú»½ ¼» ß ±¾ ½ -²æ ïðñíñîðïì Ò ±ò ¼» Û»¼»²»ææ êìíðóððððêëóïï Ì»³ æ Ü ÙÛÍÌÑ Î» «³»²æ Í» ¼» ²»º»½ ±» Ì3 «± È Ê þü» Ü ± ½ ±²» Û»½» Ð ±»½ ± ß½±²¼ ½ ±² ³»² ± Ë ¾ ²± л

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

Equilibrio de fases en sistemas mul2componentes. Dr. Abel Moreno Cárcamo Ins3tuto de Química, UNAM carcamo@unam.mx / abel.moreno@mac.

Equilibrio de fases en sistemas mul2componentes. Dr. Abel Moreno Cárcamo Ins3tuto de Química, UNAM carcamo@unam.mx / abel.moreno@mac. Equiibrio de fases en sistemas mu2componentes Dr. Abe Moreno Cárcamo Ins3tuto de Química, UNAM carcamo@unam.mx / abe.moreno@mac.com DIAGRAMAS DE FASE DE SISTEMAS DE DOS COMPONENTES Un sistema de dos componentes

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Técnica de grabado químico Graduación profunda en el materia. Contraste perfecto. Resistencia al desgaste y a los productos químicos.

Técnica de grabado químico Graduación profunda en el materia. Contraste perfecto. Resistencia al desgaste y a los productos químicos. Rlas y rltas Rlas y rltas UNA ESPECAA ACOM, UN SAVOR ARE RGUROSO ominio d la fabricación sd 1918, la fabricación d las rltas s raliza n nustras fábricas d rancia. Elcción riurosa d las matrias primas para

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

EJEMPLO PRÁCTICO Nº 16: Cálculo de una cercha de cordones paralelos

EJEMPLO PRÁCTICO Nº 16: Cálculo de una cercha de cordones paralelos Construccions Mtáicas d Madra EJEMPLO PRÁCTICO Nº 6: Cácuo d una crcha d cordons paraos En st jmpo s pondrá cácuo d as sccions d una crcha tipo How d cordons paraos, sgún s mustra n a figura. Las barras

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

núm. 51 martes, 15 de marzo de 2016 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 51 martes, 15 de marzo de 2016 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2016-01360 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Bass para rgular

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

MANUAL DE LRFD PARA CONSTRUCCIONES DE MADERA

MANUAL DE LRFD PARA CONSTRUCCIONES DE MADERA MANUAL DE LRFD PARA CONSTRUCCIONES DE MADERA CAPÍTULO 1 Rquisitos Gnrals 1.1 Alcanc Esta norma proporciona critrios d disño para structuras construidas con madra asrrada d grado structural, madra laminada

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

Bases Físicas y Químicas del Medio Ambiente 2004/2005. Hoja 9 Corregida Área de Química-Física. Universidad Pablo de Olavide- pág.

Bases Físicas y Químicas del Medio Ambiente 2004/2005. Hoja 9 Corregida Área de Química-Física. Universidad Pablo de Olavide- pág. Bases Físicas y Químicas de Medio Ambiente 2004/2005. Hoja 9 Corregida Área de Química-Física. Uniersidad Pabo de Oaide- pág. 1 71. Apicamos Ley de Henry: C=K h.p 1º De os datos de soubiidad a P N2 = 1bar

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

FECHA NUMERO RAE INGENIERÍA AERONÁUTICA

FECHA NUMERO RAE INGENIERÍA AERONÁUTICA FECHA NUMERO RAE PROGRAMA AUTORES TITULO INGENIERÍA AERONÁUTICA CORPUS SJOGREEN, Fidl; LUNA ZAPATA, Francisco y SÁNCHEZ LEÓN, Francisco DESARROLLO DE UN PROGRAMA PARA EL CALCULO DE ESFUERZOS EN AERONAVES

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalras scamotabls AET 3 ISO madra 3 tramos 3 NORM 8/2 ISO madra 2 tramos 3 EM-3 ISO lacada 3 tramos 4 K-4 mtálica galvanizada 4 tramos 4 Escalras d tijra

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

FLUIDOS IDEALES EN MOVIMIENTO

FLUIDOS IDEALES EN MOVIMIENTO FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de

Más detalles

a) Fragmentos de texto resaltado por 4 usuarios hipotéticos. b), c) y d) Areas relevantes para el 100%, 75% y 50% de los usuarios respectivamente.

a) Fragmentos de texto resaltado por 4 usuarios hipotéticos. b), c) y d) Areas relevantes para el 100%, 75% y 50% de los usuarios respectivamente. ÍÒ ÈÐ Ø ÓÖÑ ÓÐ ÓÖ Ø Ú Ê ÙÔ Ö Ò ÁÒ ÓÖÑ Ò Åº Î ÐÐ ÖÖÓ Ð Ý Èº Ð Ù ÒØ Ý ºÈ Ö ÖÓ Þ ÂºÎ Ý Âº Ó Ý Ý Ô ÖØ Ñ ÒØÓ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö Î ÐÐ ÓÐ ÑÔÙ Å Ù Ð Ð ¼½½ Î ÐÐ ÓÐ Ô ¹Ñ Ð ßÑÚ ÐÐ ÖÖÓ Ð Ô Ù ÒØ Ú ÓÐÐ Ò ÓÖºÙÚ º Þ Ù Ð

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Intuitivo y versátil.

Intuitivo y versátil. Intuitivo y vrsátil. Procdiminto fácil intuitivo Navgación rápida y lógica controlada fácilmnt con l pdal. La pantalla LCD d fácil lctura ayuda a idntificar l ratio dl contra-ángulo, la vlocidad d frsado,

Más detalles

Calderas murales a gas

Calderas murales a gas Cadras muras a gas Nuva gnración d cadras muras d condnsacion wifi. Con conxión via wifi dsd Smart Phon, Tabt o PC BLUEHELIX TECH WIFI. Intrcambiador d Pacas. Microacumuación Enrgy-ratd Products ata ficincia

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Códigos HTML - Caracteres y símbolos

Códigos HTML - Caracteres y símbolos Códigos HTML - Caracteres y símbolos Tabla de ASCII estándar, nombres de entidades HTML, ISO 10646, ISO 8879, ISO 8859-1 alfabeto romano numero 1 Soporte para browsers: todos los browsers 32 33 34 35 36

Más detalles

Geometría Plana. Moisés Villena Muñoz

Geometría Plana. Moisés Villena Muñoz NGULOS OPUESTOS POR EL VÉRTICE NGULOS LTERNOS INTERNOS, LTERNOS EXTERNOS, CORRESPONDIENTES FIGUR PLN 4 TRIÁNGULOS 5 CUDRILTEROS 6 FIGURS CIRCULRES La trigonometría con a están íntimamente reacionadas.

Más detalles

EL PÉNDULO SIMPLE. Laboratorio de Física General Primer Curso (Mecánica) 1. Objetivo de la práctica. 2. Material. Fecha: 07/02/05

EL PÉNDULO SIMPLE. Laboratorio de Física General Primer Curso (Mecánica) 1. Objetivo de la práctica. 2. Material. Fecha: 07/02/05 Laboratorio de Física Genera Primer Curso (Mecánica) EL PÉNDULO SIMPLE Fecha: 07/02/05 1. Objetivo de a práctica Estudio de pénduo simpe. Medida de a aceeración de a gravedad, g. 2. Materia Pénduo simpe

Más detalles

ASCII "American Standard Code for Information Interchange" (Código Standard Norteamericano para Intercambio de Información).

ASCII American Standard Code for Information Interchange (Código Standard Norteamericano para Intercambio de Información). ASCII "American Standard Code for Information Interchange" (Código Standard Norteamericano para Intercambio de Información). Este código fue propuesto por Robert W. Bemer, buscando crear códigos para caracteres

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalra scamotabl Modlo ET 3 IO madra 3 tramos Escalras scamotabls ET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 3 EM-3 IO lacada 3 tramos 4 K-4 mtálica

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

2. MATERIALES 2.1. ENSAYO DE TRACCIÓN

2. MATERIALES 2.1. ENSAYO DE TRACCIÓN DTO. INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES 24 V. BADIOLA 2. MATERIALES 2.1. ENSAYO DE TRACCIÓN En e ensayo de tracción a una probeta se e apica una carga uniaxia. En cada instante se mide a carga

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS Vagón d rrnia Ltras índi a on bogis part suprior ( a ) part inrior ( a ) on 3 unidads on 4 ó más unidads (xlusivamnt a través dl túnl) (xlusivamnt

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles