CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR"

Transcripción

1 CAPITULO 3 : UN INDICADOR PARA MEDIR VALOR Valor s la prcpción d bnficio o utilidad qu da un bin a una prsona (vr capítulo 1). En invrsions l valor sta dado por l dinro futuro qu gnra un capital n l día d hoy; d ahí la importancia d tnr mdidors d valor n las mprsas para qu l invrsor puda tomar una dcisión d dond colocar su dinro. En otros términos sto significa qu l valor sta íntimamnt ligado con la toma d dcisions: una prsona adquir o no un producto si st l gnra valor, d la misma forma un invrsionista aporta capital n una mprsa si sta gnra flujos d caja sucifintmnt altos para l. 3.1 Dfinición dl La rlación P/E, también conocida como (PRICE EARNINGS RATIO) mid cómo valora l mrcado, s dcir los invrsionistas, las ganancias gnradas por la mprsa; n otras palabras, l númro d vcs qu valora l mrcado las utilidads qu producirá la mprsa. Por jmplo, si l prcio d una acción s d $ y las utilidads por acción son d $500, significa qu l mrcado valora 20 vcs las utilidads qu gnra la mprsa; si n lugar d $ l valor d la acción fura d $12.000, l sría d 24 (12.000/500). s dfin d la siguint manra: Prcio d t odas l as a c cions U tilidads o altrnativamnt d la siguint forma: Prcio unitario d l a a c cion U tilidad p o r a c cion D lo antrior surg la prgunta pro Qué prcib l mrcado como gnración d valor? Una prsona cuando invirt n una mprsa una cantidad dtrminada d dinro, spra obtnr una rntabilidad la cual s pud mdir por la Rntabilidad sobr l patrimonio o ROE (Rtorn on quity), xprsado así: - 1 -

2 ROE = Rntabilidaddlpatrimonio = Utilidadnta Patrimonio Dl ROE gnrado por la invrsión, la mprsa rtin una cantidad para rinvrtirlo y l rmannt lo rpart n forma d dividndos. Pro, Qué spra l accionista? El invrsionista sab qu toda mprsa tin su propio risgo n rlación con l mrcado qu s dnomina risgo sistmático l cual no s posibl d divrsificar porqu dpnd d cada mprsa. Si st valor s multiplica por la prima d risgo, qu s calcula por la difrncia ntr la rntabilidad dl mrcado y la tasa libr d risgo, s dtrmina la tasa d risgo d la mprsa(vr capitulo #2). Es dcir, Risgo mprsa x = dond, ( i i ) β mprsa x mrcado libr d risgo i mrcado = Rntabilidad dl mrcado i libr d risgo = Tasa d intrés libr d risgo Pro para podr valorar su invrsión hoy, l invrsionista adicionalmnt a su tasa d oportunidad ncsita otro lmnto qu srian los dividndos qu s pagaran n l futuro, con stos dos factors s pud valorar la invrsión hoy. En l punto siguint s dtallan stos dos factors rntabilidad sprada y flujo d dividndos. 3.2 Factors rlacionados dirctamnt con l Como s xprso antriormnt todo invrsionista spra un rtorno d su dinro s dcir una Rntabilidad sobr l patrimonio (ROE), pro toda invrsión tin un risgo l cual pud sr mdido a travs dl indicador BETA. (Vr capítulo 2) El invrsionista tin dos lmntos para valorar la mprsa; l primro s l flujo d dinro d la mprsa para canclar los dividndos, s dcir, l dinro no rtnido dl ROE gnrado; y l sgundo, s la tasa sprada d la invrsión calculada con bas n l modlo CAPM. D la combinación d stos dos lmntos, dividndos y rntabilidad sprados, valora la mprsa, y como conscuncia l prcio d la acción n l mrcado sub o baja

3 Lo antrior pud rsumirs n l siguint gráfico: Gráfico N 1 Elmntos d gnración d valor n las accions Funt: 1 En l gráfico pud vrs claramnt qu una vz calculado l ROE qu gnró la mprsa o l sprado, la junta dirctiva db dfinir d acurdo con su política d dividndos qué porcntaj dl ROE s rinvrtirá; d sta dcisión s dfinn los dividndos a rpartir (part suprior dl gráfico). Por otra part, los invrsionistas d acurdo con la tasa libr d risgo dl mrcado y d la prima d risgo xigida (part infrior dl gráfico) calculan la rntabilidad sprada (Modlo CAPM); con bas n stos dos factors (dividndos y rntabilidad sprados), l invrsionista valora la invrsión, s dcir, dfin l valor d mrcado, lo cual s pud hacr utilizando los modlos d matmáticas financiras d prptuidads. a) Dividndos Uniforms Prptuos Est modlo supon qu l invrsionista va a rcibir dividndos uniforms priódicos indfinidamnt; s dcir, la invrsión s raliza n una acción a un prcio P sobr la cual s va a rcibir un ingrso priódico d a prptuidad. Para dtrminar la rntabilidad s rcurr a Prptuidads n matmáticas financiras dfinido d la siguint manra: 1 Frnándz Pablo. Valoración d mprsas. Gstión Página

4 P = d K sindo K la rntabilidad sprada d la acción b) Dividndos con incrmntos priódicos n una cantidad g Cuando los dividndos por acción d una mprsa, s incrmntn n una cantidad g n cada príodo, l cálculo dl prcio d la acción s dtrmina mdiant la formulación d gradint aritmético 2 P = ( ) ( d+ g) + d+ g + 4dg 2 K 2 dond, d = dividndos por acción g = cantidad priódica d crciminto P = prcio d la acción n l mrcado K = Rntabilidad sprada por acción c) Dividndos con incrmntos priódicos n un porcntaj constant Cuando los dividndos por acción d una mprsa s incrmntn priódicamnt un porcntaj j, s l cálculo dl prcio d la acción s dtrmina mdiant la formulación d gradint gométrico. d K = P + g K d g = P d P = K g dond, d = dividndos por acción g = incrmnto priódico porcntual dl dividndo por acción P = prcio d la acción n l mrcado 2 Rosillo, Jorg. Matmáticas financiras y dcisions d invrsión. Pág

5 Tnindo n cunta la dfinición d dada inicialmnt, Prcio d t odas l as a c cions U tilidads y dfinindo las siguints variabls, M n = prcio d todas las accions n l mrcado n l príodo n U n+1 = utilidads spradas n l siguint príodo D n+1 =dividndos sprados n l siguint príodo g = porcntaj d crciminto constant K = rntabilidad sprada d la acción p = Porcntaj d rpartición d dividndos s obtin lo siguint, N 1) M n Un +1 (Ecuación Utilizando la dfinición d prptuidads con crciminto g s tin: M n = Dn+1 K g (Ecuación N 2) p D Un + 1 = n+ 1 (Ecuación N 3) Dspjando l dnominador d la cuación N 3 s obtin lo siguint: Dn+ 1 U = n+ 1 p (Ecuación N 4) - 5 -

6 Rmplazando las cuacions 2 y 4 n la cuación N 1 s tin: Dn+ 1 K g Dn+ 1 p Simplificando s tin: p K g (Ecuación N 5) D otro lado la xprsión ROE Utilidadsprada dlpriodon Valor accionsn l mrcadopriodo = +1 pud rprsntars con la simbología prvia así: n ROE U n+1 = Mn (Ecuación N 6) Si g = ROE(1 p), s tin: g = ROE ROE(p) ROE(p) = ROE g D dond p ROE = g ROE (Ecuación N 7) Rmplazando la cuación N 7 n la N 5, s tin: - 6 -

7 ROE g ROE K g D acurdo con lo antrior, l pud sr dfinido d la siguint forma: ROE g ROE K ( g) sindo g, l porcntaj dl ROE qu s rtin n la mprsa y qu va gnrar su crciminto n l(los) siguint(s) priodo(s) y qu s dfinió d la siguint forma: g= ROE( 1 p) dond p, s l coficint d rparto d los dividndos y qu s dfin así: p = Dividndos Utilidads 3.3 Análisis dl Como todo indicador s ncsario dtrminar las causas qu originan su variación para podr hacr un diagnóstico adcuado d la mprsa; l primr análisis s fctuará con bas n los componnts inicials d la formula dducida dl, postriormnt, s ralizará una dscomposición dl, para finalmnt tnr un análisis total y sacar las conclusions corrspondints. Caso N 1: ROE < K Supóngas una mprsa con un patrimonio d $300 millons, una tasa sprada por l invrsionista K dl 12% y una rntabilidad sprada sobr l patrimonio (ROE) para l siguint príodo dl 10%. Con bas n sa información s db calcular l para todos los nivls posibls d dividndos. Opción K Patrimonio ROE n+1 Utilidad sprada Dividndos sprados P g Valor mrcado (M) % % % 0.00% % % % 0.33% % % % 0.67% % % % 1.00% % % % 1.33% % % % 1.67% % % % 2.00% % % % 2.33%

8 Opción K Patrimonio ROE n+1 Utilidad sprada Dividndos sprados P g Valor mrcado (M) % % % 2.67% % % % 3.00% % % % 3.33% % % % 3.67% % % % 4.00% % % % 4.33% % % % 4.67% % % % 5.00% % % % 5.33% % % % 5.67% % % % 6.00% % % % 6.33% % % % 6.67% % % % 7.00% % % % 7.33% % % % 7.67% % % % 8.00% % % % 8.33% % % % 8.67% % % % 9.00% % % % 9.33% % % % 9.67% % % % 10.00% - - En st caso a mdida qu s aumnta la rinvrsión n la mprsa l disminuy; sta situación s xplica porqu la rntabilidad qu gnran los fondos aportados s mnor qu l costo d sos rcursos por lo cual no s justifica rinvrtir n la mprsa y s confirma a través dl valor dl mrcado o dl. Est análisis s pud obsrvar n l siguint gráfico: vs. "g" CASO ROE< K 9,000 8,000 7,000 6,000 5,000 vs. "g" CASO ROE< K 4,000 3,000 2,000 1,000-0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% "g" - 8 -

9 CASO N 2 ROE = K Opción K Patrimonio ROE n+1 Utilidad sprada Dividndos sprados P g Valor mrcado (M) % % % 0% % % % 0% % % % 1% % % % 1% % % % 1% % % % 2% % % % 2% % % % 2% % % % 2.7% % % % 3% % % % 3.3% % % % 4% % % % 4% % % % 4% % % % 5% % % % 5% % % % 5% % % % 6% % % % 6% % % % 6% % % % 7% % % % 7% % % % 7% % % % 8% % % % 8% % % % 8% % % % 9% % % % 9% % % % 9% % % % 10% % % % 10% % % % 10% % % % 11% % % % 11% % % % 11% % % % 12% % % % 12% En l caso antrior como l ROE ES IGUAL AL COSTO DE LOS RECURSOS(K ), l mrcado prcib sta situación y l valor d la acción no cambia a psar d qu s aumnt l porcntaj d las utilidads rtnidas n la mprsa; como l s l rsultado d una xprsión dl mrcado prmanc constant ant difrnts nivls d g y simpr mantin un valor d CASO N 3 ROE > K Opción K Patrimonio ROE n+1 Utilidad sprada Dividndos sprados P g Valor mrcado (M) % % % 0.00% % % % 0.33% % % % 0.67% % % % 1.00% % % % 1.33% % % % 1.67% % % % 2.00% % % % 2.33% % % % 2.67% % % % 3.00%

10 Opción K Patrimonio ROE n+1 Utilidad sprada Dividndos sprados P g Valor mrcado (M) % % % 3.33% % % % 3.67% % % % 4.00% % % % 4.33% % % % 4.67% % % % 5.00% % % % 5.33% % % % 5.67% % % % 6.00% % % % 6.33% % % % 6.67% % % % 7.00% % % % 7.33% % % % 7.67% % % % 8.00% % % % 8.33% % % % 8.67% % % % 9.00% % % % 9.33% % % % 9.67% % % % 10.00% % % % 10.33% % % % 10.67% % % % 11.00% , % % % 11.33% , % % % 11.67% , % % % 12.00% # DIV/0! # DIV/0! % % % 12.33% ######## % % % 12.67% ######## % % % 13.00% % % % 13.33% % % % 13.67% % % % 14.00% % % % 14.33% % % % 14.67% % % % 15.00% - - En st último caso l ROE d la mprsa s mayor qu l K por lo cual las utilidads qu s rtinn n la mprsa s rinvirtn a una tasa mayor qu l costo d los rcursos; l mrcado prcib sta situación y l s incrmnta a mdida qu s rtin una mayor cantidad; n la tabla antrior s obsrva qu n la primra opción qu s prsnta (n la cual s rpart l 100% d las utilidads) l s d 8.333, y a mdida qu s rpartn mnos dividndos l aumnta porqu l mrcado prmia un ROE mayor qu l K. No obstant tin un límit (vr cuadro antrior) y s prsnta ntr las opcions 37 y 38 cuando g =12% igual al K qu s 12%; s concluy qu cuando l porcntaj d rtnción d utilidads s igual al K, l alcanza su máximo valor, pro si sa rtnción (g) s mayor al porcntaj K l cominza a disminuir, s vulv ngativo hasta alcanzar l valor cro (nulo). Lo antrior significa qu los invrsionistas valoran la mprsa cuando s rinvirtn las utilidads n proyctos qu gnrn una rntabilidad mayor al costo d los rcursos; sin mbargo, los invrsionistas también spran dividndos y si stos no s dcrtan prcibn prdida d valor d la mprsa. Por lo tanto la mprsa prdrá valor cuando no pagu dividndos así sa l ROE mayor qu l K. Para l jmplo n custión la mprsa alcanza l máximo valor d

11 cuando g = K; para los casos n qu g > K la mprsa pird valor. (vr gráfico). DE LA EMPRESA ROE > K 80, , , ,0000 Sri1-0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00% 16,00% -20, , ,0000 g % d rinvrsion d utilidads Analizados los trs casos antriors s concluy qu CUANDO EL AUMENTA DE UN IODO A OTRO AUMENTA ELVALOR DE LA ACCIÓN EN EL MERCADO (columna M, para los trs casos); CUANDO DISMINUYE EL SE PRESENTE DESTRUCCIÓN DE VALOR (vr columna M n los trs casos) y SI EL SE MANTIENE CONSTANTE NO HAY CREACIÓN NI DESTRUCCIÓN DE VALOR. 3.4 Dscomposición dl Si s obsrvan cuidadosamnt los cuadros antriors dond s considraron para difrnts nivls d g varias altrnativas u opcions, ROE mayor, igual o mnor qu K y s analiza la opción N 1 para cada uno d llos (n la qu s rpartn l total d las utilidads gnradas por la mprsa o sa qu g = 0), s obsrva qu l s igual para los trs casos (8.333). Lo antrior significa qu indpndint dl ROE, si l costo d los rcursos s l mismo para las trs mprsas (K), su va a tnr l mismo valor; partindo d la fórmula para calcular l n función dl ROE y dl K s tndría lo siguint: ROE g ROE K ( g)

12 dscomponindo la cuación antrior s tin, ROE ROE K g ( g) ROE( K g) si g = 0, ROE ROE K Simplificando, = 1 K ( ) rlación qu s conoc como SIN CRECIMIENTO. El CON CRECIMIENTO o sa cuando g > 0, tin dos componnts: l crciminto llamado G y la calidad dl crciminto llamada FRANCHISE FACTOR (vr dmostración n l apéndic d st capítulo) los cuals s calculan así ROE K FF = Franchisfactor = ROEK g G = Factor crciminto = K g S concluy qu l sta compusto por l SIN CRECIMIENTO y CON CRECIMIENTO. 3.5 Análisis dl con y sin crciminto D la misma forma qu s fctuó l análisis dl como un todo comparando l ROE y l K, s posibl ralizar l análisis dl con crciminto y sin crciminto; tomando los mismos trs casos considrados antriormnt

13 CASO N 1 ROE = K K P ROE UTILIDAD dl primr año D p g M FF G con crciminto sin crciminto % % % 0.00% % % % 0.33% % % % 0.67% % % % 1.00% % % % 1.33% % % % 1.67% % % % 2.00% % % % 2.33% % % % 2.67% % % % 3.00% % % % 3.33% % % % 3.67% % % % 4.00% % % % 4.33% % % % 4.67% % % % 5.00% % % % 5.33% % % % 5.67% % % % 6.00% % % % 6.33% % % % 6.67% % % % 7.00% % % % 7.33% % % % 7.67% % % % 8.00% % % % 8.33% % % % 8.67% % % % 9.00% % % % 9.33% % % % 9.67% % % % 10.00% % % % 10.33% % % % 10.67% % % % 11.00% % % % 11.33% % % % 11.67% Dl cuadro antrior s concluy qu cuando ROE = K así s rtngan utilidads, l Franchiss factor no tin valor, por cuanto l numrador d st indicador stá compusto por la difrncia ntr ROE y K, y como son iguals la calidad dl crciminto s nulo; sto significa qu si la mprsa X alcanza un rndiminto igual al costo d sus rcursos, no gnrará valor adicional, por lo cual así rtnga una porción d su ROE, l fcto sobr l crciminto s nulo pusto qu stará invirtindo n proyctos qu tinn un rndiminto igual al costo d los rcursos. CASO N 2 ROE < K K P ROE UTILIDAD dl primr año D p g M FF G con crciminto sin crciminto % % % 0.00% % % % 0.33% % % % 0.67% % % % 1.00% % % % 1.33% % % % 1.67% % % % 2.00% % % % 2.33%

14 K P ROE UTILIDAD dl primr año D p g M FF G con crciminto sin crciminto % % % 2.67% % % % 3.00% % % % 3.33% % % % 3.67% % % % 4.00% % % % 4.33% % % % 4.67% % % % 5.00% % % % 5.33% % % % 5.67% % % % 6.00% % % % 6.33% % % % 6.67% % % % 7.00% % % % 7.33% % % % 7.67% % % % 8.00% % % % 8.33% % % % 8.67% % % % 9.00% % % % 9.33% % % % 9.67% % % % 10.00% Para st caso s prsnta dstrucción d valor n l priodo analizado; l Franchiss factor s ngativo por sr ROE< K. Esto significa qu la mprsa stá rinvirtindo n proyctos qu tinn una rntabilidad infrior al costo d los rcursos, lo cual s cataloga como una mala la calidad dl crciminto. D la tabla antrior s dduc qu a mdida qu aumnta g, l aport ngativo al con crciminto s hac mayor mintras l franchiss factor prmanc constant; sto origina qu l total va disminuyndo y la acción va prdindo valor n l mrcado. CASO N 3 ROE > K K P ROE UTILIDAD dl primr año D p g M FF G con crcimi nto sin crci mint o % % % 0.00% % % % 0.33% % % % 0.67% % % % 1.00% % % % 1.33% % % % 1.67% % % % 2.00% % % % 2.33% % % % 2.67% % % % 3.00% % % % 3.33%

15 K P ROE UTILIDAD dl primr año D p g M FF G con crcimi nto sin crci mint o % % % 3.67% % % % 4.00% % % % 4.33% % % % 4.67% % % % 5.00% % % % 5.33% % % % 5.67% % % % 6.00% % % % 6.33% % % % 6.67% % % % 7.00% % % % 7.33% % % % 7.67% % % % 8.00% % % % 8.33% % % % 8.67% % % % 9.00% % % % 9.33% % % % 9.67% % % % 10.00% % % % 10.33% % % % 10.67% % % % 11.00% , % % % 11.33% , % % % 11.67% , % % % 12.00% # DIV/0! # DIV/0! 1.67 # DIV/0! # DIV/0! 8.33 # DIV/0! % % % 12.33% , % % % 12.67% , % % % 13.00% % % % 13.33% % % % 13.67% % % % 14.00% % % % 14.33% % % % 14.67% % % % 15.00% En la tabla antrior s obsrva un franchiss factor positivo constant para todos las altrnativas prsntadas d 1,67; st comportaminto contribuy al con crciminto: a mdida qu aumnta g, G s incrmnta pusto qu ésta última stá n función d la primra y dl K. Significa qu s buno rinvrtir n la mprsa pusto qu l rndiminto qu s logra s mayor al costo d los rcursos, s dcir, l crciminto tin calidad, pro l fcto s vulv ngativo cuando l g s mayor qu l K pusto qu l indicador G s volvrá ngativo a raiz d qu sta dfinido como G = g/(k g)

16 Conclusions: El como mdidor d valor pud analizars dsd dos ángulos: l primro d llos s calcula sobr las utilidads spradas para l siguint príodo s dcir sobr las xpctativas lo cual s positivo dsd l punto d vista d gnración d valor. El sgundo s dond s utilizan las utilidads como mdidoras d valor, n lugar dl flujo d caja libr qu s l gnrador por xclncia (vr capitulo antrior), pro prsnta l inconvnint d no considrar sino un príodo; como s bin sabido las invrsions no ncsariamnt gnran dinro n l siguint priodo al cual s ralizan, algunas d llas pudn dmorar varios priodos n dar flujos d dinro positivos. Por lo antrior lo hac un instrumnto débil n rlación con l flujo d caja dscontado

17 Ejrcicios 1) Si la mprsa tin un ROE igual al K y la junta d socios dcid aumntar l valor d g (porcntaj d rtnción), qué pasa con l valor d la mprsa n l mrcado? a) aumnta b) disminuy c) s duplica d) b) y c) ) ninguna d las antriors 2) Con bas n la siguint información d laboratorios Linda Rina : β = 1,2 Tasa libr d risgo = 3% fctivo anual Tasa d intrés d mrcado =9% fctivo anual Patrimonio = 500 millons d psos Utilidad sprada próximo año = 35 millons d psos G = 1,33% Calcular: a) El valor dl pr b) Qué pasa con l valor n l mrcado d la mprsa si g = 2,67%, aumnta, disminuy o prmanc constant. por qué? c) Si las utilidads spradas por la mprsa son d $90 millons n lugar d $35 millons, cuál s l valor dl pr? si la otra información s mantin (g = 1,33) d) Qué pasa con l valor n l mrcado d la mprsa?, si g = 2,45%, aumnta disminuy o prmanc constant. por qué? 3) Qué pasa con la calidad dl crciminto si ROE s mnor qu K (calcular l Franchiss factor) 4) Qué pasa con la calidad dl crciminto? si ROE s mayor qu K ( calcular l Franchiss factor) 5) Qué pasa con l valor n l mrcado d una mprsa? si l disminuy. 6) Para la siguint información d laboratorios Linda Rina calcular l pr sin crciminto β =0,89 Tasa d intrés libr d risgo = 6% fctivo anual Tasa d intrés dl mrcado = 9% fctivo anual G = 2,6%

18 APENDICE DEMOSTRACIÓN DESCOMPOSICIÓN 3 p ROE g K g = ROE K ( g) En una mprsa con crciminto constant s tin: M p ROE g = K g dond, M = Valor mrcado accions p = Valor n libros d accions p ROE g M K g = 1 = ROE K g ROE p ( ) Como g = ROE(1-p), sustituyndo y ralizando opracions algbráicas, obtnmos: ( g) ( g) p Kp K ROE K g = 1 K K g = 1 K ROE K ( ) ( ) ROE( K g) 1 K ROE g ROE K g = 1 + K ( ) ( ) 1 ROE K g 1 + = + FF + G K ROEK K g K dond, 3 Frnándz, Pablo. Valoración d mprsas. Barclona, Gstión Página

19 FF ROE K = Franchisfactor = ROEK G = Factor crciminto = g K g

20 BIBLIOGRAFÍA DEL CAPITULO 3 DAMODARAN, Aswath Th dark sid of valuation: valuing old tch, nw tch and nw conomy companis Prntic Hall 2001 FERNANDEZ, Pablo. Valoración d mprsas. Gstión 2,000. Barclona 1,999. FERNÁNDEZ, Pablo. Cash Flow is a Fact Nt Incom is Just an Opinion IESE Businss School Univrsity of Navarra, Sptmbr 25, 2002 GUTIERREZ, Luis Frnando. Finanzas prácticas para paíss n dsarrollo. Norma Colombia, 1,995. MOYER, Charls, MCGULGAN, Jams, KRETLOW, William. Administración Financira Contmporána. Thomson Larning. México, 2,000. ROSILLO, Jorg, CRUZ, Juan, VILLARREAL Julio Finanzas Corporativas Valoración, Política d Financiaminto y Risgo 2003 SERRANO, Javir Matmáticas Financiras y Evaluación d Proyctos Edicions Alfaomga VAN HORNE, Jams. Financial Managmnt and policy. Practic-Hall. USA, 1,

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Valuación por comparables. Dr. Marcelo A. Delfino

Valuación por comparables. Dr. Marcelo A. Delfino Valuación por comparabls Dr. Marclo A. Dlfino Múltiplos Estima l valor d una mprsa a partir dl valor conocido d otra mprsa d caractrísticas similars. El supusto básico s qu, sindo compañías similars l

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Forwards y Futuros (Resumen libro Hull)

Forwards y Futuros (Resumen libro Hull) Forwards y Futuros (Rsumn libro Hull) 1- Supustos d los modlos utilizados 1- No xistn costos d transacción 2- Todas las ganancias stán gravadas a la misma tasa impositiva. 3- La tasa d intrés libr d risgo

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 Chil, agosto d 2005 El prsnt manual rprsnta la visión dl quipo d profsionals prtncints al Proycto FONDEF Aprndindo con

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

COMO YA SE HA DICHO ANTERIORMENTE, DURANTE LA DÉCADA DE 1990 SE REALIZARON, EN

COMO YA SE HA DICHO ANTERIORMENTE, DURANTE LA DÉCADA DE 1990 SE REALIZARON, EN Capítulo 3 El disño d una política social para nfrntar l risgo: marco concptual COMO YA SE HA DICHO ANTERIORMENTE, DURANTE LA DÉCADA DE 1990 SE REALIZARON, EN AMÉRICA LATINA Y EL CARIBE, CIERTAS rformas

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS Las opracions a las qu s rfir la fracción II d la Disposición 6.7.4, así como las garantías rals financiras o prsonals

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES www.loutrainrs.com/fisiotrapia 615 964 258 PRESENTACIÓN Lou Trainrs s una mprsa d Entrnaminto Prsonal, Fisiotrapia y Gstión Dportiva

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS Númros complos NÚMEROS COMPLEJOS Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martín Boscá (martinb@uoc.du) MAPA CONCEPTUAL Dfinición Fórmula d Cardano NÚMEROS COMPLEJOS Rsolución d cuacions

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial José Luis Zofío Organización Industrial II Licnciatura: Economía (2º smstr) Código 570 Part I: El análisis dl quilibrio parcial Tma 3.El monopolio. 3. Análisis dl quilibrio. 3.2 Discriminación d prcios

Más detalles

núm. 222 jueves, 21 de noviembre de 2013 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 222 jueves, 21 de noviembre de 2013 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2013-08514 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Socidad para l Dsarrollo d la Provincia d Burgos (Sodbur),

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com)

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com) Intrnational Tax Srvics Aspctos Fiscals Vnzolanos Cross-Bordr d las Invrsions n l Sctor dl Gas Luis Eduardo Ocando B. (luis.ocando@v.y.com) Tabla d Contnidos Introducción Planificación Fiscal n Vnzula

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-01298 Código d Vrificación:1453130796 - Comprub su validz n http://www..s/comprobar-firmados Convocatoria

Más detalles

Informe de Gestión Enero 2015

Informe de Gestión Enero 2015 2015 1 Contnido PRESENTACIÓN... 5 ASPECTOS GENERALES... 7 A-RESULTADOS DEL PERIODO... 8 1. Cartra Crditicia... 8 1-1 Prsupusto d colocación n fctivo d la cartra d crédito... 8 1-2 Ejcución ral por programa...

Más detalles

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM Est capitulo xamina l fcto qu tin sobr l ingrso d quilibrio un cambio n la ofrta d dinro, n l gasto gubrnamntal y/o n los ingrsos ntos por impustos.

Más detalles

- SISTEMA DE INFORMACION DE GESTION -

- SISTEMA DE INFORMACION DE GESTION - - SISTEMA DE INFORMACION DE GESTION - INFORME Nº 4 Jf d División y Encargados d Cntros d Rsponsabilidad NIVEL 2 GOBIERNO REGIONAL DE MAGALLANES Y ANTARTICA CHILENA - DICIEMBRE 2008 - 1 Mta Mdidas Rsponsabl

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

EL MERCADO DE DIVISAS Y EL TIPO DE CAMBIO: EL ENFOQUE FLUJO. Richard Roca

EL MERCADO DE DIVISAS Y EL TIPO DE CAMBIO: EL ENFOQUE FLUJO. Richard Roca L MRCADO D DIVISAS Y L TIPO D CAMBIO: L NFOQU FLUJO Richard Roca rhoca@yahoo.com www.gocitis.com/rhroca Univrsidad Nacional Mayor d San Marcos Pontificia Univrsidad Católica dl Prú Richard Roca: l mrcado

Más detalles

A Microeconometric Approach to the Determinants of Travel Mode Choice

A Microeconometric Approach to the Determinants of Travel Mode Choice A Microconomtric Approach to th Dtrminants of Travl Mod Choic ablo Marclo Garcia* Cntro d Estudios para la roducción pmgarci@mcon.gov.ar Abstract Th transportation systm is a fundamntal componnt of th

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS PLÁSTICAS

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS.

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. Ana Ida Vilir ivilir@cug.co.cu Rafal Cardoza Gámz cardoza@fc.cug.co.cu Univrsidad d Guantánamo Rsumn:

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

,,.., ' ,. :!, :*,. ' I. INFORME TÉCNICO P~REVIO DE EVALUACIÓN DE SOFTWARE No 0020-2007-GT1000

,,.., ' ,. :!, :*,. ' I. INFORME TÉCNICO P~REVIO DE EVALUACIÓN DE SOFTWARE No 0020-2007-GT1000 :! :* ' ; ' NFORME TÉCNCO P~REVO DE EVALUACÓN DE SOFTWARE No 0020-2007-GT000 "HERRAMENTA PARA ELMODELAMENTO DE APLCACONES CON UML" : ' - 8 ' : / '! +- j: i 4 *?!: ;* L NOMBRE DEL ÁREA: Grncia d Tcnologías

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores Aspctos Técnicos para la Dtrminación d la Prima d Risgo n l guro d Gastos édicos ayors igul Angl Bltrán Prado Dicimbr 1992 ri Documntos d Trabajo Documnto d Trabajo No. 11 Índic Introducción 1 1. Objto

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 5 TEORIA DE LA OFERTA AGREGADA CON EXPECTATIVAS DE INFLACIÓN AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 5 TEORIA DE LA OFERTA AGREGADA CON EXPECTATIVAS DE INFLACIÓN AGOSTO 2008 LIMA PERÚ AUTES DE CLASE MACROECOOMÍA CAÍTULO º 5 TEORIA DE LA OFERTA AGREGADA CO EXECTATIVAS DE IFLACIÓ AGOSTO 2008 LIMA ERÚ TEORIA DELA OFERTA AGREGADA CO EXECTATIVAS En l capítulo º 4 dond xplicamos l concpto

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

MONITOREO DE CONTROLADORES PREDICTIVOS.

MONITOREO DE CONTROLADORES PREDICTIVOS. MONITOREO DE CONTROLADORES PREDICTIVOS. Rachid A. Ghraizi, Ernsto Martínz, César d Prada Dpt. Ingniría d Sistmas y Automática Facultad d Cincias, Univrsidad d Valladolid c/ Ral d Burgos s/n, 47, Valladolid,

Más detalles

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2012

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2012 FORMULARIO INDICADORES DE DESEMPEÑO AÑO 212 MINISTERIO MINISTERIO DE EDUCACION PARTIDA 9 SERVICIO COMISION NACIONAL DE INVESTIGACION CIENTIFICA Y TECNOLOGICA CAPÍTULO 8 Producto Estratégico al qu s Vincula

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

MAPA DE RIESGOS DE FRAUDE Y COCRRUPCIÓN. Anexo 1A: Mapa de Riegos de Fraude y Corrupción página 1 de 7

MAPA DE RIESGOS DE FRAUDE Y COCRRUPCIÓN. Anexo 1A: Mapa de Riegos de Fraude y Corrupción página 1 de 7 Objtivo y procso Controls Sguiminto Rsidual Admon dl Accions Rsponsabl Ralizar la vrificación y/o valuación a los procsos, procdimintos, actividads, actuacions, plans d acción y d mjoraminto; promovr la

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA)

Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA) Alrdo Masó Macroconomía Intrmdia Grado d ADE y DADE-Curso 2012 roblmas: ráctica 2 (Tma 1: modlo Mundll-Flming : olíticas d DA) 1º) Obtnga la xprsión d la Dmanda Agrgada, la rnta d quilibrio, l tipo d intrés

Más detalles

I. Administradora, a la Administradora de Fondos para el Retiro, así como las instituciones públicas que realicen funciones similares.

I. Administradora, a la Administradora de Fondos para el Retiro, así como las instituciones públicas que realicen funciones similares. I. DEFINICIONES. PROSPECTO DE INFORMACIÓN Socidad d Invrsión Espcializada D Fondos para l Rtiro. Socidad d Invrsión Básica 4. Para fctos d la información contnida n l Prospcto, s ntndrá por I. Administradora,

Más detalles

núm. 41 viernes, 28 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS

núm. 41 viernes, 28 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS C.V.E.: BOPBUR-2014-01222 SERVICIO DE ASESORAMIENTO JURÍDICO Y URBANÍSTICO A MUNICIPIOS Y ARQUITECTURA El Plno d

Más detalles